Video-on-Demand on the SB-PRAM*

Jorg Friedrich

Thomas Griin

Jorg Keller

Universitat des Saarlandes
Computer Science Department
Postfach 151150 — B. 36 R. 108

66041 Saarbriicken, Germany
Email: {jf, gruen, jkeller}@cs.uni-sb.de

Abstract

We investigate the use of random striping to store
movies on the SB-PRAM, a massively parallel multi-
processor. Our simulations show that the SB-PRAM
provides enough bandwidth between disks and proces-
sors to serve more than a thousand users in a Video-
on-Demand environment. Furthermore we present a
novel method to use a parity scheme in order to de-
crease disk load in addition to provide fault tolerance.

1 Introduction

For Video—on-Demand servers, the organization of
disk storage is one of the most important problems.
The most popular schemes to store movies on a set of
hard disks are rate staggering [5] and random striping
[6]. Rate staggering allows for a very regular distri-
bution of blocks onto disks, but restricts bit rates to
few values. Random striping distributes a movie over
n disks by randomly permuting n consecutive blocks
over all disks. Random Striping thus aims at obtain-
ing high and equal disk utilization, while the bit rates
of different movies can be chosen independently.

To serve many users with a Video—on-Demand
server, one might wish to use a multiprocessor in-
stead of a mainframe type server. Many massively
parallel machines are distributed memory multicom-
puters, e.g., Intel Paragon XP/S or nCUBE2 [2]. Un-
fortunately, random striping does not work well on
distributed memory architectures. It does not show
locality in disk referencing, thus requiring lots of com-
munications between processors. However, message

*Research partly funded by the German Science Foundation
(DFG) through SFB 124, TP D4.
TSupported by a DFG Habilitation Fellowship.

passing for this type of communication results in a
large overhead.

Conventional shared memory architectures are ei-
ther bus-based and thus restricted to few processors
like the Sequent Symmetry [2] or are cache-based like
the KSR1/2 [13] or the Stanford DASH [10]. The
caches can only be exploited if there is a significant
amount of locality in data referencing. However, this
does not hold for random striping. Hence, random
striping is not very useful on the majority of todays
multiprocessors.

A multiprocessor which is suitable to implement
random striping is the SB-PRAM [1], currently under
construction at the Universitit des Saarlandes. We
will present experiments that support this claim. A
machine that could provide similar features is the Tera
computer [3], now marketed as Tera MTA.

The SB-PRAM also provides support to implement
parity schemes, e.g. RAID-3/5 [11]. Besides their use
to increase reliability, they are also used to decrease
disk load. If a disk is overloaded, its data can be
reconstructed from all other data and the parities.

The reminder of the article is organized as follows.
In Section 2, we briefly describe the SB-PRAM ar-
chitecture and its use as a Video—on—Demand server.
In Section 3, we investigate the performance of ran-
dom striping on the SB-PRAM. In Section 4, we de-
scribe and analyze the use of parity schemes to de-
crease disk load. Section 5 concludes and discusses
future research.

2 SB-PRAM

The SB-PRAM [1] is a multiprocessor with 128 pro-
cessors and 128 memory modules. Processors send
their requests to access a memory location via a but-
terfly network to the appropriate memory module. An

answer to a load request is sent back via a second but-
terfly network. There are no caches. The address
space is randomly hashed among the memory mod-
ules, thus avoiding hot spots [8]. The bandwidth be-
tween processors and the network is large enough that
each processor can issue a memory request in every
instruction.

Because of the random hashing, the network la-
tency is uniform, but it is large. It is hidden by having
each physical processor run multiple threads. By the
use of delayed load, the necessary number of threads
per processor can be limited to 32. Each thread has
its own register set in hardware, the threads are sched-
uled round-robin after every instruction.

Thus, the user sees a machine with 128 - 32 = 4096
virtual processors and access to global memory within
one instruction. The global memory has a size of
8 GByte. The network supports concurrent access
of multiple processors to a memory cell by combin-
ing requests. The net bandwidth to the network is
32 MByte/s for each processor and each memory mod-
ule.

Each processor has two SCSI ports that together
have a bandwidth of 10 MByte/s. Further, it has a
local memory of 256 KByte that is utilized as a buffer
to the disks and other peripherals. In the final ver-
sion, each processor board will also have a standard
PCI interface to which an ATM interface (OC-3) will
be attached. Currently, a four processor prototype
without PCI bus is being tested.

A movie is striped over all disks. Each physical
processor manages a certain number of video streams.
To deliver a video stream, a set of virtual proces-
sors request blocks from the disks. The requests are
written into FIFO queues held in the global memory.
There is one FIFO queue for every disk. Data struc-
tures that handle concurrent access of multiple pro-
cessors to one queue without serialization are available
[12, 14]. On each physical processor, a distinguished
set of virtual processors read the queue belonging to
their disk. They process these requests and transfer
the blocks read to the global memory. The virtual
processors that requested the block then transfer it to
their ATM-link.

The global memory can be used as a software cache.
Thus blocks requested by one stream can be delivered
to other streams without accessing the disks. An ap-
propriate caching scheme is interval caching [6].

3 Random striping

We simulate random striping for d = 256 disks and
u = 1280 users. For the simulation, we make the
following, simplifying assumptions:

e Users who start watching the same movie within
a one-minute interval are grouped together. So,
they only occupy one video stream. Techniques
like interval caching [6], batching [7] or adaptive
piggybacking [9] can achieve this.

e In our current setting, we do not consider interac-
tion like pause, fast forward or rewind. However,
our approach should be able to handle these fea-
tures.

e All disks have a fixed response time. We use this
restriction for practical reasons, i.e., we can write
down a quick and dirty simulation program and
do not need to model a specific disk for use with
an discrete event simulation program. Besides,
rate staggering needs this assumption too.

We suppose a user to access a disk roughly four
times' per second. This results in an average request
rate of r = 47“ = 20 accesses per second, requiring a
disk service rate of s > r. We define s, as the disk
service rate which results in an average disk utilisation
of a percent.

Our simulation program proceeds in rounds of one
second length. First, it issues four requests per user,
filling up the disk request queues. Then, it writes out
the queue statistics, processes s disk accesses for each
disk and moves on to the next time step.

For the first experiment, we assume a disk utiliza-
tion of 70 percent, i.e., a disk must be able to satisfy
s70 = 28 requests per second. The result of that sim-
ulation run is visualized in Figure 1. As expected,
the average queue length is about 20; actually, it is
slightly higher than 20, because of previously issued
requests that could not be satisfied in the round they
were produced.

Although the average queue length is less than the
disk service rate, the maximum queue length over all
disks is by far higher than s7o. It indicates how much
data must be prefetched in order to guarantee a con-
tinuous playout. With the above parameters it is suf-
ficient to request a block two seconds before it will be
played, since the maximum queue length is always less
than 2 - s79 = 56.

INormally, one would access a disk less frequently and read
larger data blocks in order to get a higher disk throughput. We
use this somewhat unrealistic value to get simpler mathematics.

50

max load —
L avg load ----- i
45 load disk_0 -

Requests

Time
Figure 1: Random Striping (r = 20, s7o = 28)

The diagram illustrates the queue statistics for an interval of 100 seconds taken from the middle of a
simulation run. The dotted line represents the variation of queue length for one particular disk, the solid
line is the maximum queue length over all d = 256 disks.

110

max load —
100 | avg load - B
load disk_0 -

90 |

70

60 | .

Requests

50 _,,“‘“ :‘J L‘: 7

40 b) ‘\“ - J

Time

Figure 2: Random Striping (r = 20, sg5 = 21)

Things change dramatically if disk utilization is in-
creased to 95 percent, i.e., the disk service rate is set
to sg5 = 21 (see Figure 2). Then, the average queue
length increases to 28, which means that about seven
old requests cannot be satisfied in the time interval
they are produced. The maximum queue length is
even greater than one hundred, leading to a prefetch
time of more than 5 seconds.

These figures suggest that random striping is not
suited for distributed memory computers for the fol-
lowing reasons: Either all processing nodes must have
a large memory sufficient for holding the number of
disk blocks related to the maximum queue size, or
they must temporarily store the data at their neighbor
nodes.

Although a shared memory computer is not con-
cerned with data distribution and the communication
overhead involved with it, it suffers from a unequal
load distribution on its disks too. In the next section
we show how to reduce the prefetch size considerably.

4 Parity schemes

RAID [11] is a popular method for preventing
data loss due to disk failures. For Video-on-Demand
servers, the use of “hot standby” disks or RAID-5 disk
subsystems has been proposed in [4, 5]. We now de-
scribe how to employ a parity scheme in order to equal-
ize disk load and, thus, to reduce prefetch time.

As in the previous section, movies are distributed
randomly to the disks. Additionally, one data block
for parity is calculated over p data blocks as sketched
in Figure 3. We denote those p+ 1 blocks (p data + 1
parity) as a parity group. With RAID, the parity block
is only used when a data disk fails. In our approach,
we choose the p disks with the smallest load from a
parity group and reconstruct the data of the remaining
block if necessary. In other words, we do not further
schedule requests to disks with a high load.

The presented method implies that all data from p
disks of a parity group must be read prior to further
being processed, a possible drawback of this method.
For reducing memory consumption on the set-top-box
side, we assume that the data from p successive orig-
inal data blocks are distributed round-robin over p
disks (see Figure 4).

The corresponding parity block is stored on the p+
1-th disk of the parity group. For transmission over
the ATM network, the data words are taken round-
robin from the p chosen blocks, i.e., we first read word
0 from the p chosen blocks, then word 1, etc. This re-
ordering does not cost any extra instructions on the

parity blocks
AN A

[tl2]afas[e]7]

data blocks

Disk 1 Disk 2 e o0 Disk d

Figure 3: Parity Scheme

A parity block (PO, ...) is calculated from p = 4
data blocks of a movie. Data and parity blocks are

spread randomly over all disks.

data words in the movie

data words in the data blocks

=}

z-u
I-u

T+U
Z+U
7

n-3 n2 n1 n 2n-3
9 10 11 12 N9
5 6 7 8 n+5
1 2 3 2 N+l

Block1 Block2 Block3 Block 4 : Block 5
p=4 ‘

Figure 4: Word numbering

The movie’s data is partitioned into chunks of n = p-[
data words. Each chunk is distributed round-robin
to p data blocks of lenght [.

SB-PRAM, because the disk blocks are first copied
to the global memory and thus, the transmitted data
words have to be copied to the local memory of the
transmitting processor anyway.

The reconstruction process involves EXORing p
successive data words in order to get the missing data
word. However, this does not consume any server CPU
time. Either it can be carried out by the set-top-box
in software, if the processor of the set-top-box is pow-
erful enough. Otherwise it can be done by extra hard-
ware on the data path between the local memory of
a server processor and the local memory of the set-
top-box. This hardware can be incorporated into the
DMA logic of the ATM sender or receiver.

For p = 4 and a 95 percent disk utilization (see
Figure 5), the average queue length with this new ap-
proach is about 20 and the maximum queue length is
less than 25. So, a prefetch time of two seconds, which
is equivalent to 42 requests, is more than sufficient to
assure an uninterrupted display of movies.

The dotted curve, showing the request queue length
for one particular disk, shows a characteristic behav-
ior. If the load is lower than the average load, large
deviations from the average can occur. Contrarily, if
the load is higher than the average, the deviation is
much smaller, the peaks seem to be cut off. This hap-
pens because the most loaded disk of a parity group
is never accessed.

4.1 Disk failure

A disk failure is detected when a disk does not an-
swer a request within a given time interval. If this
happens, all requests must be rescheduled, which pos-
sibly causes interruptions in the movie display, and
the disk must be marked as defective. No further re-
quests will be sent to that disk, so it can be safely
replaced. If a new disk is inserted, the data for it can
be reconstructed using the other disks.

During the repair phase all user requests will be
supported by the d—1 remaining disks. If the defective
disk is contained in a parity group, the p intact disks
have to be chosen. Figure 6 depicts the simulation
results for this scenario. It can be seen that the load
is only marginally higher than in the simulation with
all disks working. The system can support all users
even if one disk fails. If a second disk fails, the system
will stop to work as soon as the two defective disks
are in one parity group of a movie. Two-dimensional
parity schemes can handle a two disk error without
interruption of movie display.

5 Conclusion and Future Research

We have shown that it is possible to use random
striping economically with Video-on-Demand servers.
If the new parity scheme is employed, a disk utilization
of nearly 100 percent can be achieved with moderate
prefetching sizes. Although the proposed scheme can
be utilized in mainframe servers, the realization on
parallel shared memory computers like the SB-PRAM
is better if scalability is required.

We believe that random striping with parity is well
suited for movies recorded with variable bit rate cod-
ing like MPEG-II or for a collection of movies that are
coded with constant but different bit rates. The parity
scheme or a partial replication can be chosen indepen-
dently for each movie, giving the system the chance to
make use of its resources in the most efficient way.

The prefetch size of two seconds described in this
paper is only an upper bound for the buffer memory
needed. We will carry out a more detailed simulation,
where a real disk will be modeled more accurately and
a global disk scheduler will be employed to trigger disk
accesses. This scheduler determines in what order disk
accesses are to be performed and which buffers will be
assigned to them. In doing so, the buffer pool can be
global, a fact that possibly reduces the overall buffer
space.

Another research direction is the online reorgani-
zation of the Video-on-Demand server: New movies
shall be stored onto disk while the system is still serv-
ing a few users. Changes in user behavior must be
taken into account by partially replicating a movie or
by changing the parity scheme used for it.

References

[1] Ferri Abolhassan, Reinhard Drefenstedt, Jorg
Keller, Wolfgang J. Paul, and Dieter Scheerer. On
the physical design of PRAMs. Computer Jour-
nal, 36(8):756-762, December 1993.

[2] George Almasi and Allan Gottlieb. Highly Par-
allel Computing. Benjamin/Cummings, 2nd edi-
tion, 1994.

[3] Robert Alverson, David Callahan, Daniel Cum-
mings, Brian Koblenz, Allan Porterfield, and
Burton Smith. The Tera computer system. In
Proc. 1990 Internat. Conf. on Supercomputing,
pages 1-6. ACM, 1990.

Requests

Requests

30

max load —
avg load -----
load disk_0 -

15 b

Time

Figure 5: Parity scheme (r = 20, sg5 = 21)

30

max load —
avg load -
load disk_0 -

25

20

15

Time

Figure 6: Parity scheme (r = 20, sg5 = 21, 1 disk failed)

[4]

[5]

[7]

[8]

[10]

[11]

[12]

[13]

Christine Blank. The FSN challenge: Large-scale
interactive television. IEEE Computer, 28(5):9—
12, May 1995.

Ming-Syan Chen, Dilip D. Kandlur, and Philip S.
Yu. Storage and retrieval methods to support
fully interactive playout in a disk—array—based
video server. Multimedia Systems, 3(3):126-135,
1995.

Asit Dan, Daniel M. Dias, Rajat Mukherjee,
Dinkar Sitaram, and Renu Tewari. Buffering and
caching in large-scale video servers. In Proceed-
ings of the CompCon 95, 1995.

Asit Dan, Dinkar Sitaram, and P. Shahabud-
din. Scheduling policies for an On-Demand video
server with batching. In Proc. 2nd Annual ACM
Multimedia Conference and Exhibition, 1994.

Curd Engelmann and Jorg Keller. Simulation-
based comparison of hash functions for emulated
shared memory. In Proc. PARLE ’93, Paral-
lel Architectures and Languages Europe, Lecture
Notes in Comput. Sci. 694, pages 1-11. Springer,
June 1993.

Leana Golubchik, John C. S. Lui, and Richard
Muntz. Reducing I/O demand in Video-on-
Demand storage servers. In Proc. Joint Inter-
national Conference on Measurement & Model-
ing of Computer Systems Sigmetrics '95/Perfor-
mance '95, pages 25-36, 1995.

Daniel Lenoski, James Laudon, Kourosh Ghara-
chorloo, Wolf-Dietrich Weber, Anoop Gupta,
John Hennessy, Mark Horowitz, and Monica S.
Lam. The Stanford DASH multiprocessor. Com-
put., 25(3):63-79, March 1992.

David A. Patterson, G. Gibson, and Randy Katz.
A case for redundant arrays of inexpensive disks
(RAID). In Proceedings of the ACM International
Conference on Management of Data, pages 109—
116, 1988.

Jochen Rohrig. Implementierung der P4-
Laufzeitbibliothek auf der SB-PRAM. Diplomar-
beit, Universitit des Saarlandes, FB Informatik,
1996.

J. Rothnie. Kendall Square Research introduc-
tion to the KSR1. In D.B. Johnson, F. Make-
don, and P. Metaxas, editors, Proceedings of
the Dartmouth Institute for Advanced Graduate
Study in Parallel Computation Symposium, pages
200-210, June 1992.

[14] James M. Wilson. Operating System Data Struc-

tures for Shared-Memory MIMD Machines with
Fetch-and-Add. PhD thesis, Dept. of Computer
Science, New York University, June 1988.

