
Video�on�Demand on the SB�PRAM
�

J�org Friedrich Thomas Gr�un J�org Kellery

Universit�at des Saarlandes

Computer Science Department

Postfach ������ � B� �	 R� ��

		��� Saarbr�ucken� Germany

Email fjf� gruen� jkellerg�cs�uni�sb�de

Abstract

We investigate the use of random striping to store
movies on the SB�PRAM� a massively parallel multi�
processor� Our simulations show that the SB�PRAM
provides enough bandwidth between disks and proces�
sors to serve more than a thousand users in a Video�
on�Demand environment� Furthermore we present a
novel method to use a parity scheme in order to de�
crease disk load in addition to provide fault tolerance�

� Introduction

For Video�on�Demand servers� the organization of
disk storage is one of the most important problems�
The most popular schemes to store movies on a set of
hard disks are rate staggering ��� and random striping
���� Rate staggering allows for a very regular distri	
bution of blocks onto disks� but restricts bit rates to
few values� Random striping distributes a movie over
n disks by randomly permuting n consecutive blocks
over all disks� Random Striping thus aims at obtain	
ing high and equal disk utilization� while the bit rates
of di
erent movies can be chosen independently�

To serve many users with a Video�on�Demand
server� one might wish to use a multiprocessor in	
stead of a mainframe type server� Many massively
parallel machines are distributed memory multicom	
puters� e�g�� Intel Paragon XP�S or nCUBE� ���� Un	
fortunately� random striping does not work well on
distributed memory architectures� It does not show
locality in disk referencing� thus requiring lots of com	
munications between processors� However� message

�Research partly funded by the German Science Foundation
�DFG� through SFB ���� TP D��

ySupported by a DFG Habilitation Fellowship�

passing for this type of communication results in a
large overhead�

Conventional shared memory architectures are ei	
ther bus	based and thus restricted to few processors
like the Sequent Symmetry ��� or are cache�based like
the KSR�� ��� or the Stanford DASH ���� The
caches can only be exploited if there is a signi�cant
amount of locality in data referencing� However� this
does not hold for random striping� Hence� random
striping is not very useful on the majority of todays
multiprocessors�

A multiprocessor which is suitable to implement
random striping is the SB�PRAM ��� currently under
construction at the Universit�at des Saarlandes� We
will present experiments that support this claim� A
machine that could provide similar features is the Tera
computer ���� now marketed as Tera MTA�

The SB�PRAM also provides support to implement
parity schemes� e�g� RAID	��� ��� Besides their use
to increase reliability� they are also used to decrease
disk load� If a disk is overloaded� its data can be
reconstructed from all other data and the parities�

The reminder of the article is organized as follows�
In Section �� we brie�y describe the SB�PRAM ar	
chitecture and its use as a Video�on�Demand server�
In Section �� we investigate the performance of ran	
dom striping on the SB�PRAM� In Section �� we de	
scribe and analyze the use of parity schemes to de	
crease disk load� Section � concludes and discusses
future research�

� SB�PRAM

The SB�PRAM �� is a multiprocessor with �� pro	
cessors and �� memory modules� Processors send
their requests to access a memory location via a but	
ter�y network to the appropriate memory module� An

answer to a load request is sent back via a second but	
ter�y network� There are no caches� The address
space is randomly hashed among the memory mod	
ules� thus avoiding hot spots ���� The bandwidth be	
tween processors and the network is large enough that
each processor can issue a memory request in every
instruction�

Because of the random hashing� the network la	
tency is uniform� but it is large� It is hidden by having
each physical processor run multiple threads� By the
use of delayed load� the necessary number of threads
per processor can be limited to ��� Each thread has
its own register set in hardware� the threads are sched	
uled round	robin after every instruction�

Thus� the user sees a machine with �� � �� � ����
virtual processors and access to global memory within
one instruction� The global memory has a size of
�GByte� The network supports concurrent access
of multiple processors to a memory cell by combin	
ing requests� The net bandwidth to the network is
��MByte�s for each processor and each memory mod	
ule�

Each processor has two SCSI ports that together
have a bandwidth of �MByte�s� Further� it has a
local memory of ��� KByte that is utilized as a bu
er
to the disks and other peripherals� In the �nal ver	
sion� each processor board will also have a standard
PCI interface to which an ATM interface �OC��� will
be attached� Currently� a four processor prototype
without PCI bus is being tested�

A movie is striped over all disks� Each physical
processor manages a certain number of video streams�
To deliver a video stream� a set of virtual proces	
sors request blocks from the disks� The requests are
written into FIFO queues held in the global memory�
There is one FIFO queue for every disk� Data struc	
tures that handle concurrent access of multiple pro	
cessors to one queue without serialization are available
��� ��� On each physical processor� a distinguished
set of virtual processors read the queue belonging to
their disk� They process these requests and transfer
the blocks read to the global memory� The virtual
processors that requested the block then transfer it to
their ATM�link�

The global memory can be used as a software cache�
Thus blocks requested by one stream can be delivered
to other streams without accessing the disks� An ap	
propriate caching scheme is interval caching ����

� Random striping

We simulate random striping for d � ��� disks and
u � ��� users� For the simulation� we make the
following� simplifying assumptions�

� Users who start watching the same movie within
a one	minute interval are grouped together� So�
they only occupy one video stream� Techniques
like interval caching ���� batching ��� or adaptive
piggybacking ��� can achieve this�

� In our current setting� we do not consider interac	
tion like pause� fast forward or rewind� However�
our approach should be able to handle these fea	
tures�

� All disks have a �xed response time� We use this
restriction for practical reasons� i�e�� we can write
down a quick and dirty simulation program and
do not need to model a speci�c disk for use with
an discrete event simulation program� Besides�
rate staggering needs this assumption too�

We suppose a user to access a disk roughly four
times� per second� This results in an average request
rate of r � ��u

d
� �� accesses per second� requiring a

disk service rate of s � r� We de�ne s� as the disk
service rate which results in an average disk utilisation
of � percent�

Our simulation program proceeds in rounds of one
second length� First� it issues four requests per user�
�lling up the disk request queues� Then� it writes out
the queue statistics� processes s disk accesses for each
disk and moves on to the next time step�

For the �rst experiment� we assume a disk utiliza	
tion of �� percent� i�e�� a disk must be able to satisfy
s�� � �� requests per second� The result of that sim	
ulation run is visualized in Figure � As expected�
the average queue length is about ��� actually� it is
slightly higher than ��� because of previously issued
requests that could not be satis�ed in the round they
were produced�

Although the average queue length is less than the
disk service rate� the maximum queue length over all
disks is by far higher than s��� It indicates how much
data must be prefetched in order to guarantee a con	
tinuous playout� With the above parameters it is suf	
�cient to request a block two seconds before it will be
played� since the maximum queue length is always less
than � � s�� � ���

�Normally� one would access a disk less frequently and read
larger data blocks in order to get a higher disk throughput� We
use this somewhat unrealistic value to get simpler mathematics�

0

5

10

15

20

25

30

35

40

45

50

R
eq

ue
st

s

Time

max load
avg load

load disk_0

Figure � Random Striping �r � ��� s�� � ���

The diagram illustrates the queue statistics for an interval of �� seconds taken from the middle of a
simulation run� The dotted line represents the variation of queue length for one particular disk� the solid
line is the maximum queue length over all d � ��� disks�

0

10

20

30

40

50

60

70

80

90

100

110

R
eq

ue
st

s

Time

max load
avg load

load disk_0

Figure �� Random Striping �r � ��� s�� � ��

Things change dramatically if disk utilization is in	
creased to �� percent� i�e�� the disk service rate is set
to s�� � � �see Figure ��� Then� the average queue
length increases to ��� which means that about seven
old requests cannot be satis�ed in the time interval
they are produced� The maximum queue length is
even greater than one hundred� leading to a prefetch
time of more than � seconds�

These �gures suggest that random striping is not
suited for distributed memory computers for the fol	
lowing reasons� Either all processing nodes must have
a large memory su�cient for holding the number of
disk blocks related to the maximum queue size� or
they must temporarily store the data at their neighbor
nodes�

Although a shared memory computer is not con	
cerned with data distribution and the communication
overhead involved with it� it su
ers from a unequal
load distribution on its disks too� In the next section
we show how to reduce the prefetch size considerably�

� Parity schemes

RAID �� is a popular method for preventing
data loss due to disk failures� For Video	on	Demand
servers� the use of �hot standby� disks or RAID	� disk
subsystems has been proposed in ��� ��� We now de	
scribe how to employ a parity scheme in order to equal	
ize disk load and� thus� to reduce prefetch time�

As in the previous section� movies are distributed
randomly to the disks� Additionally� one data block
for parity is calculated over p data blocks as sketched
in Figure �� We denote those p� blocks �p data �
parity� as a parity group� With RAID� the parity block
is only used when a data disk fails� In our approach�
we choose the p disks with the smallest load from a
parity group and reconstruct the data of the remaining
block if necessary� In other words� we do not further
schedule requests to disks with a high load�

The presented method implies that all data from p

disks of a parity group must be read prior to further
being processed� a possible drawback of this method�
For reducing memory consumption on the set	top	box
side� we assume that the data from p successive orig	
inal data blocks are distributed round	robin over p

disks �see Figure ���
The corresponding parity block is stored on the p�

	th disk of the parity group� For transmission over
the ATM network� the data words are taken round	
robin from the p chosen blocks� i�e�� we �rst read word
� from the p chosen blocks� then word � etc� This re	
ordering does not cost any extra instructions on the

P0

1 2 3 4 5 6 7

P1

Disk 1 Disk 2 Disk d

. . .

parity blocks

data blocks

Figure �� Parity Scheme

A parity block �P	� � � � � is calculated from p
 �

data blocks of a movie� Data and parity blocks are

spread randomly over all disks�

n-3

1

5

9

1 2 4 5 6 7 8 93

data words in the movie

nn-1

n-2

n-3

n+
1

n+
2

Block 1

data words in the data blocks

p=4

n-2

2

6

10

Block 2

n-1

3

7

11

Block 3

n

4

8

12

Block 4

2n-3

n+1

n+5

n+9

Block 5

Figure �� Word numbering

The movie�s data is partitioned into chunks of n
 p�l

data words� Each chunk is distributed round�robin

to p data blocks of lenght l�

SB	PRAM� because the disk blocks are �rst copied
to the global memory and thus� the transmitted data
words have to be copied to the local memory of the
transmitting processor anyway�

The reconstruction process involves EXORing p

successive data words in order to get the missing data
word� However� this does not consume any server CPU
time� Either it can be carried out by the set	top	box
in software� if the processor of the set	top	box is pow	
erful enough� Otherwise it can be done by extra hard	
ware on the data path between the local memory of
a server processor and the local memory of the set	
top	box� This hardware can be incorporated into the
DMA logic of the ATM sender or receiver�

For p � � and a �� percent disk utilization �see
Figure ��� the average queue length with this new ap	
proach is about �� and the maximum queue length is
less than ��� So� a prefetch time of two seconds� which
is equivalent to �� requests� is more than su�cient to
assure an uninterrupted display of movies�

The dotted curve� showing the request queue length
for one particular disk� shows a characteristic behav	
ior� If the load is lower than the average load� large
deviations from the average can occur� Contrarily� if
the load is higher than the average� the deviation is
much smaller� the peaks seem to be cut o
� This hap	
pens because the most loaded disk of a parity group
is never accessed�

��� Disk failure

A disk failure is detected when a disk does not an	
swer a request within a given time interval� If this
happens� all requests must be rescheduled� which pos	
sibly causes interruptions in the movie display� and
the disk must be marked as defective� No further re	
quests will be sent to that disk� so it can be safely
replaced� If a new disk is inserted� the data for it can
be reconstructed using the other disks�

During the repair phase all user requests will be
supported by the d� remaining disks� If the defective
disk is contained in a parity group� the p intact disks
have to be chosen� Figure � depicts the simulation
results for this scenario� It can be seen that the load
is only marginally higher than in the simulation with
all disks working� The system can support all users
even if one disk fails� If a second disk fails� the system
will stop to work as soon as the two defective disks
are in one parity group of a movie� Two	dimensional
parity schemes can handle a two disk error without
interruption of movie display�

� Conclusion and Future Research

We have shown that it is possible to use random
striping economically with Video	on	Demand servers�
If the new parity scheme is employed� a disk utilization
of nearly �� percent can be achieved with moderate
prefetching sizes� Although the proposed scheme can
be utilized in mainframe servers� the realization on
parallel shared memory computers like the SB�PRAM
is better if scalability is required�

We believe that random striping with parity is well
suited for movies recorded with variable bit rate cod	
ing like MPEG	II or for a collection of movies that are
coded with constant but di
erent bit rates� The parity
scheme or a partial replication can be chosen indepen	
dently for each movie� giving the system the chance to
make use of its resources in the most e�cient way�

The prefetch size of two seconds described in this
paper is only an upper bound for the bu
er memory
needed� We will carry out a more detailed simulation�
where a real disk will be modeled more accurately and
a global disk scheduler will be employed to trigger disk
accesses� This scheduler determines in what order disk
accesses are to be performed and which bu
ers will be
assigned to them� In doing so� the bu
er pool can be
global� a fact that possibly reduces the overall bu
er
space�

Another research direction is the online reorgani	
zation of the Video	on	Demand server� New movies
shall be stored onto disk while the system is still serv	
ing a few users� Changes in user behavior must be
taken into account by partially replicating a movie or
by changing the parity scheme used for it�

References

�� Ferri Abolhassan� Reinhard Drefenstedt� J�org
Keller� Wolfgang J� Paul� and Dieter Scheerer� On
the physical design of PRAMs� Computer Jour�
nal� �������������� December ����

��� George Almasi and Allan Gottlieb� Highly Par�
allel Computing� Benjamin�Cummings� �nd edi	
tion� ����

��� Robert Alverson� David Callahan� Daniel Cum	
mings� Brian Koblenz� Allan Porter�eld� and
Burton Smith� The Tera computer system� In
Proc� ���� Internat� Conf� on Supercomputing�
pages ��� ACM� ����

0

5

10

15

20

25

30

R
eq

ue
st

s

Time

max load
avg load

load disk_0

Figure �� Parity scheme �r � ��� s�� � ��

0

5

10

15

20

25

30

R
eq

ue
st

s

Time

max load
avg load

load disk_0

Figure �� Parity scheme �r � ��� s�� � �� disk failed�

��� Christine Blank� The FSN challenge� Large	scale
interactive television� IEEE Computer� ��������
�� May ����

��� Ming	Syan Chen� Dilip D� Kandlur� and Philip S�
Yu� Storage and retrieval methods to support
fully interactive playout in a disk�array�based
video server� Multimedia Systems� �����������
����

��� Asit Dan� Daniel M� Dias� Rajat Mukherjee�
Dinkar Sitaram� and Renu Tewari� Bu
ering and
caching in large	scale video servers� In Proceed�
ings of the CompCon 	�
� ����

��� Asit Dan� Dinkar Sitaram� and P� Shahabud	
din� Scheduling policies for an On	Demand video
server with batching� In Proc� �nd Annual ACM
Multimedia Conference and Exhibition� ����

��� Curd Engelmann and J�org Keller� Simulation	
based comparison of hash functions for emulated
shared memory� In Proc� PARLE 	��� Paral�
lel Architectures and Languages Europe� Lecture
Notes in Comput� Sci� ���� pages �� Springer�
June ����

��� Leana Golubchik� John C� S� Lui� and Richard
Muntz� Reducing I�O demand in Video	on	
Demand storage servers� In Proc� Joint Inter�
national Conference on Measurement Model�
ing of Computer Systems Sigmetrics 	�
�Perfor�
mance 	�
� pages ������ ����

��� Daniel Lenoski� James Laudon� Kourosh Ghara	
chorloo� Wolf	Dietrich Weber� Anoop Gupta�
John Hennessy� Mark Horowitz� and Monica S�
Lam� The Stanford DASH multiprocessor� Com�
put�� ������������ March ����

�� David A� Patterson� G� Gibson� and Randy Katz�
A case for redundant arrays of inexpensive disks
�RAID�� In Proceedings of the ACM International
Conference on Management of Data� pages ���
�� ����

��� Jochen R�ohrig� Implementierung der P�	
Laufzeitbibliothek auf der SB	PRAM� Diplomar	
beit� Universit�at des Saarlandes� FB Informatik�
����

��� J� Rothnie� Kendall Square Research introduc	
tion to the KSR� In D�B� Johnson� F� Make	
don� and P� Metaxas� editors� Proceedings of
the Dartmouth Institute for Advanced Graduate
Study in Parallel Computation Symposium� pages
������� June ����

��� James M� Wilson� Operating System Data Struc�
tures for Shared�Memory MIMD Machines with
Fetch�and�Add� PhD thesis� Dept� of Computer
Science� New York University� June ����

