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Abstract

We sketch the physical design of a prototype of a PRAM architecture based on
RANADE's Fluent Machine. We describe a specially developed processor chip with
several instruction streams and a fast butterfly connection network. For the realiza-
tion of the network we consider altematively optoelectronic and electric transmission.
We also discuss some basic software issues.
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Introd uction1

Today a.ll para.llel machines with large numbers of processors also have many memory
modules as weIl as a network or a bus between the processors and the memory modules.
The machines however come with two radically different programming models.

The user of multicomputers is given the impression, that he is progra.mming an
ensemble of computers which exchange messages via the network. The user has to
partition the data., and exchange of data between computers is clone by explicit mes-
sage passing. A very crude model of the run time of progra.ms on such machines is: as
long as no messages are passed, things are obviously no worse than on serial machines.
As soon as messages are passed, things ca.n become bad, because of the network.

The user of shared memory ma.chines is given the impression, that he is progra.m-
ming an ensemble of CPUs which simultaneously access a common memory. This
is much more comfortable fOT the user hut there is a atch. Because the underlying
ma.chine has several memory modules (andfor several large caches) there is of course
message passing going on (e.g. by transporting cache lines). Again this message pass-
ing can ause serious deterioration of performance, hut because the message passing
is hidden flom the user it is very difficult fOT the user to figure out, under which
circumstances this effect ca.n be avoided.

In spite of this drawback the ease of programing provided by the shared memory
model is considered such an advantage, that ODe tries to provide this view even tor
ma.chines, which were originally designed as multicomputers.

The best of both worlds would obviously be provided by a shared memory ma-
chine whose performance is highly independent of the access pattern into the shared
memory. In the theoreticalliterature such machines are ca.lled PRAMs (9]. An im-
pressive number of ingenuous algorithms fOT these machines has been developed by
theoreticians, and simulations of PRAMs by multicomputers were extensively studied.
Among these simulations (16] was genera.lly considered the most realistic ODe.

In (13] a measure of cost-effectiveness of architectures was established, where hard-
ware cost is measured in gate equivalents and time in gate delays. In [1, 2] the simula-
tion !rom (16, 17] was developed into an architecture which according to this measure
is surprisingly cost-effective even if compared with multi computers under a numerical
workload.

This paper describes a possible physical rea.1ization of a 128 processor prototype
of the machine described in (1, 2]. Roughly speaking the paper deals with those
aspects of the hardware, which are not aptured by the model from [13]: pins, boards,
connectors, ables etc. We also treat two basic software issues: synchronization and
memory allocation.

2 The Fluent Machine

The Fluent Abstract Macl1ine [17] simulates a CRCW priority PRAM with n log n
processors. The processors are interconnected by a butterfly network with n input
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nodes. Each network node contains a processor, a memory module of the shared
memory and the routing switch. If a processor (col, row) wants to access a variable
stored at address z it generates a packet of the form (destination,type,data) where
destination is the tuple (node(z), local(z» and type is READ or WRITE . This packet
is injected into the network, sent to node node(z) = (row', col') and sent back (if its
type is READ) with the following deterministic packet routing &lgorithm.

1. The packet is sent to node (logn,row). On the way to column logn all packets
injected into a row are sorted by their destinations. The reason tor the sorting
is the fact that two packets with the same destination have to be combined.

2. The message is routed &lang the unique path from (log n, row) to (O, row'). The
routing &lgorithm used is given in [16].

3. The packet is directed to node (coli, row') where memory access is handled.

4. - 6. The packet is sent tbe same way back to (col, row).

RANADE proposes to realize the six phases with two butterfly networks where
column i of the first network corresponds to column log n - i of the second ODe.
Phases 1,3,5 use the first network, phases 2,4,6 use the second network. Thus the
Fluent Machine consists of n log n nodes each containing ODe processor, oDe memory
module and 2 butterfly networks.

Improved Machine3

In RANADE's algorithm the next round can only be starled when the actual round
is completely finished, i.e. when all packets have retumed to their processor. Thia
mea.ns that overlapping of several rounds (pipelining) is not possible in the Fluent Ma-
chine. This disadvantage could be eliminated by using 6 physical butterfly networks.
Furthermore the networks for phases 1 and phase 6 can be realized by n sorting arrays
of length log n as described in [2]. The networks for phases 3 and 4 can be realized
by driver trees and OR trees, respectively. Both solutions have smaller casts than
butterfly networks and have the same depth.

The processors spend most of the time waiting for returning packets. This cannot
be avoided. But we can reduce the cast of the idle hardware by replacing the log n
processors of a row by only ODe physical processor (pP) which simulates the original
logn processors as virtual processors (vP). Another advantage of this concept is that
we can increase the total number of PRAM processors by simulating X = clog n (with
c > 1) vP's in a single pP. VALIANT discusses this as parallel slackness in [19]. The
simulation of the virtual processors by the physical processor is done by the principle
of pipelining. A closely related concept is Bulk Synchronous Parallelism in [19].

In vector processors the execution of several instructions is overlapped by sharing
the ALU. If a single instruction needs x cycles, pipelined execution of t instructions
needs t + x-I cycles. Without pipelining they need tx cycles.
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lnstead of accelerating several instructions of a vector processor with a pipeline,
we use pipelining fot overlapped execution of ODe instruction fot a.ll X vP's that are
simula.ted in ODe physica.l processor. To simulate X vP's we increase the depth of
Out ALU artificially. The virtual processors a.re represented in the physical processor
simply by their own register sets. We sa.ve the costs of X-I ALU's.

The depth 6' of this pipeline serves to hide network latency. This la.tency is proved
to be clogn fot some c with high probability [16]. If 6' = clogn then norma.lly no
vp ha.s to wait fot a returned packet. This c increases the number of vP's and the
network congestion. But network la.tency only grows slowly with increasing c. Thus
there exists an optimal c.

When the last of a.ll vP's haB injected its packet into the network,there are on the
ODe hand still packets of this round in the network, on the other hand the processors
have to proceed (and thus must start executing the next instruction) to return these
packets. CHANG and SIMON prove in [7] that this works and that the latency still is
O(log n). The rema.ining problem how to separate these different "rounds" can easily
be solved. After the last vp haB injected its packet into the network, an End 0/ Round
Packet (EOR) with a. destination larger than memory size m is inserted. Because the
packets leave each node sorted by destinations, it haB to wait in a. network switch
until aoother EOR enters this switch along its other input. It can be proved easily
that this is sufficient.

ODe problem to be solved is that virlual processors executing a. LOAD instruction
have to wait until the network returns the answer to their READ packets. Simula.tions
indica.te, that fot c = 6 this worb most of the time (see [2]). But this is quite large in
comparison to log n. We partially overcome this by using delayed LOAD instructions
as in [15]. We require an answer to a READ packet being a.va.ilable not in the next
instruction hut in the next hut ODe. lnvestigations show that insertion of additional
'dummy' instructions happens very rarely [15]. But if a progra.m needs any dummy
instructions, they can easily be inserted by the compiler. This reduces c to 3 without
significantly slowing down the machine.

Out machine will consist of 128 physica.l processors (PP) with 32 virtual processors
(vP) each. The vP's correspond to the different pipeline steps of a. pP.~

4 The Processor Chip

The instruction set of our processor is based on the Berkeley Risc processor [15].
The basic machine commands are quite similar to this processor except the specia.l
commands for handling the severa.l instruction streams. Instead of register windows
we have the register sets of the virtua.l processors. The processor has a LOAD-STORE
architecture, i.e. COMPUTE instructions (adding, multiplying, shirts, logarithmical and
bit oriented operations) work only on registers and immediate constants. Memory
access only happens on LOAD and STORE instructions. AU instructions need the same
&mount of time (one cycle). We do not support fioating point arithmetic but the
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addition of a commercial coprocessor is poesible.
Because of the LOAD-STORE architecture one multiplier can be used for multipli-

cations in COMPUTE instructions and tor hashing global addresses with a linear huh
function in LOAD ud STORE instructions. This means that hashing does not require
much special hardware.

The processor will be located in a 299 PGA ud will consist of about 50,000 gate
equivalents. Figure 1 shows the data paths of the processor.

Each virtual processor is represented by its own register set consisting of 32 reg-
isters Ro - ~1 each 32-bit wide. R. of each register set is the program counter, R2
the loca.1 stack pointer ud ~ the global stack pointer. The register sets are held in
a static RAM outside the chip. The "P's are hudled in pipeline in a round robbin
ma.nner. Each cycle of a v P corresponds to a. step in the pipeline. The cycle time of
the pipeline will be l2On.. in 2JJm CMOS technology. One step of all 32 vP's takes
32 . 120n.s = 3840n.s time. Additionally each v P can support up to 32 contexts which
we will also call1ogical processors (IP) later on. Therefore the programmer can handle
32.32.128 = 131,072 contexts without uy softwa.re overhead.

5 Several Processes

Each vP ia ahle to aimulate 32 lP'. without &Oy software overhead. In the following
We describe the hardware support of this simulation. In thi. section we call the work
of a logical proceasor a proceas. The vP's needs machine commands to "create",
ftswitch" and ftterminateft processea. A procaa (IP) ia represented by the values of
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its register set including the program counter, stack pointers a.nd status register. We
ca1l these values the "context" of a process. If a vP switches flom ODe process to
another it has to switch the context, i.e. the current IP has to save the value of its
register set somewhere a.nd has to load the value of the register set of the next IP
{rom somewhere. This is a complex operation a.nd a fast mechanism to realize that is
needed. However the execution time of the comma.nds to switch, terminate a.nd create
contextes should be as fast as the other macbine instructions. Because it is impossible
to hold 32 . 32 register sets on chip, the register sets are located in a 32K x 32 static
RAM outside of the processor. Access time to the large static RAM is not the critical
part of computation and therefore does not slow down processor speed. To switch
{rom ODe IP to a.nother oDe has only to compute the base address of the new register
set.

An arbitrary number of processes haB to be emula.ted in software. This could be
clone e.g. by using a FIFO queue of process descriptions tha.t is located in global
memory. Par&l1el management of that queue needs constructs similar to parallel
storage management as given in section 8.1.

A new process can only be created by a process on the same v P. A process can
only terminate itself. A switch of processes can only activate the next inactive process
(lP). The control of the different IP's is handled tor each vP by a 32 bit wide mask b
(the reason tor the upper bound of IP's per vP). The 32 masks are held on chip. The
value of bt indicates, whether the i-tb register set contains & process (bi = 1) or not
(bi = 0). At the beginning b = (0,...,0,1), i.e. only the first process (lPo) of every
vP is active.

If a process IP; wants to create a new process oDe looks tor the smallest j with
bj = 0 and i < j < 32, if this exists. H that does not exist, ODe looks tor the smallest
j with 0 .$: j < i. One changes the bit (bj = 1) and sets the program counter of the
i-tb register set. The status register haB an additional bit which indicates whether
further process can be created (b = (1,...,1». H there is no free register set nothing
can be done.

If l~ switches the process, oDe is looking tor the smallest j with i < j < 32 and
bj = 1. If that does not exist, ODe looks tor the smallest j with 0 ~ j ~ i. This exists
(e.g. j = i). The "aGtual" process is now lPj. If a process lPj is terminated, one
sets the corresponding bit bj to 0 and switches the process. The last process of a vP
ca.n not be terminated. The status register contains a flag, that is set if and only if b
contains exaGtly one 1, i.e. if only one process is &ctive.

The additional commands tor the support of the different processes are the follow-
ing: CREATE R.." R" R. crea.tes a new process (if possible). The program counter of
the new process is loaded with the value R.., of the current process, register R, of the
new process is loaded with the value of R. of the current process, SWITCH switches a
process, KILL terminates a process.
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Network Design6

As already mentioned, the prototype uses a butterfly network fot processor-memory
communication. It consists of 8 stages with 128 network nodes per stage. Packets
from processors to memory modules consist of a 32 bit address, 32 bit data and 6
control bits specifying modus and operation. Packets on the way back consist of 32
bit data and 1 control bit. In each direction of a link there exists a bit specifying
whether the input buffet of the node at the end of the link is already filled up or not.
One link between two network no des has to be 32 + 32 + 6 + 32 + 1 + 2 = 105 bits

wide (71 forward, 34 backward).
We have to decide how to partition network nodes on VLSI chips, how to partition

these chips on printed cicuit boards (PCB's) and how to arrange the boards in lacks.
Clearly these decisions are not independent of each other. A chip is restricted by
maximum numbers of gates and pins available. A PCB is restricted by its area and
by the number of connections that can leave it. An arrangement of boards is restricted
by the form of the available lacks. The wires should not be too long because length
of a wire restricts transmission speed and increases delay. The wiring should allow
removal of boards.

6.1 Mapping Network Nodes to Chips

A network node that rea.1izes RANADE'S routing algorithm and is ahle to perform
multiprefix operations [17] needs the data paths shown in figure 2. It needs about
15,000 gate equivalents and & total of 420 pins plus power supply. The largest com-
mercia.l1y available ASIC VLSI chips have about 70,000 gates and 300 pins (HDC105)
or 48,000 gates and 240 pins (HDCO64) [12]. This means that we have enough gates
to implement several network nadel on one chip hut not enough pins to realize the
links tor only one network node. Distributing a network node on several chips does
not salve the problem because a11 parts of the node Are connected by wide busses
which lead to a lot of additional pins.

If we half the width of the links and send packets in two parts, we loose a fa.ctor of
2 in speed of the network hut can implement one network node on one chip HDC064
- but we waste two third of the chip area. Further reduction of the links' widths is
not useful because it would slow down the network tao much. Thus the links have
width w = 53 bits, Wl = 36 in forward and W2 = 17 in backward direction.

Fortunately RANADE'S routing algorithrn allows to increase the gate/pin ratio by
a factor 2 without increasing the number of links. One network node can be cut in two
halves such that only W + 2 bits cross the cut if w denotes the width of alink. The cut
can be seen in figure 2. We implement in a chip a 2 x 2 butterfly but take only the last
part of the nadel in one stage and take only the first part of the nadel in the fo11owing
stage. Figure 3(a) shows the partitioning and 3(b) shows the implementation with 4
chips. The resulting butterfly network contains 7 stages with 64 chips per stage. One
chip now contains 4 half network nodes or 2 nodes and 4 links.
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Figure 2: Cut of network nodes

e-"'E~~:~;::»'C::~~~~ ; "'e
(I) (b)

Figure 3: (a) Partitioning of the butterfty nodes. (b) Implementation of the nodes on
chips
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The first half of network nodes in the first stage and the second half of network
nodes in the last stage can be deleted beca.use in RANADE'S algorithm they only have

Olle input (output).
We will denote chip z E {O,... 163} of stage i E {O,.", 6} with (i, z) . For i < 6

chip (i,z) is connected to chips (i + 1,z) and (i + 1,z $i) where a$b hefe denotes
the number which has a binary representa.tion that is obta.ined by the bitwise exclusive
or of the binary representations of a and b. Because we will only talk of the network
of chips we will call the chips also nodes.

Mapping Chips to Boards6.2

A vailable Printed Circuit Boards with standard size have an area of 366mm x340mm =
124, 440mm2 [5]. An HDC064 chip has an a.rea. of 2237.3mm2 [12]. H we consider that
wiring on the board and connectors also consume alarge &mount of the board's area,
the chips can only cover about 30% of the board, resulting in at most 16 chips per
board. In order to reduce the number of links between boards, ODe board should
contain a butterfly of appropriate size. In this case this is a butterfly with 3 stages
and 4 chips per stage. The board then has 12 chips and 16 connectors.

Because of the 7 stages we have to insta.ll at least 3 network parts. We choose to
design two kinds of boards. The first kind looks like sketched above, tor the second
we delete the third stage and obtain a board with two 2 x 2 butterflies. H we cut
the network after the second and after the fifth stage we obtain a number of small
butterfties that exa.ctly fit on the boards designed above. The first and the third part
are made of boards of the second kind, the second part is made of boards of the first
kind. Each part consists of 16 boards. Board j E {O,..., l5} of part k E {I, 2, 3} is
called (k,j) .

The following tables shows how the nodes (i, z) are distributed on the boards.
Table 1 gives tor each node the board on which it is mapped. Table 2 gives tor each
board the nodes that it contains.

The 256 links between boards are the most critical ones because they traverse the
longest distances. We have to take care of them when arranging the boards.
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Figure 4: (a.) Wise's arrangement of boards. (b) New arrangement of the board.

6.3 Arrangement of Network Boards
Arrangements of butterfly networks normally assume in contrast to reality that the
implementation has a homogenous area. of sufficient sire, e.g. a VLSI plane or a large
PCB [4}. WISE proposed in [20] a 3 dimensional arrangement of boards to implement
a butterfly. This is the only paper known to us which addresses the problem. Assume
that we have a butterfly with n stages and 2"-1 nodes per stage. Assume further
that n is even. WISE makes a cut after n /2 stages and obtains boards that contain
butterfties with n/2 stages and 2(,,/2)-1 nodes per stage. Bach of the two parts contains
2"/2 of these boards. One can prove that ea.ch board of the first part is only connected
to all boards of the second part. WISE suggests the following arrangement: all boards
stand vertical, the inputs of a board are on its top, the outputs on its bottom. The
first part stands on top of the second part. The arrangement looks like given in figure

4(a).This arrangement has the advantage that the parts ideally can be connected di-
rectly without any cables. The longest wire is on ODe of the boards, that means it is
relatively short. The arrangement unfortunately has several disadvantages.

. Because each board can only hold a 3 stage butterfty (~ subsection 6.2), the
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arrangement is only suitable tor up to 6 stage butterßies, i.e. butter:ft.ies with
64 inputs.

. A direct connection of the boards with standard connectors requires using rect-
angular connectors which have a length of 8cm [5] tor a. 64 bit connection. Thus
a board conn~ted with 8 other boards would have a. minimum length of 64cm.
Furthermore remova.l of single boards would require a large physical force due
to the number of connectors.

. If the boards are directly connected they do not fit in sta.ndard racks, because
in tacks only connections in the front a.nd back of boards are usually allowed.
If ODe puts the boards in two tacks one on top of the other a.nd preserving the
order of the boards as given in figure 4(a) ODe has to use cables to connect them.
This offers the possibility to place all connectors in a war that the boards ca.n
have reasonable size hut the cables have to be longer tha.n ODe board (minimum
length about 60cm). Otherwise the boards cannot be removed a.nymore. These
racks still do not fit in sta.ndard cabinets because there the front of all racks has
to be on ODe aide of the cabinet.

If we turn the upper rack to use sta.ndard cabinets we have a.n arrangement
similar to that in the DATIS-P machine [18]. But there the cables between
network boards have length 150cm. This is not too long tor the DATIS-P
machine which works at 16 MHz, hut it migbt be too long fot a frequency of 25
MHz needed here.

We will use a. different arrangement based on an observation how the boards &Te
connected if we cut the network in three parts as described in 6.2.

Theorem 1 11 the boards 01 each 01 the thr'ee parts are numbered with

Ip: {O, .15} -+ {O, ,3} x {O,.

then boards (1,(i,O»,...,(1,(i,3» of the fim part are only connected to boards (2,
(i,O»,..., (2, (i,3» ofthe second partforO $ i $ 3 and boards(2,(O,i»,... ,(2,(3,i»
ofthe second part are only connected to boards (3, (0, i»,..., (3, (3, i» ofthe third part
for 0 $ i $ 3.

Proof: Board (l,j),j E {O,...,15} containsnodes (1,4j) to (1,4j+3) (seetable
2). These nodes are connected to nodes (2,4j + I), 1 E {O,..., 3} because node (1, z)
is connected to nodes (2,z) and (2,z e 2) for an z E {O,... ,63}. Node (2,4j + 1),
1 E {O,..., 3} belongs to board (2,4!}/4J + I) (see table 1). Thus the first part of the
claim holds.

Board (3,j),j E {O,..., 15} contains nodes (5,j), (5,j + 16), (5,j + 32), (5,j + 48)
(see table 2). These nodes are connected to nodes (4,j + 161), 1 E {O,..., 3} because
node (4, z) is connected to nodes (5, z) and (5, z e 16) for an z E {O,..., 63}. Node
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(4,j + 16/) belangs to boa.rd (2,41 +j mod 4) (see table 1). Thus board (3,j) is con-
Dected to boards (2,41 + j mod 4), 1 = 0,...,3 and tbe second part of the claim bolds.
.

The theorem indica.tes the following arrangement: the boards of the each part are
arranged in a 4 x 4 square, the square of part 1 on top of the square of part 2, and
the square of part 3 on the fight of the square of part 2. Then an connections are
horizontal or vertica.l. In order to have the arrangement symmetric, the first and the
third square are split in two rectangles: the boards of the first part are arranged in two
rectangles on the top and on the bottom of the second square. The upper rectangle
holds rows 0,1 the lower holds rows 2,3. The boards of the third part Are arranged
in two rectangles on the fight and left of the second square. The left rectangle holds
columns 0,1 the fight holds columns 2,3. The arrangement is shown in figure 4(b). It
has several advantages.

. The boards ca.n be put in standard racks and cabinets.

. All wiring between boards is horizontal or vertical

. The arrangement ca.n even be extended for buttertlies with 9 stages when for all
parts the boards with 3 stage butterfiies are used.

A complete geometric design has not yet been worked out. If electrical wiring is
too long, one can consider using optoelectronic transmission.

Optoelectronic Transmission of Signals7
To rea.lize the network in the prototype it is necessary to transmit da.ta. &Cross Iong
distances. Therefore we check whether optoeIectronic transmission should be used.

7.1 Components tor Optical Point-to-Point Connections
Data transmission by fiber optic operates sequentially. This is in contrast to the

demand for parallel transmission between the network nodes. To improve the total
throughput ODe can use several channels of the same kind. Figure 5 shows a schematic
outline how to build up tbe point-to-point connection by optical components. In ea.ch
cycle of the network clock W} bit data are injected into tbe network. Tbey pass tbe
parallel/ serial converter on board 1, tbe optical transmitter, tbe fiber, tbe optical
receiver and tbe seria.l/parallel converter on board 2.

The necessary transmission speed ca.n be computed as follows: Like mentioned
in section 6 tbe number of multiplexed electric liDes w involves Wt = 36 (forward)
and W2 = 17 (backward) for ea.ch link (see section 6). Let t be the period of the
network clock and PI and P. the number of parallel channels in forward and backward
direction. Thus the neces8a.ry transfer rate dr in tbe optical medium for tbe way
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Figure.5: Components tor optical data transmission

forward is dr = 2. rn/(t. PI). For the war back is dr = 2. n/(t. P6). For given transfer
rates we can use this equation to obtain the number of necessary channels.

To realize optical channels with these transfer rates we have studied two possible
solutions:

First: Separate optical transmitters and receivers tor data communication Are
available up to 1.2 Gbit/s [6]. For a reasonable price we can get compact and small
modules (e.g. 15 x 15 x 60rnrn3 ) with a transmission rate of dr = 266 Mbit/s, but an
extema! P /S-converter made from ECL-chips is needed. If t = 50ns (the clock cycle
time of the network switches) then the above equations fjelds PI = 5 and Pb = 3.
Thus we need a total number of 8 sets of fiber optic cables, transmitters and receivers
for each link.

Second: The optica! unit and the P /S~nverter chip are mounted together in
a meta! cover. The Transparent Asynchronous Xmitter-receiver Interface-i:hip set
(TAXI) [6] provides a high performance transparent fiber optic 8 bit interface. Data
transfer rates are up to 125 Mbit/s and the transfer is performed with error detection.
Beca.use of the integrated P /S-converter there is a lower bound of t = BOns for the
clock period. This increases the number of bits to be transferred in parallel by a factor
of 1.6 beca.use of the 50ns clock of the network switches. In this case we obtain PI = 9
a.nd Pb = 5. Thus 14 pairs of the TAXI-chip set and logic are necessary to realize ODe
link. The logic includes an interface between network link and the TAXI chip set, the
details Are not yet worked out.

7.2 Network design based on opticallinks

We assume that the components of one link occupies a reasonable area of PCB
(e.g. 22 x 7cm2), the transceiver board. But the rosts of one pair of transceiver
boards representing one link are still high (up to 9500,- DM). Therefore we use the
o\dvantages of fiber optic only to substitute the set of longest wires. This however
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Figure 6: Opticallinks connect clusters

changes the network

Fig. 6 shows the situation if we maoke a cut through the network horizontally. It
is divided into 2. c clusters of boards. A cluster is a number of functiona.l1y asaociated
boards. In our case it includes ODe network part of depth .. E {3,4}, 2- E {8,16}
processor or memory boards and the same number of tra.nsceiver boa.rds. Beca.use
the distances within the clusters are short we avoid lang electricallinks. But then we
have ODe set of long opticallinks to connect the clusters with ea.ch other.

In the following table we compare cast and tjme fot transmitting data by electricaJ
liDes and by fiber optjc (usjns the TAXI chjp eet). ElectricaJ lines may be hngle ended
ljnes or twisted pa.ir cables. Two commonly used types of driver freoover combinatjons
a.re listed. The lengtb of electricaJ links may be increased uhng high speed trapezoidial
bus drivers [3].

Casts tor electric liDes are computed &8 folIows: 4. 128 electrical interfaces are
necessary to connect tbe tbree parts network boards witb tbe PM's and MM's (refer
to tbe wbole design in section 6).

Beca.UIe of the more compad layout shown in figure 6 additional electricallinks
may be avoided by using fiber optic. In this case the COlts of 128 paiR of transceiver
boards are listed. The technical data &re tuen from several da.t.a sheets. In general
each link between two boards adds one or two delay units of network clock. Hit is
possible to use speciallow voltage swing drivers the power dissipation can be decreued
(11] - however they &re not yet commerciallyavailable.
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The table reveals that there is a large trade-off between rosts on the oDe hand
and power dissipation and wiring overhead on the other hand. In the near future we
will test same types of electricallinks and optical wanDels in order to decide which
type of link provides the necessary throughput considering the real distances between
the boards.

Basic Software Issues8

A new architecture does not only has to have new efficient and powerful hardware, it
also has to support hardware by suitable software, especially by an operating system
with efficient resource management and by a compiler for a high-levellanguage. A
high-levellanguage called FORK has been proposed [10] that is suited for a. PRAM.
The work on a compiler already has sta.rted. The operating system still hu to be
developed.

As examples of the problems tha.t have to be solved we will present solutions for
parallel storage mana.gement and for synchronization of multiple instruction streams.
Both synchronization a.nd memory management take advantage of the multiprefix
(MP) [11] a.nd SYNC (MP without return values) commands that are supported by
hardware [2].

8.1 Parallel Storage Management

In a parallel machine that presents its user a shared global memory handling storage
management is much more complicated than in a distributed machine where each
processor has its private loca.l memory on which it acts (and allocates memory) just
like a sequential computer. In a shared memory machine several processors could try
to allocate storage at the same time.

First we consider a simple solution tor parallel storage alIocation without worrying
a.bout freeing memory. Let 8( i) be the content of memory celI i in global memory and
let cell 0 contain apointer to the first celI of free global memory. H several processors
P,. i E I want to alIocate memory of sizes m(i) they execute a multiprefix command
~IP 0, +, m(i). As a result each processor Pi receives ,,(0) + EjelJ<i m(j) and the
o:ontent of cellO is 8(0) = Eierm(j). Each processor thus receives a. pointer to its
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requested memory block and cell 0 contains apointer to the new begin of free memory.
Correct freeing is only possible if the program guarantuees that the freeing operations
are performed in reverse order to the allocating operations.

If we choose a fixed block size and a.llow processors only to allocate a number of
not necessarily subsequent blocks, the problem becomes a little bit easier. Let cell.
1 to ma.'t' contain pointers to free memory blocks and let cellOcontain apointer to
m4%. If processors Pi, i E I want to a.llocate m(i) blocks they execute MP 0, -, m(i).
Each processor Pi receives apointer to a cell .'t' = 8(0) - EiE/J<i m(j). Cells.'t',...,.'t'-
m(i) + 1 contain pointers to the m(i) memory blocks for Pi. The pointers have to be
copied. If processors want to free memory block. they execute MP O,+,m(i). Each
processor receives apointer to a cell .'t' and writes to cellS .'t',...,.'t' + m( i) - 1 the
pointers to the m( i) memory blocks it want. to free.

Tms stack mechaniam only works conectly if we prevent the machine from free-
ing wmle others are allocating and vice vers&. Tm. can be done by programming a
semaphore. ODe ca.n get rid of tms by usins a FIFO queue. Allocate and free op-
erations now tue time proportional to the number of blocks. However allocation of
memory with subsequent addreases larser than ODe block is not possible.

8.2 Synchronization Primitives

FORK provides synchronous execution of high level language commands. The runtime
of this code however is orten not predictable at compile time. In tha.t case synchro-
nization is necessary. A simple synchronization could be realized in hardware. But
several synchronizations ca.n happen simultan~usly. Thus ODe haa to provide several
synchronizations within "groups" of processors.

Suppose ea.ch processor of a group that has to be synchronized la.ter on knows the
address a of a cell in !l°bal memory. First all processors store 0 in that cello Then each
processor executes SYNC 4, +,1. The cell then containa the number of processors in
the group. The proceasors now execute the code tor the high levellanguage command
alter which they have to be synchronized. Each processor that haB finished execution
of that code executes MP a, -,I. After that it reads the content of 4 until this content
is O. Then all processors of the group Are synchronized again.

A problem that haa not been mentioned is what happens if a conftict occurs because
of one processor executing an MP on 4 and oDe loading the content of 4 at the same
time step. We avoid that by only executing MP commands in time steps with even
numbers and LOAD commands in time steps with odd numbers when synchronizing.
Our processor design supports this by a modulo ftag in the processor status ward that
is ft.ipped after each machine instructionl and with a conditional jump on the va.lue
of that ftag. H the address a is stored in register Re the code tor synchronizing haB
the form

&11 processor haYe reached this point at the same time
-~- -.

1 Remember that a1l machine inatructiona tUe equal amount. of time
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2. STORE 8.. RO,1«J

3. SYNC R., +.1

4. code for high levellanguage command

5. proceasors could reach this point at different times

6. JMP modulo clear PC,PC,RO

7. MPR.,-,l

8. LOAD R.. RO. RO

9. JMP zero Mt PC,PC,#-1

10. alt processors reach this point at the same time

If &ll processors reach liDe 5 at the same time, the synchronization overhead is 7
commands: (2), (3), (6), (6), (7), (8), (9).

Reality is somewhat worse because the LOAD in liDe 8 is delayed and therefore at
least ODe NOP has to be performed before the content of a and thus the correct zero
bit is available. In order to have liDe 8 executed always in an odd time step we have
to include two NOP commands after liDe 8.

It now ca.n happen that apart of the processors in the group reaches liDe (10) at
the same time and the rest of the group reaches liDe (10) two steps later. This gap
ca.n be closed by a second synchronization part where the processors perform a SYNC
on a cell with previous content zero, then load the new value and check whether &ll
processors have reached this point. The check will fAiI tor the "faster" processors and
succeed for the "slower" ones. If it fails processors execute two NOP's. The final
synchronization needs 7 commands: SYNC, LOAD, NOP, CMP, conditional JMP,
2NOP's. The overhead tor the synchronization is then 9 tor the first part of code and
7 tor the second part, in total 16 commands.

ODe can still argue that 16 commands is too much tor synchronizing when com-
pared to &baut 10-20 commands needed as code tor ODe high levellanguage command.
However static analysis of programs &llows compilers to reduce the number of nec-
essary synchronizations. Synchronization is only necessary at points where several
instruction streams are split and merged later on and where runtime of different
streams is not predict&ble. The FORK compiler uses this kind of analysis [10]. The
exact factor of reduction however still has to be determined in practice.
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