
On the Physical Design of PRAMs�

Ferri Abolhassan� Reinhard Drefenstedt� J�org Keller�

Wolfgang J� Paul� Dieter Scheerer�

�Universit�at des Saarlandes �CWI

Computer Science Department Dept� AA

Postfach ���� Postbus ���	�

��� Saarbr�ucken ���� GB Amsterdam

Germany The Netherlands

Abstract

The Saarbr�ucken Parallel Random Access Machine �SB�PRAM� is a scalable shared memory

machine� At the gate level it is a re�engineered version of the Fluent machine �A� G� Ranade�

S� N� Bhatt and S� L� Johnson� The Fluent Abstract Machine� In Proc� �th MIT Conference

on Advanced Research in VLSI� pp� �	
�� �	���� It uses hashing of adresses� combining

and latency hiding� A prototype with 	� processors is presently being designed� In this

paper we deal with several problems related to the physical design of this machine such as

the total number of network chips� the geometrical arrangement of boards in the network

and the VLSI realization of certain sorting arrays� We also present an extremely fast method

to rehash addresses without use of external memory�

�Research was partially supported by DFG �SFB ���� and SIEMENS AG� A preliminary version of this

paper appeared in ��	�

	

� Introduction

Parallel machines are nowadays classi�ed as multi�computers and multi�processors� In

multi�computers� processors exchange data by explicit message passing� In multi�processors�

all processors have access to a shared address space� This leads to a more comfortable pro�

gramming model�

Hardware architectures for both classes do not show much di�erence� Main stream real�

izations of scalable shared memory processors tend to have local memories as well as large

caches� Transport of cache lines between processors and cache coherence protocols can be

viewed as very sophisticated automated message passing protocols� Examples are the Stan�

ford DASH multi�processor �	�� and the ALLIANT FX� �	��� They deal in no way with

the problems of hot spots �multiple processors accessing one memory cell�� module conges�

tion or highly non�local access patterns� A consequence of this implementation is a large

variation of the memory access time depending on the access patterns of the processors�

Parallel machines which support both the programming model and the uniform timing

behaviour of a shared memory are called PRAMs �Parallel Random Access Machine� in the

theoretical literature� The problem of simulating PRAMs on processor networks has been

studied in depth �	�� 	�� ��� ����

A re�engineered version of Ranade�s Fluent machine construction ���� �	� was proven in

��� to be cost�e�ective at the gate level� even in comparison with multi�computers� This

motivated the present e�ort to design and construct a prototype� called the SB�PRAM �	��

The prototype will have 	� processors� The current designs assume a clock speed of � Mhz

for processors and � Mhz for network nodes� This results in a peak performance of ���

MIPS and MFLOPS�

We will focus in this paper on di�culties that occur in the physical design of the SB�PRAM�

In section � we give a brief overview of Ranade�s Fluent Machine and its re�engineered

version� In sections � to � we deal with realizations of fast sorting arrays� butter�y networks�

and with rehashing the address space without using secondary storage devices�

� The Fluent Machine � Re�engineered

��� PRAM Emulations

The PRAM model was introduced by Fortune and Wyllie ���� In a PRAM� N processors

work synchronously on a shared memory with unit memory access time� The access time

is independent of the access pattern� The PRAM model is widely used to study parallel

algorithms� Several variants exist� depending on whether concurrent access to a memory

cell is allowed� In the CRCW �Concurrent Read Concurrent Write� PRAM an arbitrary

number of processors can access a shared memory cell� There are several possibilities

�

to resolve write con�icts� We consider the strongest model� where the priorities of the

processors are linearly ordered� In the case of concurrent write� the processor with the

highest priority wins �priority CRCW PRAM�� However� a shared memory with unit access

time seems unrealistic with current technology� A lot of work has been done to emulate a

PRAM on a processor network� Such a network consists of N processors� memory modules

and an interconnection network�

PRAM emulations follow some general principles� First� the shared address space has to

be distributed among the memory modules� The distribution has to be done in such a way

that memory access requests are distributed almost evenly among the memory modules� no

matter what the access pattern might be� If all accessed memory addresses are distinct�

then a randomized solution to this is universal hashing� introduced by Wegman and Carter

��� and �rst used in PRAM emulations by Mehlhorn and Vishkin �	���

In order to access memory� requests are sent via the network to the appropriate memory

modules� in case of read requests answers are sent back� Hot spots could appear if several

processors concurrently access the same memory cell� This situation is handled by using a

combining network� where multiple such requests are merged into one� Although routing in

a combining network takes more e�ort� this pays o� already for small numbers of concurrent

accesses� because combining in software results in a large overhead �		��

A good example for an emulation is the Fluent Machine�

��� Fluent Machine Principles

Ranade�s Fluent Machine ���� �	� uses a butter�y network with N � �n � 	��n switches�

processors and memory modules� The links are bidirectional� A butter�y network with n�	

columns or stages is de�ned as a graph G � �V�E� with V � f�� � � � � ng � f�� � � � � �n � 	g�

For � � i � n� Node �i� x� is connected to nodes �i� 	� x� and �i� 	� x� �i�� Here� a � b

denotes an integer with a binary representation obtained by bitwise exclusive or of the

binary representation of integers a and b� We call the nodes ��� x�� � � � � �n� x� a row� and the

nodes �i� ��� � � � � �i� �n� 	� a column or stage�

The shared address space has size m� The distribution of addresses to modules is done by

a function of the form

h�x� �

O�logm�X

i��

aix
i mod P mod N � �	�

P is a prime larger thanm� a particular function is chosen randomly by choosing coe�cients

ai between � and P � 	� As each function distributes only very few access patterns in a

way that one module gets overcrowded by requests� the chosen hash function will distribute

memory tra�c well for a given application program with very high probability�

�

Phase � Phase � Phase � Phase � Phase � Phase �

r r rr r r
b b bb b b
r r
r r

� �
Z
Z
Z
ZZ� � ��

�
�
����

�
source
destination

�n

�

�

n� �

Figure 	� � Phase Routing of the Fluent Machine

The routing of requests from processors to memory modules and back is done in � phases

as shown in �gure 	� taken from ��	�� At the beginning of phase 	� all processors inject their

requests into the network� Requests consist of address and hashed address of the cell to be

accessed� of the access type �read or write� and of a data word in case of a write� During

phase 	� all requests or packets in a row are shifted to the end of the row and sorted by their

hashed address� During phase �� each request is routed to its destination row� In phase ��

the requests are shifted to their destination columns where memory access takes place� In

the last three phases� each request traverses its path in reverse direction and returns to the

processor that initiated the request�

During phase �� the requests are kept sorted� If both input bu�ers of a routing switch

contain packets� the one with the smaller hashed address proceeds� If both addresses are

identical� the two packets are combined into one�� The sorted order guarantees that all

packets destined for the same address will meet and be combined into one� The idea of

sorting could introduce additional waiting times� Consider �gure � which is taken from

��	�� Switch B cannot transmit the request it holds� because a request with destination

smaller than �� arriving on the upper input would destroy the sorted order� However� if all

requests handled by switch A take the upper output� switch B would not get any further

information and request �� would be stuck�

To avoid this� each switch that transmits a request to one output sends a GHOST message

along the other output� The GHOST carries the same address but has a special type

GHOST and no data� In �gure �� a GHOST with address �� sent by switch A would ensure

that packet �� could be sent� because future messages along the upper input all must have

addresses larger than �� due to the sorted order�

The functionality of the switches is presented here in detail because it can be used to reduce

network complexity �see section ��	��

In phases � to �� no routing decisions are made� The decisions of phases 	 to � are recorded

in �direction queues� in each switch and are used to control the behaviour of the switch in

the remaining phases�

�To compare addresses
 one needs to compare the unhashed addresses as well
 because the hash function

is not necessarily bijective�

�

����
��	

R

A

����
��	

R

B

R

���
����

���
����

���
����

XXXXXXz

���
����

XXXXXXz

����

��

�

��

Figure �� Function of Ghost Packets

Ranade proves ���� that with the hash function �	� and with the above routing algorithm�

one step of the PRAM can be emulated in time b logn with overwhelming probability� when

the bu�ers in the switches can hold b packets�

In the memory modules of the Fluent Machine the problem of secondary hashing arises�

The solution sketched in ���� blows up the size of the modules by a constant factor�

��� Re�engineering the Fluent Machine

A drawback of Ranade�s design is that processors are idle most of the time� In order to

change this� it would be necessary to pipeline the � routing phases� It is not necessary to

build six butter�y networks� because only in phases � and � the butter�y network is used�

In phases 	 and �� the rows are sorted� in phases � and �� rows are shifted� We therefore

will use two butter�y networks to realize phases � and �� use linear sorting arrays �	�� for

phases 	 and �� and use �n modules with multiple banks to omit phases � and �� A more

detailed description of the changes made can be found in ����

We realize the processors of one row by one physical processor that runs cn virtual processors

in a pipeline� We obtain a total of p � �n physical processors and N � cnp virtual

processors� Each virtual processor has its own register set in hardware� The instruction

set is similar to that of the Berkeley RISC processor �	�� each instruction takes the same

amount of time� The pipeline depth of the physical processor is adjusted to the delay of

a read request� Thus the memory access latency is hidden from the user� With the help

of the delayed load technique� c can be reduced by a factor of �� The concept of multiple

register sets in hardware to hide latency is also used in the MIT Alewife ��� and in the

TERA computer ���� it was �rst used in the Denelcor HEP �����

Also the hash function is changed� Evaluation of a polynomial of degree O�logm� is slow and

expensive in terms of hardware� We will use a linear function of the form h�x� � ax mod m�

The upper n bits of h denote the module� lower bits de�ne the local address within the

�The answer to a load instruction is assumed to be available in the next but one instruction�

�

module� Simulations show that performance with this simple function is su�cient �� and

the constant c can be bounded by �� As our processor has a load�store architecture� we can

use one multiplier for both multiply instructions and for hashing� This signi�cantly reduces

the amount of extra hardware needed for hashing� Also h is bijective� so no secondary

hashing is necessary�

In ��� some of the authors investigated cost and speed of the two designs in a formal

framework� The basic idea is to describe designs at the gate level� and to evaluate their cost

and speed as gate equivalents and gate delays� It turned out that the re�engineered design

was slightly cheaper in terms of hardware and ��� times faster than the original Fluent

Machine� As both machines have identical processors and instruction sets� this comparison

is independent of a particular benchmark�

� Sorting in Linear Arrays

To realize phase 	 of the routing algorithm� we need to sort the requests sent by a processor�

before sending them to the butter�y network for phase �� The requests arrive sequentially

and they have to be sent sequentially into phase �� Our goal is to realize the sort with a

cheap sorting device as fast as possible� The device shall be built of elements that can store

two requests and can make one comparison per cycle� Assuming that t requests arrive per

round to sort� the fastest we can achieve is to sort in time �t� which means that the �rst

output appears immediately after the last input has arrived�

The problem of sorting items that arrive sequentially has been investigated before� Leighton

gives a simple algorithm that uses t sorting elements bi�directionally connected as a one�

dimensional array �	�� p� ���� Data items enter and leave the array at the leftmost element

of the array� The algorithm works in � phases� In the �rst phase� each element accepts

an item coming from its left neighbour� and either stores the item or compares it to the

item that is currently held� The larger one proceeds to the right� the smaller one is stored�

At the end of this phase� the array contains the items in sorted order� The second phase

consists of informing all elements about the end of input by sending a tag from element

�� In the third phase� the items leave the array in sorted order� The phases can be partly

overlapped� The tag of the second phase can be attached to the last entering item� When

this item reaches its position in the sorted sequence� the tag proceeds alone� Each element

starts to send items to the left as soon as the tag has passed� Hence� the �rst item leaves the

array immediately after the last item entered the array� Subsequent items leave the array

every other cycle� because the tag needs i steps to reach element i and the item stored there

needs i steps to leave the array at element �� The algorithm runs in �t cycles� t until the

last item enters the array and �t until all items have left the array�

We use a method from ��� to improve the runtime of the algorithm� We use a global control

wire to inform all elements of the device after t cycles simultaneously about the end of

�Memory access only happens in load and store instructions
 compute instructions only use registers�

�

input� But when all elements start to send their items towards the output element �� not

all items have reached yet their �nal positions� Therefore� in the third phase all elements

also have to compare items� Smaller ones proceed further to the left� larger ones are kept

until they reach their position� The runtime of the algorithm is reduced to �t�

In order to have the algorithm perform combining� we extend the �rst element such that it

holds each item for one extra cycle before it leaves the array� In the next cycle this item

is compared with the next one to follow� If the items are identical� the �rst one is erased�

This only extends the �rst array element by some control logic� a register and a comparator

unit�

In order to realize the reverse sorting of phase �� we extend the �rst array element by a

counter that adds a tag to each item as it enters� The tag speci�es the item�s position in

the input stream� When the sorted sequence leaves the array� the tags are stored in a FIFO

queue� To realize phase �� we use a second sorting array� Answers coming from the network

are given a tag from the FIFO queue and then are sorted by the tags�

Both extensions work for arbitrary sorting devices with sequential input and output�

While we need �t cycles to sort t items� we are still able to sort pieces of length t of a

continuous stream of requests with one sorting array� In cycle �t� i� where 	 � i � t� only

the �rst i elements of the sorting array are still occupied� This means that after t cycles�

we can start to feed another piece of t items at element t� 	 into the array and reverse the

directions in the algorithm� In general� we use elements � and t � 	 alternately to feed t

items into the array�

� Reduction of Network Complexity

Network design is always di�cult� because network latency is of crucial importance for the

machine performance� The main problems are how to map network nodes onto network

chips� how to place these chips onto printed circuit boards �PCB�s� and how to arrange

these boards such that wiring between them allows one to use standard connector and

rack�cabinet technology�

��� Reducing Chip Count

The network will be built out of semi�custom chips designed in sea�of�gates technology� On

each chip we realize a u�stage butter�y network with u�u�� nodes and �u input and output

links� Assume we have a �xed pin count of W pins on each chip� In order to reach a link

width of w � bW��c� we have to choose u such that �u��w � W � hence u � log�W�w�� 	

�bW��c is the maximum possible link width because a single butter�y node already has �

inputs and outputs�� If we want to reach a �xed number of stages u� we have to choose w

such that �u��w � W � hence w � W��u���

�

Phase � Node Phase � Node

left
input

right
input

FIFO
bu�er

FIFO
bu�er

� �

� �

r r
� �
Logic�
Arithm�

�

 ��CMUX

r
� �

 ��

 ��

� �

� Dir�Queue �

� �

FIFO
bu�er

FIFO
bu�er

� �
��

�

Logic�
Arithm�

r
� �

Figure �� Data Paths of a Pair of Network Nodes

We will use a method from ��� that� starting from a given mapping of the above type� will

increase the number of nodes per chip by a factor of two without changing pin count or

reducing link widths� Furthermore� the new network built of those chips still is a butter�y

network�

Consider again a network node� As described in section �� only one packet is selected and

transmitted at each cycle� On the other outgoing link of the node� a GHOST packet is

transmitted� that is identical to the original packet except for the type� This leads to an

implementation of a node as shown in �gure �� The central multiplexer CMUX selects one

packet� the multiplexers on the outgoing links serve to replace the original request type by

GHOST on one side� The right part of the �gure shows the node for phase �� The dashed

line in the middle of the �gure shows that we can make a cut through each node that has

essentially the width of one link �plus one or two control signals��

Now� instead of taking a u�stage butter�y� we implement a �u� 	��stage butter�y on one

chip� but take only the lower half of the nodes in the �rst stage� and only the upper half

of the nodes in the last stage� An example for u � 	 is shown in �gure �� With this

implementation we still have �u input and output links� but u� 	 stages of full nodes� one

stage of upper halfs and one stage of lower halfs of nodes� totaling to u�u nodes per chip�

Hence we use twice the number of gates per chip�

Note� that in the �rst �last� network stage of Ranade�s algorithm� only one input �output�

per node is used� and that it is therefore su�cient to use lower �upper� half nodes in those

stages�

��

�	

��

�	

��

�	

��

�	
�
�
�
��

Z
Z
Z
ZZ
Chip

Figure �� Partitioning of Network Nodes for u � 	

For our prototype� the network chips will be heavily restricted by pin count� Links in the

prototype have a width of w � 	�� bits �	�� gate arrays we can a�ord are restricted to

W � ��� pins� We see that we must already send a packet in two pieces in order to be able

to implement four links on a chip� The �rst piece contains the address and the access mode�

the second piece contains the data� Because we do not want to slow down our network

further� we take u � 	� We implement a ��stage butter�y network on one chip� but take

only upper �lower� half nodes for the �rst �last� stage�

The chips still remain connected as a butter�y network ����

��� Arranging Network Boards in Three�dimensional Space

Although butter�y networks have nice properties when viewed as graphs� they are hard to

arrange physically� Vit�anyi proves that the average wire length in a butter�y network cannot

be a constant even under relaxed conditions �nodes have unit volume and arbitrary shape�

wires have zero volume� ����� Moreover� an obvious implementation leads to wiring that is

not regular and therefore not suited for an implementation with standard components�

Wise and Knight propose solutions by embedding butter�y networks on printed circuit

boards in three�dimensional space� Wise proposes to cut a u�stage butter�y network in two

parts after u�� stages ����� Each part decomposes into �u�� butter�ies with u�� stages each�

These smaller butter�ies form a complete bipartite graph� Assuming that each �u����stage

butter�y network �ts on one board� the boards can be arranged as shown in �gure ��

Knight proposes to switch to a topologically equivalent network where wiring between all

stages is identical �	��� Assume that one stage of nodes plus wiring to the next stage �ts

onto one board� He connects boards vertically with special connectors and uses a stack of

boards to implement the network�

�

�u�� � 	

	
�

�u��

� � �

� �
�

Figure �� Wise�s Arrangement of Boards

Both solutions su�er from the disadvantage that they do not scale because of the restriction

of board sizes� Furthermore� they require special technology�

Now assume that we make two cuts in the network� one after u�� stages and one after �u��

stages� Then we have three parts� each consisting of ��u�� butter�y networks� each with

u�� stages�

Theorem � We can number the butter�ies of each part from �	� 	� to ��u��� �u��� such

that butter�y �i� j� of part one only is connected to butter�ies �k� j� of part two for all k

in f	� � � � � �u��g� and that butter�y �i� j� of part two only is connected to butter�ies �i� k� of

part three for all k in f	� � � � � �u��g�

A proof of Theorem 	 can be found in �		��

The above numbering motivates an arrangement as shown in �gure � for u � �� To make the

arrangement symmetric� parts one and three have been split into two halves each� Assume

that a �u����stage butter�y network �ts onto one board� The boards of each part are

arranged in a square� the squares are arranged in a manner that all wiring between boards

is horizontal or vertical� Two example wirings are shown in �gure ��

Note that similar arrangements can be made if u is not a multiple of �� If u � �u�� 	 then

boards in part three house two �u� � 	��stage butter�ies� whereas boards in parts one and

two house u��stage butter�ies� If u � �u� � � then boards in parts one and three house two

�u� � 	��stage butter�ies�

With this method� we are able to use standard technology to put boards into racks and

staple racks into cabinets� If links are narrow� then they can leave the boards via connectors

to the backplane� the wiring can be made on the rear side of the cabinet� If links are wide�

then links can leave boards via connectors at the front of the cabinet� The links form wiring

channels between the boards� However� boards still can be removed easily� and cooling and

power supply do not collide with wires�

	�

Part �

Part �

Part � Part �

Part �

�
��

Figure �� Arrangement of Boards for u � �

For our prototype� we have to implement an �stage butter�y network� With the method

described in the previous subsection� this reduces to a ��stage butter�y network of chips�

The network boards in parts one and three contain two ��stage butter�ies � network chips��

the boards in part two contain a ��stage butter�y �	� chips�� In each part there are 	�

boards�

� Rehashing

Hash functions normally distribute memory access requests well among the memory mod�

ules� If however some memory module is requested much more than the others� latency

increases� in the worst case to a time linear in the number of processors� Then it is neces�

sary to choose a new hash function for this particular application� A solution is to interrrupt

execution of the application� choose a new hash function h�� redistribute data according to

h� and continue with the application� This is called rehashing� Lipton and Naughton show

in �	�� how to construct cases where rehashing is needed�

There might be cases where rehashing does not pay o�� e�g� when an application will �nish

shortly after detection� Then it might be better to �nish with the old hash function�

The exact bounds when to invoke rehashing depend on the particular implementation and

application� They can be examined when the prototype is available�

Rehashing looks like a simple task if each of the p physical processors has access to secondary

storage �such as disks� of sizem�p� Each virtual processor readsm�N words from the shared

memory �using the old hash function h� and stores them locally� Now we have a backup

of the complete shared memory� The hash function is switched to h� and each processor

		

writes its data back to shared memory� This solution runs asymptotically in optimal time

O�m�p�� Unfortunately the hidden constant factor is large because disks are slow compared

to processor speed� Furthermore� using additional space of size m is a waste� We show how

to detect the necessity to rehash and how to rehash fast without using secondary storage�

��� Detection

The necessity to rehash can be detected by counting the fraction of stalled cycles in the

last x cycles� If this fraction gets larger than a certain user�de�ned threshold 	�t� then

rehashing is initiated� This detection can be done by maintaining two counters COST and

COTO for the number of stalled and the number of total cycles� and a register R for storing

t� In the beginning� both counters are set to zero� If COTO reaches x� we want to check

whether

COST
COTO

�
	

t
�

To do this� we multiply COST with t and subtract COTO from it� If the result is positive�

we initiate rehashing� Afterwards� the counters are set to zero again�

This allows the user to de�ne a threshold in a wide range� and detection can be made without

�oating point operations or divisions� The value of t might depend on the application�

Typical values have to be �gured out after completion of the prototype�

��� Fast Execution

We assume that both the old and new hash function h and h� bijectively map addresses to

cells� Then the redistribution of data can be viewed as a permutation � of the addresses

while h is still used� After rehashing� address x will be mapped to cell y � h��x�� But before

rehashing� address h���y� is mapped onto cell y� Hence � � h�� � h�� Permuting a set of

data items without additional storage is normally done by splitting the permutation into

its cycles and permuting cycles one by one� If we want to do this in parallel we face two

problems� extracting the cycle structure from �� and scheduling the cycles among processors

such that work is evenly distributed� We solve these problems for the case that h and h�

both are linear functions�

Let h�x� � ax mod m and h��x� � a�x mod m where a and a� are relatively prime to m� In

Z�mZ� the numbers relatively prime to m form a multiplicative group� the group of units

���� p� 		��� It follows that a and a� can be inverted and that h and h� are bijective� Then

��x� � h���h��x�� � a��a�x mod m� As a and a� are units� b � a��a� modm also is a unit

and ��x� � bx mod m is bijective� We investigate m � �u� The group of units here is the

set of odd numbers between 	 and m� 	�

	�

For x in f�� � � � � m� 	g we de�ne j�x� � maxfkjx can be divided by �kg� Then every x in

f�� � � � � m� 	g has a unique representation x � �j�x�x� where � � j � u and x� � m��j�x�

is odd� We can now partition the set U�m� � f�� � � � � m� 	g into sets

Uk�m� � fx � U�m�jj�x� � kg � fx � U�m�jx � �kx� and x� � m��k oddg �

We apply � to an address x in Uk�m�� ��x� � bx modm � b�kx� mod m� As b and x�

are units� x � bx� modm��k also is a unit and �k x mod m � �k�bx� � rm��k� mod m �for

some r� � ��x�� Hence ��x� is an element of Uk�m�� too� We conclude that each cycle of

� is contained completely in one of the Uk�m�� Furthermore �k�x� � x��k is a bijection

from Uk�m� to U��m��k�� �k�x
�� � bx� mod m��k is a permutation on U��m��k� and for

x � Uk�m� we have ��x� � ���k ��k��k�x���� We therefore restrict our attention to the

problem of permuting odd numbers �U��m��k�� and then apply this method by using ���k
to permute Uk�m��

Note that U��m� is the set of units and hence a multiplicative group� Consider the cy�

cles of � when applied on U��m�� A cycle starting with an element x has the form

x� bx� b�x � � � � bl��x� x� Then l is the order of b in U��m�� We can conclude that all cy�

cles have the same length� which must be a power of two because the order of U��m� is a

power of �� The number of cycles 	 � jU��m�j�l then also is a power of two� Scheduling

of cycles is easy because all cycles have the same length� To obtain the structure of the

entry elements� we exploit the fact that U� is generated by �	 and �� Thus each element

of U��m� has a unique representation ��	���� � where
 � f�� 	g and � � f�� � � � � m��� 	g

���� p� 	����

Let b � ��	�f�g� Then bl � ��	�lf�lg and bl � 	 because l is the order of b� It follows that

lg � � mod m�� and hence either g � � or g is a multiple of m���l�� We substitute l by

jU��m�j�	 � m���	� and obtain that g is a multiple of 	��� With this we obtain

Theorem � For b �� �	� all elements of the form �d and ��	��d� � � d � 	��� are on

di�erent cycles� For b � �	� all elements of the form �d� � � d � 	� are on di�erent cycles�

A proof of Theorem � is straightforward and can be found in �	���

We now proceed as follows� When rehashing is invoked� we compute the order of b in U��m�

and compute the number 	 of cycles� If 	 	 N � then each virtual processor is assigned 	�N

cycles that it permutes sequentially� If there are less than N cycles� then N�	 processors

work together on one cycle� each permuting a piece of length l��N�	� � jU��m�j�N �

For each processor the �rst entry element for a cycle in U��m� can be computed from table

of values ��
i

in time O�logm�� Each subsequent entry element of a cycle in U��m� requires

time O�	�� The table can be provided to each processor in non�volatile memory� Because

there are logm sets Uk�m�� the total overhead is O��logm�� � total number of cycles�p��

The runtime of the rehashing algorithm is O�m�p� log�m��

	�

References

�	� F� Abolhassan� R� Drefenstedt� J� Keller� W� J� Paul and D� Scheerer� On the physical

design of PRAMs� In J� Buchmann� H� Ganzinger and W� J� Paul� �eds��� Informatik �

Festschrift zum 	
� Geburtstag von G�unter Hotz� pp� 	
	�� Teubner� Stuttgart �	�����

��� F� Abolhassan� J� Keller and W� J� Paul� On the cost
e�ectiveness of PRAMs� In

Proc� �rd Symp� on Parallel and Distributed Processing� pp� �
�� IEEE CS Press� Los

Alamitos �	��	��

��� F� Abolhassan� J� Keller and D� Scheerer� Optimal sorting in linear arrays with mini�

mum global control� Report CS
R����� CWI� Amsterdam� The Netherlands �	�����

��� A� Agarwal� D� Chaiken� K� Johnson et� al�� The MIT Alewife machine A large scale

distributed�memory multiprocessor� Technical Report MIT�LCS�TM
���� Massa�

chusetts Institute of Technology� Cambridge� MA �	��	��

��� R� Alverson� D� Callahan� D� Cummings� B� Koblenz� A� Porter�eld and B� Smith�

The Tera computer system� In Proc� ���
 Internat� Conf� on Supercomputing� pp�

	
�� ACM� NY �	�����

��� J� Carter and M� Wegman� Universal classes of hash functions� J� Comput� System

Sci�� ��� 	��
	�� �	�����

��� D� Cross� R� Drefenstedt and J� Keller� Reduction of network cost and wiring in

Ranade�s butter�y routing� Inform� Process� Lett�� ��� ��
�� �	�����

�� C� Engelmann and J� Keller� Simulation�based comparison of hash functions for em�

ulated shared memory� In Proc� PARLE ���� Parallel Architectures and Languages

Europe� pp� 	
		� Springer� Berlin �	�����

��� S� Fortune and J� Wyllie� Parallelism in random access machines� In Proc� �
th Symp�

on Theory of Computing� pp� 		�
		� ACM� NY �	����

�	�� A� R� Karlin and E� Upfal� Parallel hashing� An e�cient implementation of shared

memory� J� Assoc� Comput� Mach�� ��� ��
�� �	���

�		� J� Keller� Zur Realisierbarkeit des PRAM Modells� PhD thesis� Computer Science

Department� Universit!at des Saarlandes� Saarbr!ucken �	�����

�	�� J� Keller� Fast Rehashing in PRAM Emulations� In Proc� �th Symp� on Parallel and

Distributed Processing� IEEE CS Press� Los Alamitos �	�����

�	�� T� F� Knight Jr�� Technologies for low latency interconnection switches� In Proc� ����

Symp� on Parallel Algorithms and Architectures� pp� ��	
��� ACM� NY �	����

�	�� F� T� Leighton� Introduction to Parallel Algorithms and Architectures Arrays� Trees�

Hypercubes� Morgan Kaufmann Publ�� San Mateo �	�����

	�

�	�� D� Lenoski� J� Laudon� K� Gharachorloo et� al�� The Stanford DASH multiprocessor�

Comput�� ��� ��
�� �	�����

�	�� R� J� Lipton and J� F� Naughton� Clocked Adversaries for Hashing� Algorithmica� ��

���
��� �	�����

�	�� K� Mehlhorn and U� Vishkin� Randomized and deterministic simulations of PRAMs

by parallel machines with restricted granularity of parallel memories� Acta Inform��

��� ���
��� �	����

�	� D� A� Patterson and C� H� Sequin� A VLSI RISC� Comput�� ���
�	 �	����

�	�� R� Perron and C� Mundie� The Architecture of the ALLIANT FX� Computer� In

Proc� COMPCON Spring �	� pp� �������� IEEE CS Press� NY �	����

���� A� G� Ranade� How to emulate shared memory� J� Comput� System Sci�� ��� ���
���

�	��	��

��	� A� G� Ranade� S� N� Bhatt and S� L� Johnson� The Fluent Abstract Machine� In Proc�

�th MIT Conference on Advanced Research in VLSI� pp� �	
��� MIT Press� Cambridge

�	���

���� H��J� Rei�en� G� Scheja and U� Vetter� Algebra� B�I�
Wissensch�v�� Mannheim �	����

���� B� Smith� A pipelined shared resource MIMD computer� In Proc� ���� Internat� Conf�

on Parallel Processing� pp� �
� IEEE� NY �	����

���� L� G� Valiant� General purpose parallel architectures� In J� van Leeuwen �ed���

Handbook of Theoretical Computer Science� Vol� A� pp� ���
��	� Elsevier� Amsterdam

�	�����

���� P� M� B� Vit�anyi� Locality� communication and interconnect length in multicomputers�

SIAM J� Comput�� �	� ���
��� �	���

���� D� S� Wise� Compact layouts of Banyan�FFT networks� In H� T� Kung� B� Sproull

and G� Steele �eds��� Proc� CMU Conference on VLSI Systems and Computations� pp�

	�
	�� �	�	��

	�

