
A Note on Implementing Combining Networks�

J�org Keller Thomas Walle

FB �� Informatik� Universit�at des Saarlandes

Postfach �� �� ��� ����� Saarbr�ucken� Germany

Phone	 
����������f����� ����g

Fax	 
��������������

Email	 fjkeller�twalleg�cs�uni�sb�de

May ��� ����

Abstract

In shared�memory multiprocessors� combining networks serve to eliminate hot spots due to

concurrent access to the same memory location� Examples are the NYU Ultracomputer� the

IBM RP� and the Fluent Machine� We present a problem that occurs when trying to implement

the Fluent Machine�s network nodes with network chips that do not know their position within

the network� We formulate the problem mathematically and present two solutions� The �rst

solution requires some additional hardware around nodes that can be put outside network chips�

The second solution requires a minor modi�cation of the routing algorithm but no additional

hardware is needed�

Keywords� Computer architecture� combining networks� butter�y networks� shared memory

� Introduction

In machines with emulated shared memory� combining networks serve two purposes� First�

they route memory access requests and their answers between processors and memory modules�

Second� they merge concurrent accesses of several processors to one memory cell into one request

and thus reduce hot spots� This kind of access cannot be neglected because it will occur in

�This work was supported by the German Science Foundation �DFG� in SFB ����

	



system parts like synchronization and resource management� Also concurrent access is often

used in parallel algorithms for the PRAMmodel� Combining networks have been used in several

architectures� e�g� the NYU Ultracomputer 
��� the IBM RP� 
��� and the Fluent Machine 
��

The Fluent Machine di�ers from previous approaches� Its routing algorithm guarantees

that requests for the same cell are merged into one request� However� it is not obvious how to

implement the Fluent Machine�s network nodes with universal network chips� i�e� chips that do

not have encoded their position within the network� The use of universal network chips leads

to scalability because only one type of node is necessary for several machine sizes�

We will formulate the problem mathematically and present two solutions� The �rst does

not change the routing algorithm used in the Fluent Machine but requires additional hardware

around network nodes� The second solution requires a minor change of the routing algorithm�

We prove that the algorithm is still correct and the performance is not a�ected by this modi��

cation�

The remainder of the article is organized as follows� In Section � we review Ranade�s routing

algorithm for the Fluent Machine and give some re�engineering improvements� In Section � we

work out the problem that occurs when implementing this algorithm in universal network chips�

In Section � we present two solutions to that problem� Section � contains a discussion�

� Ranade�s Routing Algorithm

Ranade�s routing algorithm uses six phases� i�e� six traversals of butter�y networks to route and

combine requests from processors to memory modules and to re�duplicate and route answers

back to processors� Routing only occurs in phases � and �� the other phases can be implemented

by dedicated hardware 
	�� In Ranade�s scheme� each butter�y node contains a processor and a

memory module� This can be changed such that processors �together with dedicated hardware

for phases 	 and � are only placed at the inputs of phase � and the outputs of phase �� Memory

modules with multiple banks �implementing phases � and �� are only placed at the outputs of

phase � and the inputs of phase �� One physical processor simulates a number of Ranade�s

processors� We call the execution of one instruction of each simulated processor a processor

round� For details of the processor architecture see 
	� ���

We will focus on phase � because combining happens here� Phase � is implemented on a

butter�y network as given by Def� 	�

De�nition � A butter�y network with N � �n inputs and outputs is a graph Gn that consists

�



d d d d� � � � � �
��
��
�
��
��
�
��
�
��
��
�
��

��
��
�
��
��
�
��
�
��
��
�
��XX

XXX
XXX

XX
XXX

XXX
XX
XX

XX
XXX

XXX
XX
XXX

XXX
XX
XX

Gn Gn

d d
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�a

a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

d d d d
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�a

a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

d d

Gn�� Gn�� Gn�� Gn��

d d d dd d d d

� N

�
� 	 N

�
N � 	 N

�N

�
� 	 �N

�
�N � 	

� � � � � � � � � � � �

� � � � � � � � � � � �

Figure 	� Construction of Gn��

of n�	 stages� numbered from � to n� with N nodes per stage� numbered� from � to N � 	� G�

consists of a single node� Gn�� can be constructed by taking two copies of Gn and �N additional

nodes that form the last stage of Gn��� Nodes i� where � � i � N � in stage n of the two smaller

butter�ies are connected to nodes i and i � N in stage n � 	� The construction is shown in

Fig� �� The left output of a network node is denoted by �� the right one by 	�

Requests by processors are put into packets� injected at level �� and delivered to memory

modules at level n� Packets consist of a mode �READ or WRITE�� an address and� in the case

of a WRITE� also of a data word� To obtain a unique packet length a dummy value is inserted

for READ packets� The address encodes both the module number and the memory address

within that module� Packets of one processor round are injected sorted by their addresses� At

the end of the round a packet with the special mode End of Round �EOR� and address � is

injected�

Each network node selects from the two input bu�ers the packet with the smaller address

and thus maintains the sorted order of packets� which can be easily proven by induction� If

two packets with identical addresses and modes meet� one is selected� The other is deleted and

in the case of a READ some information is stored to guarantee re�duplication of the answer

packets on the way back� The sorting guarantees that all packets of one round with identical

addresses meet and get combined�

The packet selected by a node is transmitted to the next level of the network via the

appropriate output link of the node �for path selection see Section ��� Only EOR packets are

transmitted via both outputs to ensure separation of rounds �address � ensures that an EOR

�In the sequel we will use binary representations instead of the numbers itself�

�



is only selected if both input bu�ers contain EOR packets��

An empty input bu�er prevents a node from sending a packet that waits at the other input

bu�er� If it would be sent� the sorting could be destroyed by a packet with smaller address

arriving later at the empty input bu�er� To avoid unnecessary waiting� GHOST packets are

introduced� If a selected packet is transmitted via an output link a� where a � f�� 	g� then a

GHOST packet carrying the same address is sent via output link 	�a� GHOSTs serve as lower

bounds of future packet addresses along this link� GHOSTs that must wait because they are

not selected or blocked by full bu�ers are destroyed because a new GHOST or a packet will

follow the next cycle� so no information is lost�

� Implementation

The n most signi�cant bits of a packet�s address specify the destination module of this packet�

The remaining bits specify the local address within that module� Path selection is given by the

following Lemma 	�

Lemma � A packet with destination module jn�� � � � j�� that is injected at level � of a butter�y

network Gn� must be transmitted in level i� where � � i � n� along output jn�i���

Proof �by Induction on n�� The case n � � is obvious� To prove the claim for a butter�y

network Gn� where n � 	� we consider the recursive construction from networks Gn�� as given

in Fig� 	� The packet will be routed to node x � jn�� � � � j� in level n� 	 in one of the networks

Gn��� By the de�nition of Gn� it will reach node jn�� � � � j� in level n from both positions by

taking output j��

Note that in our implementation the order of destination bits is not of particular importance�

A modi�cation of this order only leads to a permutation of memory modules which does not

a�ect correctness�

In a direct implementation of the path selection scheme from Lemma 	 each network node

must know its level number to select the routing bit jn�i��� To implement the algorithm with

universal network chips� this must be avoided� One could try to place the desired routing bit

always at the same position in every level� This is possible by the following Lemma ��

Lemma � If two packets meet in a network node in level i� where � � i � n� then the i most

signi�cant bits of both addresses are identical� We will call these bits address pre�x�

Proof� Consider the subgraph of Gn that contains the two nodes where the packets were

injected and the node where they meet� The subgraph is a butter�y network Gi� We apply

�



Lemma 	 with n � i� then the two packets are destined for the same output node of a butter�y

network Gi and hence their i most signi�cant address bits are identical�

Lemma � seems to induce the following implementation� Because the pre�xes of two meeting

packets are identical� only the remaining addresses� which consist of address bits n� i� 	 to ��

are needed to compare addresses in level i� If the address is shifted left by one position after

each level� then the desired routing bit is always bit n � 	 which leads to universal network

chips�

However� this implementation leads to errors as the following Lemma � shows�

Lemma � If a GHOST and a packet meet in node jn�� � � � j� in level i� then their address

pre�xes are di	erent� i�e� comparison of the remaining addresses is not su
cient�

Proof� For a packet� the pre�x is the sequence of routing decisions so far� However� when a

GHOST is generated� it is not transmitted via the output that the address would force �see end

of Section ��� Hence� the GHOST�s address pre�x di�ers in that position from the sequence

of routing decisions� If a GHOST and a packet meet� their sequences of routing decisions are

identical� and hence their address pre�xes must be di�erent� In this case it can happen that

the packet is selected before the GHOST� because the packet�s remaining address is smaller�

although the packet�s address is larger than the GHOST�s address�

� Two Solutions

��� Minor Hardware Modi�cation

One can avoid the above error by providing complete addresses to comparator units �see Fig�

��� To achieve this� we must compensate the left shift applied in every level� Furthermore� the

desired routing bit must still be in position n � 	� Both demands together can be ful�lled by

inserting the �Rightshift and Copying� circuit before the routing and address shifting unit in

level i �denoted by a box above the dash line in Fig� ��� The address is shifted right by one

position� then the desired routing bit� i�e� bit n � i� �� is copied to position n� 	�

Now the desired routing bit always is in position n � 	 and after the regular left shift we

have the complete unshifted address� We only have to ensure that we have one spare bit in the

address part of the packets so that no address information is lost during the right shift� This

should normally be possible as address parts typically have a �xed size ��� or � bit� and real

address spaces are smaller�

�



Input
Buffer

Input
Buffer

Right Shift + Copying

Routing + Left Shift

Output
Link 0
Output

Link 1

Link 0
Input

Link 1
Input

Selection/Comparator

0

0

0

x-1

n-i-1 x
R
B

R

RR

B

BB

n-1

n-2

Figure �� Schematic Design of a Network Node

The copying of address bit n � i� � is an implicit encoding of the level number i� Hence�

we have to take care that this copying is done outside the network chips� Then we can use

universal network chips� encoding of levels on boards can be done by jumpers�

To see how the copying unit can be placed outside a chip we consider the design of a network

node as shown in Fig� �� An obvious mapping of one network node to a chip would place the

copying unit within the chip� However� if we consider the dashed line in Fig� �� the number of

wires crossing it is not more than the number of wires in an output link� Hence� we can use

a mapping from 
�� as shown in Fig� �� The resulting chips do not use more pins than chips

N
et

w
or

k 
C

hi
p

Figure �� Mapping of Network Nodes to Chips





U

Z

0 1 10

W

V

G’ BA G

U

Z

0 1 10

W

V

G’ BA G

Figure �� Generation of GHOSTs

that implement one network node� and the copying unit can be put between two chips� One

can prove that the network of chips obtained by this mapping still is a butter�y network 
���

Note that this mapping doubles the gate utilization in network chips� As network chips are

pinlimited� this does not impose a problem and even reduces the number of chips by a factor

of two 
���

��� Minor Algorithm Modi�cation

Consider the situation shown in Fig� �� Node U sends a packet A to node Z along output link ��

The packet�s address then must have the form a�b� where a� is the pre�x and b is the remaining

address� The packet generates a GHOST G with address a�b that is sent along output link 	

to node W � Some packet B that meets this GHOST in node W must have entered W along

the other input and hence must have address a	c� It follows that GHOST G must be selected

in node W � Since GHOSTs serve to avoid unnecessary waiting� GHOST G is of no use in node

W � because the packet in W must wait� no matter whether the GHOST was there or whether

the bu�er was empty�

Now consider the situation for packet B which is routed along output link 	 from V to W �

Packet B generates a GHOST G� with address a	c that is transmitted along output link � to

node Z where it meets packet A with address a�b� It follows that in node Z packet A must

always be selected� Thus� if one sends GHOSTs only along output link �� then the comparison

between a packet and a GHOST is independent of the GHOST�s address� the packet will always

win�

It is obvious that the modi�ed algorithm is correct as long as an empty input bu�er prevents

�



nodes from sending a packet that is waiting in the other input bu�er� It is also easy to see

that performance will not change as GHOSTs generated along an output link 	 have a smaller

address than the packets that they meet� even if these GHOSTs are further forwarded� As the

GHOST�s address are not used anymore� Lemma � does not apply� Therefore� it is possible to

employ the implementation from section �� where addresses are shifted�

� Discussion

We presented two solutions to an implementation problem of Ranade�s routing algorithm� Both

solutions do not a�ect the correctness of the routing algorithm� Ranade�s proof of the algorithm�s

performance still works� Our simulations with random requests show better performance than

Ranade�s time bound�

The �rst solution has the minor disadvantage that it only allows usage of universal network

chips� On the boards� the levels can be encoded by jumpers� Also if packets are transmitted

between chips in several pieces called �its� the �its must be treated di�erently depending on

whether they carry an address part or a data part of a packet� This requires additional hardware

on boards and enlarges propagation delay between two network chips� The second solution

allows to use universal network chips and boards and requires no additional hardware between

network chips�

The second solution su�ers from the fact that it can only be applied if routing bits are

taken as given by Lemma 	� If routing bits are used in this order� then in each processor round

each network node will �rst send packets along output link �� then along output link 	� If

routing bits are used in any other order� then routing decision and sorting are de�coupled� The

sorting depends on the most signi�cant bit whereas the routing decision does not� This better

distribution leads to a better utilization of bu�ers� In simulations� improvements have been

between � and 	� �� Note that the �rst solution allows any order of routing bits�

Thus one has a kind of trade�o� between performance and universality of design�

Acknowledgements

The authors would like to thank Andreas Paul for bringing up the problem of disturbed sorted

order in the network�

�



References


	� F� Abolhassan� J� Keller and W� J� Paul� On the cost�e�ectiveness of PRAMs� in� Proc�

�rd IEEE Symp� on Parallel and Distributed Processing �	��	� ����


�� D� Cross� R� Drefenstedt and J� Keller� Reduction of network cost and wiring in Ranade�s

butter�y routing� Inform� Process� Lett� 	
 �	���� ����


�� A� Gottlieb� R� Grishman� C� P� Kruskal� K� P� McAuli�e� L� Rudolph and M� Snir� The

NYU ultracomputer � designing an MIMD shared memory parallel computer� IEEE Trans�

Comput� C��� �	���� 	���	���


�� J� Keller� W� J� Paul and D� Scheerer� Realization of PRAMs� Processor design� in� Proc�

WDAG ��� �th Internat� Workshop on Distributed Algorithms �	���� 	�����


�� G� F� P�ster� W� C� Brantley� D� A� George� S� L� Harvey� W� J� Kleinfelder� K� P� McAuli�e�

E� A� Melton� V� A� Norton and J� Weiss� The IBM research parallel processor prototype

�RP��� Introduction and architecture� in� Proc� ��� Internat� Conf� on Parallel Processing

�	���� �����	�


� A� G� Ranade� How to emulate shared memory� J� Comput� System Sci� 	� �	��	� �������

�


