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Abstract—With the rise of formally verified micro kernels,
we finally have a trusted platform for secure IPC and rigorous
enforcement of our mandatory access control policy. But, not
every problem in computer security and privacy could possibly
be solved by a trusted micro kernel, because we have higher
level security and privacy concepts like packet filtering, data
encryption and partitioning of shared hardware devices, which
we also need to trust. Numerous authors have described the need
for a trusted middleware, fulfilling these higher level security and
privacy goals, but detailed requirements for the different security
and privacy goals are still missing. We provide a collection of
output filters that can be applied to trusted operating system
components to enforce higher level security goals. We further pro-
vide a typology of operating system guards, which are essentially
trusted components utilizing different compilations of input and
output filters. The storage guard, the audio filtering guard and the
sequencing guard are specifically targeted at providing solutions
to three common security and privacy problems in component-
based operating systems. Finally, we develop a guard reference
architecture and present the concept of a guard construction kit
for the development of new types of operating system guards,
enabling operating system developers to build their own guard
components for both component-based and commodity operating
systems.

I. INTRODUCTION

With the advent of formally verified micro kernels, trust-
worthy computing systems are becoming more and more a
viable option. However, as micro kernels provide only basic
functionalities like secure IPC (inter process communication
and inter partition communication in component-based operat-
ing systems) to operating systems, higher level security critical
operating system services are not targeted at. Examples for
these security critical services would be encryption (on disk
or over the network), packet filtering, partitioning of untrusted
hardware and content filtering. Any of these services cannot
be possibly integrated into a micro kernel without giving up
the paradigm of small code size. Still, these services need
to be implemented as trusted components, because, if we
cannot trust our higher level services, the operating system’s
application partitions cannot build up trust in these critical
tasks.

We argue that formally verified micro kernels, irrespective
of all their merits, only solve the security problem at a specific
operating system layer and delegate the rest of the problem
to a higher operating system layer. At this higher layer, a
service middleware between the kernel and our applications
needs to be established. Different concepts for such a secure
middleware exist (e.g. the MILS architecture), but they mostly

focus on the general system architecture and not on solutions
for solving our specific higher level security goals such as
partitioning of shared resources or applications of input and
output filtering. Some of the middleware’s components would
have to be implemented as a trusted component, whereby
others could be implemented as untrusted components, because
their critical aspects could as well be checked or provided
by a trusted component. Trusted components that provide
critical services to other components are known as guards
(see also Section II). They are utilized in the context of a
component-based operating system, i.e. an operating system
that consists of a small, verifiable kernel and supporting
components, as described by Jaeger et al. [1]. For protecting
other operating system components and application partitions
(see also Section III), guards utilize different input and output
filters, transforming data in a way that prevents information
leaks.

In this article, we present a typology of these operating
system guards and a collection of their output filtering mecha-
nisms. We further provide formal semantics for the description
of operating system guards and filters, enabling operating sys-
tem developers to propose and describe new types of guards.
Output filter types are mapped to operating system guard types
and specific guard types are described in more detail. The
guard reference architecture is introduced to describe a general
design pattern for the development of operating system guards.
Before we present our formal semantics for guards and filters,
we discuss preliminary studies in the following section.

II. RELATED WORK

Heiser et al. [2] play an intellectual game on the question,
what would happen if you could actually trust your kernel.
We provide our own answer to the question, stating that many
problems in today’s operating systems actually would not
dissolve, unless we also concentrate on providing a trusted
middleware specifically targeting the security goals considered
in the operating system’s design. Klein et al. [3], [4], [5],
Andronick et al. [6], [7] and Heitmeyer et al. [8] present formal
verification approaches on the kernel level, while Chong et
al. [9] developed formal semantics for the specification of a
component-based operating system. We argue that the applica-
tion of formal methods to micro kernels and component-based
operating systems is a big step forward to provable security, but
still, the specific filtering problems in trusted middleware have
to be solved. This does not only involve formal verification of
the trusted middleware, but especially the concepts for com-
ponent interconnection, separation and filtering in information
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flows, which are discussed and extended in this article.

Anderson [10] introduces the concept of a reference mon-
itor, governing all information flows in the operating system.
While a reference monitor is fundamental to any trustworthy
computing system, governing the information flows between
the components is not enough, as we have to make sure that
security critical components actually do the right thing (and
do it correctly). Rushby [11] introduces the separation kernel,
which simulates a distributed environment inside the operating
system, providing isolated and strict verification of information
flows. McDermott et al. [12] introduce separation VMMs,
which are based on the concept of strict partitioning of op-
erating system components, but, unlike the separation kernel,
utilize fewer communication paths and do not rely on full-
fledged formal verification. In a thematically related statement
Neumann [13] argues that concepts like the separation kernel,
published as early as 1981, have not been widely adopted
in the past as these revolutionary approaches have too many
preconditions for being successful and markets are adapting
new technologies primarily for short-term earnings rather than
rewarding foresight to radical approaches. Separation VMMs
could, therefore, be both an evolutionary step to full-fledged
trustworthy computing systems and an alternative approach
to component-based operating systems, where lower security
standards would be acceptable in exchange for simplified
system development and integration. With separation VMMs,
component-based operating systems are more likely to enter
the broad commercial market, only utilizing commodity hard-
ware and commodity guest operating systems in the application
partitions.

Hofmann et al. [14] try to cross a bridge between com-
modity operating systems and formally verified systems by
suggesting a hypervisor that verifies the behavior of a commod-
ity operating system in a scenario of specific high-assurance
applications running alongside untrusted applications. In con-
trast to evolutionary approaches, Solworth [15] argues for
discontinuity in trustworthy computing systems, giving up
compatibility with current concepts and architectures in favor
for security-focused paradigms that have been researched for a
long time but have only scarcely been applied. We argue that
filters and guards, as presented in this article, will become
more and more relevant to the broader market when concepts
like separation VMMs are getting established in business
machines and computing systems for the end-user, while the
general concepts we developed apply to both separation kernels
and separation VMMs, making them adaptable to different
approaches to trustworthy computing and independent from
a possible paradigm shift.

Bellovin [16] and Bratus et al. [17] argue that virtual-
ization, while often providing advanced isolation measures,
does not really address the security problems of IPC between
cooperating applications. We aim to address IPC by devel-
opment of guards and filters to prevent security and privacy
leaks in VM-based computing systems and even in distributed
and very communication-oriented applications. Jaeger et al. [1]
present a security architecture for component-based operating
systems. The authors also discuss access privilege delegation
in component-based operating systems, which we address by
means of the policy guard.

Alves-Foss et al. [18], Jacob [19] and many more authors

argue for the adoption of the MILS architecture (based on a
separation kernel) for high-assurance scenarios. Alves-Foss et
al. argue that “the middleware layer is responsible for filtering
out any messages that are not appropriately labeled before
delivering them to the recipient”. We will further discuss
these message filtering mechanisms in the next section where
we introduce different filter types, which will be applied to
different operating system guards in the course of this article.
The growing potential for application of trusted middleware
is discussed by different authors. While Camek et al. [20]
mention the necessity for implementing a distributed MILS
architecture in ICT of future cars, Partridge et al. [21] present
a secure network in space utilizing a MILS architecture.
Moreover, Li et al. [22] suggest the adoption of a security
middleware for software defined radio devices. Different sys-
tem architectures for multilevel security are further analyzed
by Levin et al. [23].

Karger [24] presents multilevel security requirements for
hypervisors, explicitly differentiating between pure isolation
and sharing hypervisors. We pick up these terms to describe
the different kind of problems addressed by our concepts for
guards. While most of these guards are designed for isola-
tion purposes, the concept of a downgrading guard addresses
the sharing hypervisor, preparing data for downgrading and
sharing from higher to lower classified partitions. The concept
of a sharing guard instead addresses communication from
lower to higher classified partitions (i.e. with the Bell-LaPadula
model [25] applied). Lampson [26] introduces covert channels
and storage channels, which are specifically addressed by our
guards. Storage channels are targeted by the storage guard
and covert channels are, for instance, targeted by the audio
filtering guard. Zhou and Alves-Foss [27] discuss refinement
patterns for component-based operating system architectures
like decomposition, aggregation and elimination of compo-
nents. We will pick up these terms to describe different variants
of operating system guards.

Robinson and Alves-Foss [28] present the MLS file server
which is essentially a locally and remotely distributed mul-
tilevel file system, offering high level file system commands
like read, create and delete. In a related approach, Robinson
et al. [29] present a middleware for label-based, classification-
aware filtering, the GIOP guard. While the MLS file server
approach cannot separate between different classification levels
(e.g. secret and top secret classified data) in one data partition,
the GIOP guard makes a distinction between the corresponding
read, write and create operations (e.g. secret-read and top-
secret-read), allowing for a distinct handling of these oper-
ations on a single data partition. Both MLS file server and
GIOP guard make use of an MMR (MILS message router),
which acts as a decision handler for IPC between the different
involved operating system partitions. While the MLS file server
in conjunction with the GIOP guard could be conceived as a
storage guard approach for use in a sharing hypervisor, the
MILS message router acts in a similar fashion as the policy
guard, introduced in a later section of this article.

Robinson et al. [28], [29] and Alves-Foss et al. [18],
however, do not address the problem of malware residing
in the untrusted parts of the operating system (such as the
storage device driver), enabling an attacker to maliciously
send data from the wrong storage section to the storage
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guard. Our approach to implementing a storage guard does
not feature information exchange between different partitions,
which can be addressed by a different operating system guard.
We, instead, implement confidentiality and integrity checks in
our storage guard approach, targeted at preventing any storage
channel between two partitions pi and pj in the presence of
untrusted components handling the actual storage access.

Alves-Foss et al. [18] define a guard as a “trustworthy ap-
plication which is responsible for analyzing the content of the
communication and determining whether this communication
is in accordance with the system security policy. The guard has
the ability to modify the contents of the message, delete the
message or send a constructed response back”. Building upon
this notion of a guard, we will present a collection of different
guard types, utilizing very different types of filters. Having
discussed the work of other authors, we will now provide our
own formal definition of an operating system guard.

III. DEFINITION OF AN OPERATING SYSTEM RELATED

GUARD

A component-based operating system has been described
by Jaeger et al. [1] as an operating system that has “a small,
fixed, trusted computing base (TCB) and composes its system
services from individual components”. We take a look at the
operating system stack of a component-based operating system
(Fig. 1).

Application Partitions (P)
Middleware (M)

Kernel (K)
Hardware (H)

Fig. 1. Operating system stack of component-based operating systems

On top of the underlying hardware H and the operating
system kernel K, we distinguish between application partitions
and middleware partitions, which provide services to the
application partitions. Partitions are strictly isolated containers
inside the operating system that can only communicate with
each other over K and in line with the system’s security policy.

We define the set of application partitions as P :=
{p0, · · · , pn−1}. The tuple of middleware partitions is de-
fined as M := (G,C) where G represents the partitions
of trusted components that act as a guard defined by G :=
{g0, · · · , gk−1} and C represents the partitions of non-guard-
components defined by C := {c0, · · · , cm−1}.

As guards belong to the trusted components in a
component-based operating system, they have to be subject to
rigorous evaluation (and possibly formal verification). In order
to be reasonably evaluatable, trusted components also have to
be implemented with a very low number of source lines of
code. So, in terms of trust, similar conditions as those imposed
on micro kernels apply. In contrast to the trusted components,
untrusted components often consist of legacy software like
specific device drivers that are reutilized for compatibility
reasons and for the purpose of faster system development.
Each guard can utilize numerous different input and output
filters to solve a specific security or privacy goal in IPC. A
filtering function φ(d) is applied on data transmissions d in a
way that prevents leakage of critical data. It should be noted

that a filter contains more than just the filtering function of the
data as it might involve side effects on the guard, for instance,
stateful packet inspection in packet filters or stateful storage
of hash sums for the purpose of future integrity evaluation.
The relation between guards and filters can be described as
a many-to-many relation, as each guard can utilize different
filters and each filter can be applied by different guards. We
specifically define an operating system guard g as the 5-tuple
g := (IFin, IFout, Fin, Fout, s) where IFin and IFout are
defined as sets of input and output interfaces to other operating
system components available to g. Fin and Fout are defined
as sets of input and output filters, whereby a single filter f is
defined by the 3-tuple f := (τ, if∗, φ). τ represents the applied
filter type, describing the procedures for updating the guard’s
state and calling the filtering function φ, and if∗ is a reference
to if , defined by if ∈ IF := IFin ∪ IFout, representing the
interface where this filter is applied. Finally, s represents the
guard’s internal state. With these definitions established, we
are able to describe very different types of guards, utilizing
different filters and interfaces. In the next section, we will first
discuss different types of output filters applicable to operating
system guards.

IV. OUTPUT FILTER TYPES USED IN GUARDS

A. Filter Types identified

In the following we identify different output filter types
used in operating system guards. The presented output filters
can be applied to any guard g ∈ G. It should be noted that this
presentation of filters is by no means meant to be exhaustive,
as arbitrary operations could be carried out by φ. Furthermore,
input filters are not presented here, but, for most output filters,
there is also a corresponding input filter (e.g. a decryption
filter for the encryption filter and an integrity evaluation filter
for the integrity output filter). The filter types presented here
were deducted from different problem statements we gathered
in the process of designing operating system guards for both
pure isolation and sharing hypervisors. As part of an operating
system guard, some of these filters have been implemented in
C++ code. The implementation results will be described in a
future article.

B. Signal Distortion Output Filter

The signal distortion output filter distorts signals in a way
that filters out certain signal characteristics, which should
be semantically irrelevant for the actual transmitted content.
An example for a signal distortion output filter would be a
bandpass filter in a sound processing system that lets only
audible sound frequencies pass to counter attacks based on
modulated audio signals. Modulated audio signals could be
used for establishing illegitimate information flows between
operating partitions, i.e. establishing a covert physical channel
(as opposed to covert storage channels and covert timing
channels). We use the terminology of a covert physical channel
here because covert channels are defined as channels that
have not been designed for communication at all [26]. The
covert physical channel could also be used as a network covert
channel and for connections over multiple hops, extending the
communication range of the channel and maybe maliciously
connecting the computing system with further networks (e.g.
the internet). In the operating system covert channel scenario,
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if partition pi was in control of the computer’s speaker and
partition pj was in control of a microphone, data could be
maliciously exchanged between pi and pj (i �= j). In order to
hide the covert physical channel from the computing system’s
user, the attacker could switch to inaudible frequencies (e.g. ul-
trasound). This specific covert channel type can effectively be
prevented from utilizing inaudible signals by means of a signal
distortion output filter applied to an audio filtering guard. An
ultrasonic-based covert channel has been tested by Hanspach
and will be described in a future article. Besides audio modu-
lation/demodulation, other types of channels utilizing physical
emanations are also conceivable, as Frankland [30] already
presented an optical channel between keyboard LEDs and a
camera, while Hasan et al. [31] presented physical approaches
for near-field-communication command-and-control in botnets,
utilizing different types of emanations.

