
Fast Rehashing in PRAM Emulations�

J�org Keller

CWI

Postbus �����

���� GB Amsterdam� The Netherlands

Abstract

In PRAM emulations� universal hashing is a well�
known method for distributing the address space
among memory modules� However� if the memory
access patterns of an application often result in high
module congestion� it is necessary to rehash by choos�
ing another hash function and redistributing data on
the �y� For the case of linear hash functions h�x� �
ax modm we present an algorithm to rehash an ad�
dress space of size m on a p processor PRAM emula�
tion in time O�m�p � logp�� The algorithm requires
O�logm� words of local storage per processor�

� Introduction

Parallel machines give their users more and more
the view of a global shared memory� This simpli�
�es parallel program design because it frees the pro�
grammer from partitioning data and from program�
ming communications in message�passing networks�
As massively parallel machines with a physical shared
memory are unrealistic	 the shared address space is
mapped onto distributed memory modules by a hash
function and accessed via a packet�switching network	
both invisible for the user� A hash function distributes
almost every memory access pattern evenly among the
memorymodules� If a particular application	 however	
requests one memory module much more frequently
than the others	 it is necessary to choose a new hash
function and redistribute data on the 
y� This is called
rehashing� Rehashing has often been neglected in the�
oretical investigations� However	 if it can be done fast	
it is an important technique to obtain the expected
performance without restarting the application�

�This research is partially supported by DFG through SFB

���� TP D�� and by NWO through NFI Project ALADDIN

under Contract No� NF ���	
�� Part of this work was done

while the author was working at Universit�at des Saarlandes�

Computer Science Dept�� Saarbr�ucken� Germany�

Rehashing is very simple if there is additional stor�
age of size at least m� Either a shadow memory or
disk space of size m�p per processor is su�cient� The
contents of the shared memory can be copied to this
additional storage	 and then written back in permuted
order� This works in time O�m�p� but is either ex�
pensive in case of shadow memory or slow in case of
disks� We are interested in rehashing without using
secondary storage� We investigate the rehashing prob�
lem in the setting of PRAM emulations�

The PRAM �parallel random access machine� �
� is
a widely used theoretical machine model for proces�
sors working synchronously on a shared memory	 with
unit memory access time� Many numerical and com�
binatorical parallel algorithms have been designed for
the PRAM ��	 �	 ���� However	 massively parallel
computers normally consist of p � �t processors and
memorymodules connected by a packet switching net�
work	 because a physical shared memory would be�
come a bottleneck� Much e�ort has been put in emu�
lating PRAMs on processor networks ���	 ��	 ���� All
these solutions are randomized� we omit the determin�
istic solutions because they use expander graphs and
are therefore nonconstructive� A second approach for
shared memory emulations uses caches to avoid using
the network� An example is the DASH multiprocessor
����� We do not consider that approach here�

To emulate a PRAM	 the shared address space is
mapped to the memory modules� Processors that
want to access a memory cell send a request across the
network to the appropriate module� Multiple threads
are run per processor to mask the network latency
��	 ��� The mapping has to guarantee that the num�
ber of requests arriving at each memory module �de�
noted as module congestion� is small for almost all
memory access patterns� Otherwise the performance
of the emulation gets very poor� This is done by using
classes of universal hash functions ���� Each function
of the class provides low module congestion for almost
every access pattern� Before running an application	
one function of the class is picked randomly� Hence	



the probability of an application using patterns that
induce high module congestion is very small�

The emulations mentioned above use polynomials
of degree O�logp�� But already Ranade mentions that
in his simulations linear functions h�x� � ax modm
are su�cient ����� The size of the shared memory is
denoted by m � �u	 a must be relatively prime to m�
The most signi�cant log p bits of the u�bit binary rep�
resentation of h�x� specify the memory module	 the
lower u� log�p� bits specify the location on that mod�
ule� Our own detailed simulations support Ranade�s
assessment of the usefulness of linear hash functions
���� In contrast to polynomials	 the linear functions bi�
jectively map addresses to memory cells	 which avoids
secondary hashing at the modules and the waste of
memory caused by it ����� They also have a shorter
evaluation time� We will therefore consider linear hash
functions�

Unfortunately	 if an application uses a memory ac�
cess pattern that leads to high module congestion	 it
tends to use this pattern several times� Then it is bet�
ter to rehash the address space� choose a new hash
function h��x� � a�x modm and redistribute the ad�
dress space according to the new hash function� If h
and h� both are bijective	 then the redistribution is a
permutation of the contents of the memory cells� It
can also be expressed as a permutation � of the ad�
dresses while still using h� This allows to formulate the
rehashing algorithm as a PRAM program to permute
an array of items according to ��

The permutation problem on PRAMs was inves�
tigated by Aggarwal	 Chandra and Snir ���� How�
ever	 their permutation must be �xed� If we con�
sider the hash functions themselves as permutations of
f�� � � � �m��g	 then we could think of choosing a start
hash function h� and a �xed permutation � and gen�
erate other hash functions hi � ��hi�� � �i�h� when
rehashing for the i�th time� As however the group of
units in Z�mZ is not cyclic if m is a power of two
���	 p� ����	 the choice of new hash functions would
be restricted� This argument even holds for arbitrary
permutations	 as the symmetric group Sn is not cyclic
for n � �� Hence we must deal with a permutation �
that is not �xed�

We present an algorithm to permute m data items
on a PRAM emulation with p processors and memory
modules in time O�m�p� logp� if the permutation is
a linear function� The algorithm does not require any
global storage and can therefore be used to rehash the
address space of the PRAM emulation�

In section � we provide facts and notations to be
used later on� In section � we present the rehashing

algorithm and analyze its runtime and space complex�
ity� In section � we show how to decide when to invoke
the rehashing algorithm� In section � we show that an
obvious simpli�cation of the rehashing algorithm will
probably be slow due to long cycles�

� Linear permutations

��� Form of permutation �

We want to express the rehashing problem as a per�
mutation of addresses while still using the hash func�
tion h� If we do this	 we can redistribute the address
space by executing the PRAM program to permute
the addresses	 and then switch the hash function to
h�� Consider an arbitrary address x� Before rehash�
ing	 x is mapped to cell h�x�	 after rehashing it will
be mapped to cell x� � h��x�� Before rehashing	 ad�
dress y � h���x�� is mapped to cell x�� Hence	 the re�
distribution can be expressed as permuting addresses
according to ��x� � y�

In Z�mZ	 the numbers relatively prime to m form
a multiplicative group	 the group of units ���	 p� �����
It follows that a and a� can be inverted and that h and
h� are bijective� Then

��x� � h���h��x�� � a��a�x modm� ���

As a and a� are units	 b � a��a� modm also is a
unit and ��x� � bx modm is bijective� We investigate
m � �u� The group of units here is the set of odd
numbers between � and m � ��

��� Structure of permutation �

We want to permute the addresses without using
secondary storage� This can be done by splitting per�
mutation � into its cycles C�� C�� � � �	 distributing the
cycles among the processors	 and then having each
processor permute its assigned cycles sequentially� A
processor needs only local space to bu�er one item if
it permutes a cycle sequentially�

To follow this idea	 we need to explore the structure
of �� For each cycle	 we need to know an entry element
and its length� The length is necessary to schedule the
cycles among the processors	 as the time to permute
a cycle is proportional to its length� Fortunately	 the
structure of linear permutations is very regular�

For x in f�� � � � �m � �g we de�ne j�x� �
maxfkjx can be divided by �kg� Then every x in
f�� � � � �m��g has a unique representation x � �j�x�x�



where � � j � u and x� � m��j�x� is odd� We can
now partition the set U �m� � f�� � � � �m� �g into sets

Uk�m� � fx � U �m�jj�x� � kg

� fx � U �m�jx � �kx� and x� oddg �

We apply � to an address x in Uk�m�� ��x� �
bx modm � b�kx� mod m� As b and x� are units	
�x � bx� modm��k also is a unit and �k�x modm �
�k�bx� � rm��k� modm �for some r� � ��x�� Hence
��x� is an element of Uk�m�	 too� We conclude that
each cycle of � is contained completely in one of the
Uk�m�� Furthermore �k�x� � x��k is a bijection from
Uk�m� to U��m��k�	 �k�x�� � bx� mod m��k is a per�
mutation on U��m��k� and for x � Uk�m� we have
��x� � ���k ��k��k�x���� We therefore restrict our
attention to the problem of permuting odd numbers
�U��m��k�� and then apply this method by using ���k

to permute Uk�m�� Note that U��m� is the set of units
and hence a multiplicative group� Consider the cycles
of � when applied on U��m�� A cycle starting with an
element x has the form x� bx� b�x � � � � bl��x� x� Then l
is the order of b in U��m�� We can conclude that all
cycles have the same length	 which must be a power of
two because the order of U��m� is a power of �� The
number of cycles 	 � jU��m�j�l then also is a power
of two�

We call x the entry element of the cycle and denote
the cycle with entry element x by C�x�� Note that
each element of a cycle can be chosen to be the entry
element� We try to �nd a set of entry elements ci	
i � �� � � � � 	 � �	 such that C�ci� �� C�ck� for i �� k
and that all cycles together span U��m�� The following
Lemma makes sure that there is such a set where the
entry elements of the cycles have a very regular form�

Lemma � If b �� ��� then the elements �k and
�����k� where � � k � 	��� are all on di�erent cycles�
If b � ��� then the elements �k� where � � k � 	� are
all on di�erent cycles�

Proof� U��m� is generated by �� and � ���	
p� ����� Each x in U��m� thus has a unique repre�
sentation x � �������

�

modm	 where 
 � f�� �g and

� � f�� � � � �m��� �g� Let b � �������

�

� If b � � or
b � ��	 then the result is straightforward�

Let us now consider that b �� f��� �g and therefore
that �� �� �� We have to show that for every k� v �
f�� � � � � 	��� �g and any g � f�� � � � � l� �g	 �k �� bg�v

if k �� v and �����k �� bg�v� The �rst inequality
is equivalent to �k�v �� bg � With b � �������

�

	 we
obtain �k�v �� ����g��g�

�

� As � � jk � vj � 	��	 we
have the desired property if �� is a multiple of 	���

The second inequality is equivalent to �����k�v �
����g��g�

�

� In order to meet ���� � ����g� 	 g has to
be odd	 especially not equal to zero� But if �� is a mul�
tiple of 	��	 then �g�

�

can never equal �k�v because
� � jk � vj � 	���

We �nish the proof by showing that �� �� � is a
multiple of 	��� Consider bl	 which equals � mod m
because l is the order of b� With the above repre�
sentation we obtain ����l��l�

�

� � modm� It fol�
lows that l�� � � mod m��� This is equivalent to
�� � � modm���l�	 because l is a power of two� As
l � jU��m�j�	 � �m����		 we obtain �� � � mod 	���
Therefore �� must be a multiple of 	��� �

��� Working with multi�threaded proces�
sors

Assume that the time to access a shared memory
cell via the network is L� In order to hide this latency
from the user	 each processor runs L threads� Each
thread has its own register set� The threads are ex�
ecuted in a round�robin manner with one instruction
per turn� The processors are pipelined with pipeline
depth L� Hence every L cycles	 each thread has exe�
cuted another instruction� We will call the N � Lp
threads of the emulation virtual processors� We as�
sume N to be a power of two�

Consider a problem with sequential time complex�
ity T 	 which is also called work� If it can be com�
pletely parallelized on N virtual processors	 then it
needs T�N steps on a p�processor PRAM emulation	
each taking L cycles� Thus the runtime will be T�p�
We will proceed in the same way with the rehashing
problem�

� Algorithm

We will now describe the permutation algorithm for
a PRAM with N processors� The algorithm works in
rounds	 in each round one Uj�m� is permuted	 as long
as jUj�m�j � N � All Uj�m� with jUj�m�j � N are
handled together in a �nal round� We will distinguish
l and 	 in di�erent Uj�m� by an index j�

To permute one Uj�m�	 we have each processor per�
mute 	j�N cycles sequentially if 	j � N � If there
are fewer than N cycles	 then N�	j processors work
together to permute one cycle� We split each cycle
in pieces of size N�	j	 each piece is permuted in one
step� Permuting a cycle piece after piece is somewhat
tricky	 because the virtual processor that picked the
last element of the piece may store it only if another
processor has picked the �rst element of the next piece�



Now	 consider the �nal round� jUj�m�j � m��j��

is less than N for j � log�m�N � � f andP
j�f jUj�m�j � N � �� We split the cycles in these

Uj�m� completely and obtain N � � pieces consisting
of single cells	 that can be permuted in a single step�

We ensure with a preprocessing phase that each
processor can �nd the entry elements of its assigned
cycles and pieces in constant time�

��� Preprocessing phase

The preprocessing phase has to provide the proces�
sors with 	j and lj for all j	 and with the entry el�
ements of their assigned cycles and pieces of cycles�
We assume that multiplication and shifts of integers
and blog��x�c for positive integers x can be computed
in one instruction� The preprocessing phase works
only on processors� local memories� Therefore	 we will
not run multiple threads during the precomputation
phase� We assume that physical processor x will run
virtual processors x� x�p� � � � � x��L���p during the
rehashing phase�

The computation of lj and 	j has to be done once
per physical processor and is identical for all proces�
sors� We compute a table of b�

i

for � � i � u by
successively computing b�

i��

� b�
i

	 b�
i

� We obtain
the lj by checking whether b�

i

modm��j equals �� As
the lj are decreasing with increasing j	 we have to
traverse the table only once� The 	j are obtained as
jUj�m�j�lj �

To compute entry elements	 we build up a ta�
ble of values ��

i

similarly to the table of b�
i

� Each
physical processor x computes �x as

Q
xi��

��
i

	 if
�xlogp��� � � � � x�� is the binary representation of x�
With the help of this value and the table	 the entry
elements for each virtual processor run on this phys�
ical processor can be computed in constant time per
entry element	 for an appropriate assignment of cycles
to processors�

For the �nal phase	 we split each cycle completely
and assign each processor one element to move� This
can be done in constant time�

��� Analysis

The preprocessing phase takes time O�logm � L��
If we only consider bounded�degree networks	 then
L � ��logp�� Moreover	 there are emulations with
L � ��log p� ��	 ���� For m polynomial in p	 logm �
��log p� and hence the time for the preprocessing
phase is ��log p�� The space needed for each physi�
cal processor also is ��log p��

The rehashing phase is completely parallelized�
The total work T � ��m� is distributed evenly and
hence the runtime is O�m�p� due to subsection ����
The rehashing phase needs O�L� � O�log p� space per
physical processor�

The total runtime is O�m�p � log p�� For m �
p logp	 this is O�m�p�	 which is optimal�

� Detection

When using the algorithm for rehashing in a PRAM
emulation	 we encounter the problem of automatically
detecting the necessity to rehash� A complete solution
to this problem would consist of predicting the address
trace of the remaining program part	 computing the
distributions with and without rehashing and comput�
ing from this the runtimes Tb and Ta	 respectively� If
the time to rehash the address space is Tr	 then re�
hashing is useful if Tb � Tr � Ta�

However	 this prediction is often impossible because
of future input or it would take too much time to com�
pute Tb and Ta	 even if we perform it only every x
cycles to predict the next x cycles�

To avoid prediction	 we take advantage of the regu�
lar structure of programs� A lot of applications spend
most of their time in loops� Hence	 future performance
can be guessed by observing current performance� A
simple approach consists of counting the fraction of
stalled cycles in the last x cycles� If this fraction gets
larger than a certain user�de�ned threshold ��t	 then
rehashing is initiated� This detection can be done by
maintaining two counters COST and COTO for the
number of stalled and the number of total cycles	 and
a register for storing t� In the beginning	 both coun�
ters are set to zero� If COTO reaches x	 we want to
check whether

COST
COTO

�
�

t
�

To do this	 we multiply COST with t and subtract
COTO from it� If the result is positive	 we initiate
rehashing� Afterwards	 the counters are set to zero
again�

This allows the user to de�ne a threshold in a wide
range	 and detection can be made without 
oating
point operations or divisions� The value of t might
depend on the application and on the particular im�
plementation of the rehashing algorithm�



� Simpli�cation of the algorithm

One might think about simplifying the algorithm
for rounds where there are less than N cycles� In�
stead of having several processors permuting one cy�
cle	 one could use only 	j processors� The runtime
of this round then will increase from 	jlj�N to lj � If
this does not happen to often and lj is not too large	
the loss in runtime would be quite small� However	
Theorem � shows that the probability of a small loss
of performance is quite small�

Theorem � Let T� and T� be the runtimes of the
original and the simpli	ed algorithm for a randomly
chosen b� Then

Prob�T��T� � �� � ���N ���

for any real number � with � � � � N�
�

After choosing an element b	 the quotient T��T�
can be computed in time O�logm�� One might think
to increase Prob�T��T� � �� by repeatedly choosing
b until T��T� � � or until a time bound	 e�g� m�p	 is
reached� However	 this would a�ect the random choice
of a new hash function and should not be done�

The proof of Theorem � relies on the distribution
of orders of elements in U��m�� This distribution is
given in the following Lemma ��

Lemma � If we randomly choose an element b of
U��m�� then its order can be �j � where � � j � u� ��
Furthermore�

Prob�ord�b� � �j� �

�
���u�j�� if j �� �
���u�� if j � ��

���

Proof� As the order of U��m� is �u��	 the order of
an element b has to be a power of two because it has
to divide the group�s order� As U��m� is not cyclic
���	 p� ����	 the order of b can be at most �u���

The group U��m�	 which is the group of units in
Z��uZ	 is isomorphic to the product U � 
 U �� �
�f�� �g��mod ��
�f�� � � � � �u����g�� mod �u��� by
an isomorphism 
 ���	 p� ����� The order of an ele�
ment b in U��m� with 
�b� � �b�� b�� is determined
by the order of b� in U �� if b� �� �	 and by the or�
der of b� in U � otherwise� U �� is cyclic and therefore
the number of elements in U �� with order �j equals
���j� �the Euler function� ���	 p� ����� If b� �� � and
hence ord�b�� � �	 there are two elements 
����� b��
and 
����� b�� in U��m� with order ord�b��� If b� � �
and hence ord�b�� � �	 there are are two elements


����� �� and 
����� �� in U��m� with orders � and �	
respectively� It follows that the number of elements in
U��m� with order �j is ����j� if j � �	 ����� � � if
j � �	 and � if j � ��

For a randomly chosen element b in U��m� we can
now de�ne Prob�ord�b� � �j� as the quotient of the
number of elements in U��m� with order �j and the
order of U��m�� With ��P r� � �P � ��P r�� for a
prime P and an integer r ���	 p� ����	 Equation ���
follows� �

Proof of Theorem �� We will prove the Theo�
rem by computing T�	 a lower bound B on T�	 and
Prob�B�T� � ��� Then we obtain

Prob�T��T� � �� � �� Prob�T��T� � ��

� �� Prob�B�T� � �� � ���

We measure the runtime in number of movements
per processor� In the original algorithm	 this is
jU��m�j�N for all stages but the last one	 where it
is �� Hence

T� � ��

u�logN��X
j��

jUj�m�j�N � �u�N �

In the simpli�ed algorithm	 the runtime increases
to lj in stages where 	j � N � Hence

T� � � �

u�logN��X
j��

max�jUj�m�j�N� lj� � ���

From lj�� � lj��	 it follows that lj � l���
j� We will

assume that l� � �x� We also know that jUj�m�j �
�u�j��� We bound T� from below by putting these
facts into Equation ����

T� � � �

u�logN��X
j��

max��u�j���logN � �x�j� �

If x � u���logN 	 then the maximumalways takes
the left term�s value	 and it follows that T� � T�� If
x � u � logN 	 then the maximum always takes the
right term�s value	 and

T� � � � �x�� � �x�u�logN�� � ���

If u � logN � �	 then �x�u�logN�� � �x and we
can simplify Equation ��� to T� � �x�

With this we have a lower bound B on T� with

B �

�
�x if x � u� logN
T� if x � u� �� logN �



We use B to compute Prob�B�T� � ��� B�T� �
� can only happen if x � u � logN 	 because B �
T� otherwise� As B�T� � �x��u�logN 	 the condition
B�T� � � is equivalent to x � log � � u � logN � ��
With ord�b� � l� � �x	 we get

Prob�B�T� � �� � Prob�x � ��

�
u��X

j����

Prob�ord�b� � �j�

�

�
�� ���N if � � N�

� otherwise �

���

By combining Equations ��� and ���	 we prove the
claimed Equation ��� of the Theorem� �

� Conclusions

PRAM emulations that use linear hash functions
can be rehashed in optimal time� The algorithm
does not require secondary storage devices like hard
disks� The computations only require multiplication
and shifts of integers at instruction level� Only for
the detection of rehashing two counters are needed�
The counter COTO is normally present in the sys�
tem as a timer	 the counter COST can be realized
in software� One can modify the compiler to in�
crease a register R by the number of executed in�
structions at the end of each basic block� This gives
COST � COTO � R� Therefore the rehashing al�
gorithm can be implemented without any hardware
changes�

The practical usefulness of rehashing has not yet
been tested	 because there is no working prototype of
a PRAM emulation� However	 Lipton and Naughton
���� construct programs that use timers to measure
emulation times of PRAM steps and base their future
behaviour on these times� These programs are called
�clocked adversaries and they lead provably to bad
distributions of requests and hence to long runtimes�
This hints that rehashing will be needed in practice�

The concept of rehashing will be implemented in
the SB�PRAM ���	 the prototype of the PRAM emu�
lation described in ����

It is still an open problem whether on�line rehash�
ing is possible� By on�line rehashing	 we understand
that c steps of the PRAM application and c steps of
the rehashing procedure can be executed alternately
for the time span of rehashing� Currently	 the PRAM
application has to be stopped while rehashing the ad�
dress space�

Acknowledgements

I am very thankful to Dany Breslauer for sugges�
tions about the choice of entry elements and to Mar�
tin Dietzfelbinger for many stimulating discussions� I
also want to thank Stefan Ellwert and Volker M!uller
for providing some help in algebraic notation�

References

��� F� Abolhassan	 R� Drefenstedt	 J� Keller	 W� J�
Paul and D� Scheerer	 On the physical design of
PRAMs� Comput� J�	 to appear�

��� F� Abolhassan	 J� Keller	 and W� J� Paul� On the
cost�e�ectiveness of PRAMs� In Proc� 
rd Symp�
on Parallel and Distributed Processing	 pp� ����
IEEE	 �����

��� A� Aggarwal	 A� K� Chandra	 and M� Snir� On
communication latency in PRAM computations�
In Proc� �st Symp� on Parallel Algorithms and
Architectures	 pp� ������ ACM	 ��
��

��� S� G� Akl� The Design and Analysis of Parallel
Algorithms� Prentice�Hall	 ��
��

��� R� Alverson	 D� Callahan	 D� Cummings	
B� Koblenz	 A� Porter�eld	 and B� Smith� The
Tera computer system� In Proc� ���
 Internat�
Conf� on Supercomputing	 pp� ���� ACM	 �����

��� J� Carter and M� Wegman� Universal classes of
hash functions� J� Comput� System Sci�	 �
�����
���	 �����

��� C� Engelmann and J� Keller� Simulation�based
comparison of hash functions for emulated shared
memory� In Proc� PARLE ��
� Parallel Architec�
tures and Languages Europe	 pp� ����� Springer
LNCS	 �����

�
� S� Fortune and J� Wyllie� Parallelism in random
access machines� In Proc� �
th Symp� on Theory
of Computing	 pp� ������
� ACM	 ���
�

��� A� Gibbons and W� Rytter� E�cient Parallel Al�
gorithms� Cambridge University Press	 ��

�

���� A� R� Karlin and E� Upfal� Parallel hashing� An
e�cient implementationof shared memory� J� As�
soc� Comput� Mach�	 ���
���
��	 ��

�



���� R� M� Karp and V� L� Ramachandran� A survey of
parallel algorithms for shared�memory machines�
In J� van Leeuwen �Ed��	 Handbook of Theoretical
Computer Science� Vol� A	 pp� 
������� Elsevier	
�����

���� D� Lenoski	 J� Laudon	 K� Gharachorloo	 W��D�
Weber	 A� Gupta	 J� Hennessy	 M� Horowitz	 and
M� S� Lam� The Stanford DASH multiprocessor�
Comput�	 �����������	 �����

���� R� J� Lipton and J� F� Naughton� Clocked adver�
saries for hashing� Algorithmica	 ���������	 �����

���� K� Mehlhorn and U� Vishkin� Randomized and
deterministic simulations of PRAMs by parallel
machines with restricted granularity of parallel
memories� Acta Inform�	 ����������	 ��
��

���� A� G� Ranade� How to emulate shared memory�
J� Comput� System Sci�	 ����������	 �����

���� A� G� Ranade	 S� N� Bhatt	 and S� L� Johnson�
The Fluent Abstract Machine� In Proc� �th MIT
Conf� on Advanced Research in VLSI	 pp� �����	
��

�

���� H��J� Rei�en	 G� Scheja	 and U� Vetter� Algebra�
B�I��Wissensch�v�	 �nd edition	 ��
��


