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Abstract

We investigate conservative parallel discrete event sim-
ulations for logical circuits on shared-memory multipro-
cessors. For a first estimation of the possible speedup, we
extend the critical path analysis technique by partitioning
strategies. To incorporate overhead due to the manage-
ment of data structures, we use a simulation on an ideal
parallel machine (PRAM). This simulation can be directly
executed on the SB-PRAM prototype, yielding both an im-
plementation and a basis for data structure optimizations.
One of the major tools to achieve these is the SB-PRAM's
hardware support for parallel prefix operations. Our reim-
plementation of the PTHOR program on the SB-PRAM
yields substantially higher speedups than before.

1 Introduction

Large–scale shared-memory multiprocessors are likely
to play an important role in parallel computing in the
future, because they offer a much simpler program-
ming model than traditional distributed-memory machines.
Most of today's shared-memory machines are cache-based
machines, i.e., they still use a physically distributed mem-
ory but each processor is equipped with a one-level cache
or a two-level cache-hierarchy. The cache coherence is
provided by the hardware. The memory access time of
these machines is not uniform but depends on the physi-
cal location of the data being accessed. For this reason,
they are called nonuniform memory access time (NUMA)
machines. These machines rely on the locality of most ap-
plications and try to hide the memory latency by caching.
Examples of NUMA machines are the KSR1/2 [2] from
Kendall Square Research, the Stanford Dash [16], and the
SPP1000 from Convex.

Although cache-based machines show a good perfor-
mance for most regular applications with an appropriate
locality, they fail to get good speedups for irregular appli-
cations with a lot of non-local memory accesses. Typical
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examples of such applications are particle–based simula-
tions like MP3D [20], routing algorithms like LocusRoute
[20], and discrete–event simulations like PTHOR [22].

Besides cache-based shared-memory machines, uni-
form memory access time (UMA) machines have been de-
veloped for which the memory access time is independent
from the physical location of the data. Examples of such
machines are bus-based shared-memory machines like the
Multimax [2] from Encore Computer Corp., the C90, J90,
and T90 series from Cray Research [2], and the SGI Chal-
lenge from Silicon Graphics. The disadvantage of bus-
based systems is that they usually can only provide a small
number of processors.

The SB-PRAM which is currently under construction
at the University of Saarbrücken is an UMA machine that
provides a shared address space with a fast memory access
time [1]. The latency of the network between the proces-
sors and the memory modules is hidden by pipelining of
processors, i.e., each physical processor simulates a num-
ber of virtual processors. Thus, a write operation to the
global memory by a virtual processor takes the same time
as an arithmetic operation, independently of the memory
location that is addressed. A read operation is as fast as
an arithmetic operation as well, but the result is available
in the next but one instruction. Concurrent accesses to a
single memory cell are allowed and combined, making the
SB-PRAM behave like the CRCW� PRAM model known
from theoretical computer science.

Besides the usual load and store operations to access
memory cells, the SB-PRAM also offers multiprefix in-
structions which enable several processors to perform pre-
fix operations on a memory cell in parallel. As an ex-
ample, we sketch the execution of a multiprefix addition
MPADD. Let p�� � � � � pn be the executing processors where
each processor pi contributes a local value oi. Let s be a
shared memory cell with value o. If p�� � � � � pn execute the
MPADD operation synchronously, i.e., each processor pi
executes MPADD s� oi, then after the operation, processor

�CRCW=concurrent read, concurrent write.
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The multiprefix operations MPMAX, MPOR, and
MPAND work similar.

A multiprefix operation is as fast as a read operation,
independently of the number of participating processors. It
is even possible that different groups of processors perform
separate multiprefix operations in parallel. The multiprefix
operations can be used for an efficient implementation of
synchronization mechanisms (such as barriers without seri-
alization [10]) and for the implementation of various paral-
lel data structures for task management like priority queues
or FIFO queues [19].

Because of its memory structure, the SB-PRAM is an
ideal machine for the execution of irregular applications.
In addition to running an application on the SB-PRAM,
the machine can also be used to study the properties of a
parallel program under ideal conditions, yielding a predic-
tion of the maximum speedup that can be attained on other
machines. We do this here for an algorithm from the area
of parallel discrete event simulation (PDES) for the simu-
lation of logical circuits.

A model for discrete event simulation assumes that
the system being simulated only changes state at discrete
points in time. For the simulation, the system is modeled
as a collection of logical processes (LPs) that communicate
via timestamped messages. For circuit simulations, typical
LPs at varying levels of abstraction are transistors, NAND
gates, flipflops, multipliers, etc., and their interconnections
[3]. The state of the simulated model changes upon the oc-
currence of events, such as the change in output value of an
individual gate. An event e may be scheduled by a certain
number of other events, if these determine the occurrence
of e.

The approaches to PDES can be distinguished into con-
servative and optimistic approaches. The approaches differ
in the way they deal with causality errors caused by the dis-
tributed simulation, see [9] for a good overview. The con-
servative method [6, 8] forces an LP to block until it is safe
to simulate an event, i.e., the events are simulated in strict
timestamp order. This may lead to deadlocks that have to
be recognized and resolved. In the optimistic approaches
[12], there is no such restriction, i.e., an LP can execute
events in the order in which they arrive. If this leads to a
simulation that is not in timestamp order, a roll back to a
safe state has to be performed and the effect of messages

which should not have been send must be eliminated by
appropriate anti-messages.

We consider the PTHOR algorithm for the simulation
of logical circuits, which uses a conservative approach.
The PTHOR simulator is based on the sequential THOR
simulator and has first been considered for a parallel im-
plementation on the Stanford Dash by Soulé [22]. Soulé
investigates the performance of the PTHOR simulator for
three platforms: an ideal multiprocessor simulator called
Tango [20], an Encore Multimax with 16 processors, and
the Stanford Dash with 16 processors.

For a systematic analysis of the attainable speedup,
we start with a critical path analysis of PTHOR on the
benchmark circuits, which also takes into consideration
the partitioning of the LPs among the processors. We ex-
tend the partitioning strategies investigated by Lin in [17]
from static partitioning strategies to dynamic strategies and
stealing strategies. Although this technique yields an upper
bound on the speedup for the different benchmark circuits,
it does not take into account the overhead for data struc-
tures. This can be done by running PTHOR on the SB-
PRAM. As the SB-PRAM is under construction, we use
a simulator that performs a cycle–by–cycle simulation of
the actual machine. Thus, the simulator delivers the exact
runtime of the real hardware.

We start with the existing PTHOR implementation from
the SPLASH1 benchmark suite [20] and show how the
maximum attainable speedup can be increased by several
changes in the data structures, including the data structures
for the LPs and the memory management. We compare
the dynamic partitioning scheme using a centralized FIFO
queue with the stealing scheme that uses a local queue for
each processor. We also show that the use of NULL mes-
sages can result in a large increase of the speedup, depend-
ing on the benchmark circuit.

The rest of the paper is organized as follows. Sec-
tion 2 presents the critical path analysis. Section 3 in-
vestigates the performance characteristics of the original
PTHOR simulator. Section 4 presents the improvements
that we added and discusses their effects.

2 Critical Path Analysis

Not all events occurring while simulating a circuit can
be executed in parallel. The result of an event e can only
be computed correctly if

1. all events preceding e on the same LP are executed,

2. the results of all events scheduling e are known to e.

2.1 Event Precedence Graphs

Consider the set of the events that occur during the sim-
ulation of a fixed experiment on a fixed model. From the



above constraints, we can derive a partial order on this set,
called “causality”. The representation of this order as a
directed graph G � �V�E� is called “event precedence
graph” (EPG), introduced independently by Berry and Jef-
ferson [4] and Livny [18]. V is the set of events, �e�� e�� is
an edge iff. e� schedules e� or e� is the last event before e�
on the same LP. The weight function � � V � R�

� assigns
to each event the runtime to execute it�. We call an event
e� dependent on e� iff. there exists a path in G from e� to
e�.

Only events that are independent from each other can
be executed in parallel. Hence, the EPG serves to compute
a lower bound on the simulation's runtime. We assume
that every LP is simulated on its own processor. Then, be-
cause of constraint 1, it can never happen that more than
one event e is ready for execution on one processor. This
unique event e can be executed as soon as constraint 2 is
satisfied. Obviously, events e with indegree 0 can be exe-
cuted immediately after the simulation starts.

If START�e� and END�e� denote the times when the ex-
ecution of event e ideally starts and finishes, then

END�e� � START�e� � ��e� �

START�e� �

�
max

�e��e��E
END�e�� indeg�e� � �

� otherwise.

This recurrence equation is well defined because EPGs
are acyclic. To compute END, one sorts the vertices topo-
logically and evaluates them in this order. The time

Tcrit � max
e�V

END�e� � (1)

is the runtime of an ideal simulation on a parallel machine
with an arbitrary number of processors. Tcrit is a lower
bound on the parallel runtime of every conservative simu-
lation strategy [13]. It is even a lower bound on optimistic
strategies with aggressive cancellation [11].

The path defining the maximum in (1) is called critical
path. Note that there may be several critical paths in an
EPG.

The EPG also serves to compute a lower bound on the
sequential runtime by

Tseq �
X
e�V

��e� �

So far, the computed runtimes ignore any computational
overhead in addition to causality. If we assume that the
overhead in a parallel simulation is greater than in a se-
quential simulation, then the quotient Scrit � Tseq�Tcrit
defines an upper bound on the possible speedup for a par-
ticular experiment.

�This definition can be made independent of the underlying machine
by defining ��e� as a function on the indegree of e.

This overhead assumption is supported by the observa-
tion that normally all data structures from the sequential
program are needed in the parallel version as well. The
parallel program might need additional data structures to
support information exchange between LPs.

2.2 Partitioning Strategies

For large circuits, real parallel machines do not have
enough processors to assign each LP to a different pro-
cessor. Hence, the LPs must be partitioned between the
available processors.

On distributed memory multicomputers, a commonly
used partitioning scheme is static partitioning. Every pro-
cessor is assigned a fixed set of LPs, the sets are disjoint.
Examples for static partitioning are cyclic distribution
(LPi is executed on processor i mod p), blockwise dis-
tribution (processor i executes LPin�p�� to LP�i���n�p),
and random distribution (each processor is assigned n�p
LPs in a random fashion). If the numbering of LPs in the
input data file is arbitrary, then any distribution resembles
random partitioning.

There are a number of heuristic approaches to find bet-
ter static partitionings [5, 14, 15, 23]. However, we did
not consider those approaches. They mostly try to opti-
mize communication costs which is not necessary as we
use shared–memory machines.

On a shared memory multiprocessor, all processors
have access to the data of every LP. Hence, an obvious
strategy would be to have a central FIFO queue for LPs that
are ready for execution. An idle processor simply picks the
first queue element. We call this strategy dynamic. The
standard method to find out when an LP becomes ready for
execution is presented in Subsect. 3.1. The disadvantage
of a central FIFO queue is the possible serialization over-
head due to concurrent access of multiple processors. This
overhead can be eliminated by a serialization–free parallel
data structure on the SB-PRAM (see Subsect. 4.3).

Often however, shared memory multiprocessors need
some locality in data referencing to exploit their caches
and hence to obtain appropriate memory bandwidth. To
achieve locality, the PTHOR program of the SPLASH1
benchmark suite [20] uses a so called stealing strategy: ba-
sically, this is a static strategy with local task queues for
LPs that are ready for execution. In cases where the load
is not balanced, an idle processor can “steal” an LP that
is ready for execution but is assigned to another processor.
The stealing strategy exploits locality as long as processors
are busy and requires remote access only for load balanc-
ing when the processor is idle anyway.

In all these strategies, it may happen that a processor
must choose between several LPs that are ready for exe-
cution. This can happen because either more than one LP
assigned to a processor is ready, or because more than p



1

2

4

8

16

1 4 16 64 256 1024 4096

S
p
e
e
d
u
p

 

DASH

7.48

linear
max. speedup

dynamic
stealing

static

1

2

4

8

16

32

64

1 4 16 64 256 1024 4096
Processors

H-FRISC

48.45

linear
max. speedup

dynamic
stealing

static

1

4

16

64

256

1024

1 4 16 64 256 1024 4096
 

Multiplier

525.89

linear
max. speedup

dynamic
stealing

static

Figure 1: Speedup bounds for different partitioning strategies

LPs are ready in the central FIFO queue. In PTHOR, the
processor chooses the LP that has been ready for execution
for the longest time. This is easy to implement. Another
popular method is to choose the LP with the smallest times-
tamp. This method leads to overhead. It requires that LPs
which are ready to run are kept sorted according to their
timestamps.

To get realistic runtime predictions Tcrit�p� depending
on the number of processors p, it is necessary to model
the partitioning strategy used in the critical path analysis.
Note that these runtimes cannot be shorter than Tcrit. All
delays due to causality apply for both Tcrit and Tcrit�p�,
and partitioning could introduce additional delays.

The inclusion of partitioning strategies in critical path
analysis was first mentioned by Lin [17], but he only uses
a static strategy.

To include one of the above partitioning strategies in
critical path analysis, we assume that the number of avail-
able processors p is fixed. We maintain a timer c�i� for
each processor i, which specifies the computation time per-
formed by i. If this processor executes an event e, the timer
is increased by ��e�. As before, we evaluate the function
END on the nodes of the EPG in topological order. For an
event e executed on processor i, let cold�i� denote the value
of c�i� before the execution of e. Then

END�e� � START ��e� � ��e� �

START ��e� � max �cold�i�� START�e�� �

START�e� is defined as above. The execution time con-
sumed by simulating e is taken into account by updating
c�i� to

c�i� � END�e� �

The different partitioning strategies lead to different
assignments of LPs (and their events) to processors and
hence to different results for Tcrit�p�.

Note that the topological sort does not give a unique to-
tal order on the vertices, e.g. all vertices with indegree 0
could serve as the first node. Therefore we maintain a pri-
ority queue of all events that are ready for execution. The
priority is the time when the events became ready. Remov-
ing the event with the smallest ready time ensures correct
modeling.

2.3 Experiments

We computed the EPG's for three circuits delivered with
the PTHOR simulator from the SPLASH1 benchmark suite
[20].

� DASH models the cache coherency controller of the
DASH multiprocessor [16] and represents 74,000 gate
equivalents organized in 24,000 LPs.

� H-FRISC is a small RISC processor generated by a
synthesis tool. It represents 7,000 gate equivalents or-
ganized in 5,000 LPs.

� Multiplier implements a multiplier of two 16-bit num-
bers. It also represents 7,000 gate equivalents orga-
nized in 5,000 LPs.

We use the input vectors that are delivered with the
PTHOR program. We use the unit delay model, i.e. each
gate and each register has a delay of 1. We simulate 5000
time units. We computed the speedup bound Scrit and
bounds

Scrit�p� �
Tseq

Tcrit�p�
�

where p � �i, i � �� � � � � ��, for the three partitioning
strategies. For the static and stealing strategies, we use a
cyclic distribution. The curves are shown in Fig. 1.

The speedup boundsScrit�p�with partitioning reach the
maximum speedup Scrit already for small numbers of pro-
cessors. The dynamic partitioning strategy outperforms the



other two in theory. For small processor numbers (p � �	),
the stealing strategy behaves like the static strategy, for
larger processor numbers it approaches the dynamic strat-
egy. As the static strategy performs worst, we do not con-
sider it in the sequel.

Second, note that causality restricts the available paral-
lelism severely. The DASH circuit, also the largest one,
obtains the worst speedup bound with 
���. This contra-
dicts statements in [22].

The strong influence of causality might result from the
form of the LPs. The DASH circuit has LPs with up to
94 inputs. In contrast, the H-FRISC and the Multiplier cir-
cuits have LPs with up to 17 and 5 inputs, respectively. The
more inputs an LP has, the more it can depend on events
on other LPs. The events that schedule an event on an LP
with many inputs might finish at vastly different computa-
tion times. As a conservative simulation must wait for the
last of these events to finish, the delays due to causality can
be large.

Soulé [22] proposes to combine LPs to larger units
called “super LPs” to increase the speedup. As this in-
creases the number of inputs per super LP, our results
strongly discourage this proposal. In contrast, it might be
wise to split large LPs into smaller units with fewer inputs.

We also investigated the granularity of the LP execu-
tion times as a possible source of speedup degradation. On
the SB-PRAM, the evaluation of an LP needs at most 100
instructions. The majority of LPs take more than 50 in-
structions. Hence, the difference in execution time is small
and could not explain such a large speedup degradation.

3 PTHOR

A widely used algorithm for circuit simulations on
parallel machines is the Chandy–Misra–Bryant algorithm
(CMB) [6, 8]. This algorithm is a conservative approach.
We will first review the PTHOR program [22], which is an
implementation of CMB on the Stanford Dash machine.

3.1 Description

PTHOR partitions the LPs of the simulated circuit with
the stealing strategy sketched in Subsect. 2.2. It uses a
cyclic distribution of LPs to processors.

There is a message channel between LP i and LP j if an
input of component j in the simulated circuit is connected
to an output of component i. If LP i computes a change
of the output signal that occurs at simulated time t, then
this output is put into a message with timestamp t. All LPs
connected with LP i get a copy of this message in their
appropriate input buffers.

Each processor maintains an activation list that contains
all of its LPs for which new messages have arrived. If LP i

sends a message to another LP j, it generates an entry for
LP j in the activation list of the processor to which LP j is
assigned.

An event e can only be simulated if all necessary inputs
are present in the input buffers. An idle processor j tries to
get an LP from its activation list. If its own list is empty,
then it tries to steal an LP from another activation list. If
the chosen LP has all necessary inputs, j can simulate one
or several events from that LP correctly. In either case, this
LP is removed from the activation list. It will be entered
again if some new input message arrives.

It can thus happen that all activation lists become empty
although some events could be simulated. Such a situation
is called deadlock. The CMB algorithm tolerates dead-
locks, because it is able to detect and to resolve all of them.

Deadlock detection can be implemented on a shared
memory multiprocessor by maintaining a shared counter
which is initially set to zero. A processor whose activation
list becomes empty (and does not succeed in stealing) in-
creases the counter. It decrements the counter again if it
finds a new event to simulate. A deadlock has occurred if
the counter equals the number of available processors.

To resolve the deadlock, one has to find at least one
event that can be simulated. To do this, we search for a
message m with the minimum timestamp 
t. Chandy and
Misra prove that all events that occur at time 
t (and hence
have m as input) can be simulated [8].

3.2 Performance

Figure 2 shows the speedups for the benchmark circuits
on three machines, with processor numbers ranging from
2 to 128. Only on the SB-PRAM we obtain a speedup
larger than 1. The diagrams show absolute speedups: the
sequential runtime is not the runtime of the parallel pro-
gram with one processor. Instead, it is the runtime of the
fastest sequential implementation we were able to find. For
the SB-PRAM, we implemented a sequential event simu-
lator using splay–trees [21] as priority queues. For Dash
and Multimax, we used relative speedups and slowdown
factors from [22].

Benchmark DASH H-FRISC Multiplier
SB-PRAM (PTHOR) 10.4 7.4 5.4
Dash (PTHOR) 13.0 9.6 7.5
SB-PRAM (Reimpl.) 3.0 2.1 1.7

Table 1: Slowdown factors

Note that the parallel program on one processor is much
slower than the sequential program on one processor of the
same machine. The quotient between these two runtimes
is called slowdown factor. Table 1 shows the slowdown
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Figure 2: Absolute speedups of PTHOR on the Dash–, Multimax– and SB-PRAM–Multiprocessor.

factors for the three benchmark circuits on the SB-PRAM
and the Dash machine. The latter are taken from [22].

The performance of PTHOR suffers from serialization.
Serialization occurs during concurrent access to the shared
counter for deadlock detection.

Benchmark DASH H-FRISC Multiplier
Total no. 1,348,440 960,498 1,283,380
Contention 82.25% 94.6% 97.70%

Table 2: Lock contention on SB-PRAM with p � ���

The access to the counter is protected by a lock. Table
2 shows the total number of accesses to the shared counter
and the fraction of accesses that were not directly granted.
The time to access a lock is one instruction in both the
Dash and the SB-PRAM, as both machines provide hard-
ware support for read-modify-write operations.

Serialization is also caused by the computation of the
minimum timestamp during deadlock resolution. This
computation needs a loop over all processors and barrier
synchronizations before and after the loop. The barriers
are also implemented by locks. The first row of Table 3
shows the average number of instructions needed to resolve
a deadlock in PTHOR on the SB-PRAM. The second row
shows the corresponding numbers for the reimplementa-
tion (see next Section).

4 Reimplementation

Our reimplementation avoids the serializations men-
tioned above. We also improved the memory management
and the realization of channels between LPs.

As mentioned in Sect. 1, the multiprefix operation

DASH H-FRISC Multiplier
PTHOR ��� ��� ��� ��� ��� 
��
Reimpl. ��� ��� 
��

Table 3: Duration of deadlock resolution on SB-PRAM
with p � ���

serves to compute global sums and global minima in a
small constant number of instructions. The last row of Ta-
ble 3 shows the average number of instructions needed for
deadlock resolution on the SB-PRAM using multiprefix.

4.1 Memory Management

During the simulation, one has to manage ten thousands
of small list elements for message queues, activation lists
etc. PTHOR never recycles elements, it even keeps those
elements that are not in use anymore. This is a waste of
memory resources and leads to unnecessary shared mem-
ory allocations. Furthermore, extracting list elements from
the allocated memory leads to serialization because locks
are used.

In the reimplementation, each processor maintains a so
called freelist. After a processor has executed an event,
some of the involved list elements might not be needed
anymore. Then, the processor adds these to its own freelist.
If a processor wants to allocate a list element, it first tries
to obtain one from its freelist. If its freelist is empty, then
it obtains a list element from an allocated shared memory
block.

If a block containing l list elements is allocated, a shared
counter c is initialized to l. A so called R–pointer is set to
the beginning of the memory block. To obtain a list el-
ement from that block, a processor decreases the counter
c with the help of multiprefix. This allows for concurrent
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Figure 3: Memory management of list elements

access of multiple processors without serialization. The re-
sult r of the prefix operation gives the number of remaining
list elements. If r � � the memory block is exhausted. The
processor that obtains value 0 then allocates a new mem-
ory block, all processors that received values less or equal
to zero then repeat the allocation with the new block.

If a processor receives r � �, it can cut off a list ele-
ment from the memory block. To do this, it increases the
R–pointer of this block by the size of a list element with
the help of multiprefix. The value the processor obtains
then determines the position of the list element. Figure
3 shows five processors that try to allocate a list element.
Processor 0 finds an element in its freelist, the other four
processors must allocate from a shared memory block with
c � �. After the multiprefix operation, c � ��, and pro-
cessor i receives value �� i. Thus, processors 1 and 2 get
list elements from the current memory block. Processor 3
receives the value 0 and allocates a new block, from which
processors 3 and 4 allocate their list elements.

4.2 Channel Queues

The realization of a channel is performed with a FIFO
queue where one LP writes a message and all LPs con-
nected to this channel read the message. As it is not clear
when all LPs have read a message, PTHOR keeps all mes-
sages in these queues. We attach a shared counter to each
message in the queue. The counter is initialized to the num-
ber of LPs connected to this channel. Each LP reading a
message decreases its counter with the help of multiprefix.
If the counter has reached zero, the processor accessing the
message removes it from the queue and puts it into its freel-
ist. We call this queue organization single-in multiple-out
queue (SIMO). It needs no locks. Figure 4 shows a SIMO
queue where LP 0 writes and LPs 1 to 4 read. The upper-
most two messages have not yet been read by any LPand
hence have counters with values 4. The next two messages

LP 0

0

2

3

4

4

LP 1    LP 2                    LP 3    LP 4

Figure 4: Single-In Multiple-Out queue

have been read by LP 1 and LPs 1 and 4, respectively, and
thus have counters with values 3 and 2. LP 2 has just read
the lowermost message and thus decreased the message's
counter to zero. The message now is removed from the
queue.

Figure 5 shows the absolute speedups of PTHOR and
the reimplementation on the SB-PRAM. The speedups of
the reimplementation are much better than the PTHOR
speedups. For the DASH benchmark, the speedup reaches
the critical path bound. For H-FRISC and Multiplier there
is still a gap between the bound from critical path analysis
and the actual speedup. We try to tighten this gap by two
means.

4.3 NULL-Messages and Dynamic Partitioning

First, we incorporate the concept of NULL-messages. In
PTHOR, a message m is only sent when an LP i changes
one of its outputs. In conservative simulation, m can be
consumed when no messages with smaller timestamps ar-
rive over this channel. The channel clock shows the times-
tamp of the last message sent over this channel. Deadlocks
occur due to clocks not incremented far enough because
of messages not sent. To prevent this, so called NULL-
messages containing only a timestamp help to give better
guarantees. Chandy and Misra show that deadlocks can be
avoided completely if all events send all possible NULL-
messages [7].

On distributed memory machines, the flood of NULL-
messages can cause more overhead than the deadlock
avoidance method. Therefore, one only sends part of the
NULL-messages to avoid part of the deadlocks [9]. On
shared memory machines, messages need not be sent ex-
plicitly. Every event can access each channel data structure
in global memory. Therefore, instead of sending a mes-
sage, one can update every channel clock directly. This re-
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Figure 5: Absolute speedups before and after reimplementation on the SB-PRAM

moves most of the overhead of message passing (queue or-
ganization etc.) and makes NULL-messages a useful tool.
To avoid deadlocks completely, every update of a channel
clock must be followed by the activation of all LPs con-
nected to this channel.
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Figure 6: Use of NULL-messages

Figure 6 shows the speedup curves with and without
NULL-messages for the Multiplier circuit. The use of
NULL-messages almost doubles the speedup.

The situation is different for the H-FRISC circuit. Here,
the use of NULL-messages results in an increase of ac-
tivations by a factor of 6. The speedup drops by a fac-
tor of 5 to 6, depending on the number of processors.
The reason lies in the different structures of the circuits.
While Multiplier is purely combinatorial, H-FRISC con-
tains cycles between registers. In these cycles, often sev-
eral NULL-messages are sent (and hence activations hap-
pen) before an event can be simulated.

Second, we tried to use the dynamic partitioning strat-
egy as an alternative to stealing. To do this, one needs a
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Figure 7: Absolute speedups for dynamic and stealing
partitioning

shared FIFO queue as a global activation list. This list is
accessed by all processors and hence need not lead to seri-
alization. With the help of multiprefix, one can implement
a FIFO queue that processes inserts or deletions of an arbi-
trary number of processors in a small constant number of
instructions [19].

Figure 7 shows the speedups on H-FRISC for both
strategies. The curves for the Multiplier circuit look sim-
ilar. In contrast to theory, the dynamic strategy is not su-
perior to stealing. A reason for this is that more than ���
of all activations are satisfied from the processors' local
activation lists, even for large processor numbers. How-
ever, the dynamic strategy leads to a simpler program code.
Note that the difference between the two curves is even in-
creasing. This results from a constant runtime overhead
while accessing the central FIFO queue.



5 Conclusions

Our results show that critical path analysis permits good
speedup predictions if partitioning strategies are included.
For the benchmark circuits, the SB-PRAM comes close
to the maximum speedup, allowing more accurate predic-
tions. As a consequence of using a single framework, the
tool for critical path analysis also yields an efficient imple-
mentation.

For the prediction, we consider absolute speedup val-
ues. This is important to evaluate the use of parallel ma-
chines in practice as relative speedups are up to 10 times
higher than the absolute ones. To make parallel simulators
competitive, it might be worth investigating whether the
slowdown factors from sequential to parallel can be made
smaller.

Experiments with the benchmark circuits reveal that the
maximum speedup is strongly dependent on the circuit's
structure. Of particular importance are the length of the
cycles and the number of inputs per LP.

We presented several new serialization–free parallel
data structures which seem to have a large impact on the
programs performance. The efficiency of these data struc-
tures is based upon the use of parallel prefix operations.

The Dash machine supports so called fetch&op oper-
ations which are parallel increment/decrement. Hence,
SIMO queues and improved deadlock detection could be
implemented on the Dash as well. However, the Dash's
fetch&op still leads to serialization. Memory management
and improved deadlock resolution require parallel prefix
sum and maximum with integers, respectively, and thus
cannot be used on the Dash.
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