C. Content Output Filter

The content output filter (Fig. 2) is a filter that separates
the originally transmitted data into legitimate information and
illegitimate information, whereby only legitimate information
is allowed to pass through. Content filters could be used for

Original ContentInput 
from pi

= Removed Content = Original Content

Output

Filter

Fig. 2. Content Output Filter

deep packet inspection in application level gateways, filtering
out any illegitimate content. Looking at a privacy context,
content filters could be used to prevent accidental or malicious
leak of personal data in personal computing devices (e.g. in
smartphones). For operating systems in multilevel security
mode, the content filter could be used to filter out classified
data in document parts (often manually) marked as classified,
even if the classified data was actually created in a domain
not suitable for the targeted classification level. Moreover, the
content filter could be used to prevent accidental information
leaking. For instance, in documents created by common of-
fice software, text fragments are often blackened to prevent
disclosure of critical information when handing over these
documents. In a very common case, these modified documents
are handed over electronically and, when the content of these
text fragments is not actually deleted but only blackened,
the information could be restored by the receiver of the
document. For this purpose, the content filter could recognize
such patterns of human mistakes by deep inspection of the
transferred data and correct the presentation of the document.
In a different filter implementation, the user could be informed
of his accident, to grant him the chance to manually decide
over the possible procedures applied.

D. Decision Output Filter

The decision output filter (Fig. 3) is applied to reach a
decision whether an entire PDU (protocol data unit) should
be discarded or forwarded. An example for a decision output

Original Data

Original Data

XInput
from pi

Filter

Output

Data Discarded

Data Forwarded

X = XOR Decision

Fig. 3. Decision Output Filter

filter would be an operating system’s packet filter, dropping
illegitimate network packets or accepting them for processing
or forwarding. The depicted basic form of the decision output
filter might be extended by including an update procedure to
the guard’s internal state in order to support concepts like
stateful packet inspection. The decision output filter can also
be used to create a policy for component interconnection and
isolation, connecting different partitions with a guard, but also
isolating the partitions from communicating with each other
on the middleware level.

E. Encryption Output Filter

The encryption output filter only forwards the ciphertext
data E(d) for a given plaintext data d, using a symmetric
encryption algorithm for φ. As we want to separate our
application partitions, different symmetric keys would have to
be used for encryption/decryption request from different par-
titions. The encryption output filter can be used to implement
a mandatory encryption policy, encrypting any processed data
and preventing the forwarding of any unencrypted data. The
encryption output filter might not only be used for security and
privacy purposes, such as hard disk and network encryption but
also for isolation purposes between distinct operating system
partitions. Consider an example where two isolated partitions
are connected to the same guard, accessing the same storage
device. Without encrypting the stored data, the storage device
(or storage device driver) could maliciously deliver critical
data to the wrong partition, breaking the system’s security
and privacy policy. An encryption guard component has been
suggested by Alves-Foss et al. [18], but we are utilizing
encryption not solely for the purpose of data confidentiality
against attackers on the wire or with physical access to H ,
but also for preventing storage channels inside the operating
system by implementing a storage guard (as described in the
next section).

F. Integrity Output Filter

The integrity output filter (Fig. 4) is designed to guard
the integrity of output data. For every PDU processed, the
integrity output filter forwards the original data, and stores
a unique reference and an integrity anchor (i.e. a hash sum
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Hash
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Fig. 4. Integrity Output Filter

or a message authentication code) inside the guard’s internal
state, which can be evaluated by a corresponding integrity
input filter. The integrity filter is primarily designed for use
in (local or distributed) storage subsystems, where data is first
written out and needs to be reread at a later time in an integrity-
preserving way.

G. Discard Output Filter

The discard output filter simply discards any output. The
discard output filter can be used at any guard interface to build
a data diode, only allowing the establishment of information
flows in a specific direction. Data diodes may be used in
sharing guards, which are utilized by a sharing hypervisor,
ensuring that information flows are only established from
higher to lower classification levels or from lower to higher
trust levels (i.e. with the Bell-LaPadula or Biba model applied
[25], [32]).

In the following section, we will take a look at the design
of operating system guards and how they utilize the described
filters to assure security and privacy for other components and
application partitions.

V. A TYPOLOGY OF GUARDS APPLICABLE IN

COMPONENT-BASED OPERATING SYSTEMS

A. Types of Guards

We will first describe the different types of guards we
consider in this article. This collection of guards is, just as
the collection of output filters, not meant to be exhaustive,
as guards are defined by their application of input and output
filters and arbitrary filters could be defined.

The storage guard fulfills the purpose of preventing storage
channels between any pair pi/pj of different application parti-
tions in a scenario with a shared storage device. The storage
guard has to partition the shared storage device into different
isolated sections, enforcing the policy that each section shall
be isolated from access of a non-associated pi. Furthermore,
the storage guard has to ensure that only encrypted data is
written to the shared storage device, so that no pi could read
out data from pj , even in the case of hardware manipulations
or failures. Finally, the storage guard has to verify the integrity
output data, applying integrity input and output filters.

The audio filtering guard fulfills the purpose of preventing
storage channels between different operating system partitions.

The audio filtering guard implements signal distortion output
or input filters to prevent any audio output from a pi that
utilizes inaudible audio frequencies. Generalizing the audio
filtering guard approach, we could construct hardware I/O
filtering guards for any type of I/O devices.

The downgrading guard is used to prepare documents
for downgrading from a higher to a lower classification in
order to enable information exchange from higher to lower
classification levels in a sharing hypervisor. A downgrader for
multilevel security systems is also suggested by Alves-Foss et
al. [18].

The content filtering guard serves the purpose to filter
out illegitimate content in PDUs, for instance to filter out
blackened data in documents, and applies the content output
and input filters, preventing pi and c from accidental or
malicious establishment of illegitimate information flows.

The sharing guard allows for data sharing in a sharing
hypervisor (as opposed to a pure isolation hypervisor [24]), im-
plementing multilevel security policies like the Bell-LaPadula
and the Biba model [25], [32].

The policy guard can be used to implement access control
policies for interconnection between components where the
access control policy needs to be altered at runtime and
a mandatory access control policy would be too inflexible.
The general concept can also be used to delegate IPC tasks
from the micro kernel to policy guards in order to reduce
the complexity of the kernel policies and delegate different
policy decisions to different system roles. Note that the micro
kernel’s reference monitor (governing all information flows in
the operating system as explained by Anderson [10]) would
still be always-invoked by the trusted policy guard, but the
actual decision would be delegated to the guard to the extent
of all possible information flows that are granted to the guard.
As a prior example of a policy guard, Alves-Foss et al. [18]
introduced the MILS Message Router that “will function as a
data switch by taking data from multiple partitions at various
classification levels and routing the messages to the correct
destination, which may include additional trusted devices that
determine if the message satisfies the application-level security
policy”. Another example of a delegating policy guard has been
presented by Payne et al. [33].

The sequencing guard is a specific variant of the policy
guard and can be used to interconnect different applications
with operating system components performing the processing
in a fixed order, analogous to the fixed processing order of
an assembly line. The sequencing guard can, for instance, be
used for protocol data assembling, adding different security
protocol headers in a predetermined sequence in line with the
security protocol definition.

By the definition of an operating system guard (see Sec-
tion III), a guard can utilize one or more filters in order to
protect other operating system components and application
partitions. In Tab. I, a mapping between the above described
operating system guards and their utilized output filters is
established. It can be seen in this mapping that we can
create new types of operating system guards by application
of different filter types. It is also made visible that decision
output filters should normally be applied to guards in order
to prevent illegitimate communication between partitions over
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TABLE I. MAPPING BETWEEN GUARDS AND FILTERS
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Storage Guard X X X

Audio Filtering Guard X X

Downgrading Guard X X

Content Filtering Guard X X

Sharing Guard X X

Policy Guard X X

Sequencing Guard X X

the operating system guard interfaces. To get a more precise
impression of the construction of operating system guards, we
will now have closer look at three distinct types of guards.

B. A closer look at the storage guard

The purpose of the storage guard (Fig. 5) is to provide
storage access to isolated different application partitions, but
using a shared storage device (e.g. an HDD or SSD). The
storage guard would not only be utilizable for security but also
for privacy applications, completely isolating partitions from
different users on a shared storage device. Because we are
using a shared storage device, we have to ensure that no unen-
crypted data is ever stored on the storage device, to prevent the
storage device from maliciously returning data belonging to pj
to pi. Therefore, encryption and decryption filters have to be
applied at the interfaces between the guard and the storage de-
vice (or perhaps the storage device driver as an intermediate),
implementing a red/black (unencrypted/encrypted) separation
inside the guard. Different encryption/decryption keys have to
be used for requests from different partitions, to prevent any
partition from accessing data that was encrypted for a different
partition.

A malicious storage device or device driver could further
try to attack the integrity of the stored data by returning
manipulated data, making integrity-preserving precautions nec-
essary. For this purpose, the storage guard would implement
integrity checks at the interfaces to the storage device or the
device driver. For preventing any communication between pi
and pj over the guard, decision output filters would have to
be applied. In this example, IFin and IFout would contain
the interfaces to pi, pj and H . Fin ∪ Fout would contain
encryption/decryption filters and integrity input/output filters
at the interface to H . At the interfaces to pi and pj , a decision
output filter would be implemented as described above. By
application of the decomposition refinement pattern [27] to
the storage guard, we can further advance the storage guard
by outplacing the hardware access functionalities (i.e. the
storage driver) into an untrusted component (e.g. a legacy
driver for maximized compatibility), only concentrating on
security measures inside the storage guard and maximizing
the compatibility with existing source code. Although we
used an example of two connected application partitions, any
number of application partitions could be connected with the
storage guard to access the shared storage device. The storage
guard has been implemented by us as a prototype of a C++
application and will be described in a future article.

     H

pi

     K
HDD / SSD

gstor pj

= Red (unencrypted) Information Flow
= Black (encrypted) Information Flow

Key pi Key pj

Fig. 5. A storage guard used by two different application partitions

C. A closer look at the audio filtering guard

The audio filtering guard (Fig. 6) connects any number
(two in this example) of pi partitions with a shared sound
processing hardware.

     H

pi

     K
Sound Card

gaud pj

= Unfiltered Signal
= Filtered Signal

Fig. 6. An audio filtering guard used by two different application partitions

IFin and IFout would contain the interfaces to pi and
pj , providing audio services and audio filtering to both of
partitions. Fout (and optionally Fin) would contain signal
distortion filters, utilizing the input or output interfaces be-
tween pi and gaud to prevent any output in the ultrasound
frequency spectrum. This way, ultrasonic covert channels
between operating system partitions (and between different
computers) could effectively be prevented. Ultrasonic covert
channels are actually a considerable problem in high-assurance
computing systems as we found out in multiple experiments.
We will describe our experiments on ultrasonic covert channels
in detail in a future article. Fout would also (just as in the
storage guard) contain decision output filters at the interfaces
to pi and pj to prevent communications between pi and pj
over the audio filtering guard. Just as with the storage guard,
refinement patterns like decomposition could be applied in
order to reutilize legacy audio drivers.
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D. A closer look at the sequencing guard

The sequencing guard (Fig. 7) is used to perform different
operations, implemented in different components in a specific
order. The numbers depicted show the logical processing order
position in the sequence pi → g1 → g2 → g3 where any
transition is enabled by the sequencing guard g0.

H

pi g0 g1

= Connected Interfaces

g2 g3

K

1 2 3 4

1 – 4                = Logical Processing Order Position

Fig. 7. A sequencing guard, utilizing three processing components

IFin and IFout of the sequence guard would contain the
input and output interfaces to the processing components g1
and g2, the original input partition pi and the final output com-
ponent g3. Fin and Fout would contain decision input/output
filters and discard output filters to manage the information
flow and enforce the defined processing order. The sequencing
guard also needs to keep track of a PDU’s processing history
in its internal state in order to determine the next processing
step, which is enforced by the decision-based filters. The
sequencing guard could be applied where different filtering
steps, implemented in different operating system guards, have
to be processed in a specific order in order to pass the security
check. As a possible application, the sequencing guard could
be implemented for performing separated processing steps in
a network packet filter.

E. The guard reference architecture

From the architecture of the presented guards, we can
deduct a general guard reference architecture (Fig. 8). The
guard reference architecture can be conceived as a general
design pattern for the development of operating system guards,
which did not exist before to the best of our knowledge.
The guard reference architecture involves potential interfaces
between the guard g and any partition p, c, g and to K
and H . All of these information flows are governed by K,
implementing the reference monitor paradigm [10], implying
that the kernel has to be always-invoked in IPC. The guard
reference architecture can be conceived as the prototype of an
n-way-guard [33], connecting n different elements of P , G and
C, and K and H and applying specific input and output filters
for a specific purpose. With the guard reference architecture
and the mathematical guard notation defined, we should be
able to develop a general guard construction kit that could
be implemented as a GUI-based software, only choosing the
associated input and output interfaces, and corresponding input
and output filters and the guard’s initial state for the creation
of a new guard.

H

p0

K

gref p...

= External Interfaces where
 data filtering might be applied

pn-1

Fig. 8. The suggested guard reference architecture

VI. CONCLUSION

Guards protect critical operations in trusted parts of the
operating system from attacks of possibly infected, untrusted
parts. Guards are trusted components that serve multiple
protection purposes in component-based operating systems,
in multilevel security systems and, especially with the intro-
duction of separation VMMs, even in commodity operating
systems. Guards can, for instance, serve as a multiplexer
component, interconnecting isolated operating system parti-
tions with distinct parts of a shared resource and, thereby,
also partitioning the shared resource. Guards can also serve
as a policy service, enforcing system policies on behalf of
the kernel. And, what’s more, guards can prevent application
partitions from illegitimate output and covert communications
by filtering out unexpected contents or signal characteristics.
All the operating system’s guards taken together form a trusted
middleware that provides the application partitions with trusted
services like encryption, which are not provided by the kernel
as an evaluatable and verifiable component (and explicitly shall
not be provided in a stripped-down micro kernel).

We discussed a typology of different guards representing
different compilations of input and output interfaces, and input
and output filters. The storage guard, the audio filtering guard
and the sequencing guard have been described in detail. While
the storage guard is designed to counter Lampson’s storage
channels and is designed to counter both security and privacy
escalations, the audio filtering guard allows for the prevention
of physical covert channels, utilizing audio communications
in the ultrasound frequency range. From our definitions and
the examples provided, we deduct the reference architecture
of an operating system guard, allowing us to simply create
new guards just by definition of a small number of variables.
And, because of these formal definitions, we are able to
harmonize the construction of new operating system guards
and develop the concept of a guard construction kit, which
offers new opportunities for research on operating system
guards. As the filtering functions and the state modification
procedures in an operating system guard could be chosen
arbitrarily, any number of different guards could be defined and
no compilation (including this one) could ever be exhaustive.
Still, with our compilation of operating system guards, we have
been targeting some of the common security problems that
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are found in the literature. Beside implementation results in
regard to operating system guards, future work might include
approaches to formal verification of both implementation and
formal specification of an operating system guard.
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[33] B. D. Payne, R. Sailer, R. Cáceres, R. Perez, and W. Lee, “A layered
approach to simplified access control in virtualized systems,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 4, pp. 12–19, Jul. 2007.

585


