Fast Rehashing in PRAM Emulations*

Jorg Keller
CWI
Postbus 94079
1090 GB Amsterdam, The Netherlands

Abstract

In PRAM emulations, universal hashing is a well-
known method for distributing the address space
among memory modules. However, if the memory
access patterns of an application often result in high
module congestion, it 1s necessary to rehash by choos-
g another hash function and redistributing data on
the fly. For the case of linear hash functions h(zx) =
axr mod m we present an algorithm to rehash an ad-
dress space of size m on a p processor PRAM emula-
tion in time O(m/p + logp). The algorithm requires
O(logm) words of local storage per processor.

1 Introduction

Parallel machines give their users more and more
the view of a global shared memory. This simpli-
fies parallel program design because it frees the pro-
grammer from partitioning data and from program-
ming communications in message—passing networks.
As massively parallel machines with a physical shared
memory are unrealistic, the shared address space is
mapped onto distributed memory modules by a hash
function and accessed via a packet-switching network,
both invisible for the user. A hash function distributes
almost every memory access pattern evenly among the
memory modules. If a particular application, however,
requests one memory module much more frequently
than the others, it is necessary to choose a new hash
function and redistribute data on the fly. This is called
rehashing. Rehashing has often been neglected in the-
oretical investigations. However, if it can be done fast,
it is an important technique to obtain the expected
performance without restarting the application.

*This research is partially supported by DFG through SFB
124, TP D4, and by NWO through NFI Project ALADDIN
under Contract No. NF 62-376. Part of this work was done
while the author was working at Universitdt des Saarlandes,
Computer Science Dept., Saarbriicken, Germany.

Rehashing is very simple if there is additional stor-
age of size at least m. Fither a shadow memory or
disk space of size m/p per processor is sufficient. The
contents of the shared memory can be copied to this
additional storage, and then written back in permuted
order. This works in time O(m/p) but is either ex-
pensive in case of shadow memory or slow in case of
disks. We are interested in rehashing without using
secondary storage. We investigate the rehashing prob-
lem in the setting of PRAM emulations.

The PRAM (parallel random access machine) [8] is
a widely used theoretical machine model for proces-
sors working synchronously on a shared memory, with
unit memory access time. Many numerical and com-
binatorical parallel algorithms have been designed for
the PRAM [4, 9, 11]. However, massively parallel
computers normally consist of p = 2! processors and
memory modules connected by a packet switching net-
work, because a physical shared memory would be-
come a bottleneck. Much effort has been put in emu-
lating PRAMs on processor networks [10, 14, 15]. All
these solutions are randomized; we omit the determin-
istic solutions because they use expander graphs and
are therefore nonconstructive. A second approach for
shared memory emulations uses caches to avoid using
the network. An example is the DASH multiprocessor
[12]. We do not consider that approach here.

To emulate a PRAM, the shared address space is
mapped to the memory modules. Processors that
want to access a memory cell send a request across the
network to the appropriate module. Multiple threads
are run per processor to mask the network latency
[2, 5]. The mapping has to guarantee that the num-
ber of requests arriving at each memory module (de-
noted as module congestion) is small for almost all
memory access patterns. Otherwise the performance
of the emulation gets very poor. This is done by using
classes of universal hash functions [6]. Each function
of the class provides low module congestion for almost
every access pattern. Before running an application,
one function of the class is picked randomly. Hence,

the probability of an application using patterns that
induce high module congestion is very small.

The emulations mentioned above use polynomials
of degree O(logp). But already Ranade mentions that
in his simulations linear functions h(z) = axz mod m
are sufficient [16]. The size of the shared memory is
denoted by m = 2%, a must be relatively prime to m.
The most significant log p bits of the u-bit binary rep-
resentation of h(x) specify the memory module, the
lower u —log(p) bits specify the location on that mod-
ule. Our own detailed simulations support Ranade’s
assessment of the usefulness of linear hash functions
[7]. In contrast to polynomials, the linear functions bi-
jectively map addresses to memory cells, which avoids
secondary hashing at the modules and the waste of
memory caused by it [15]. They also have a shorter
evaluation time. We will therefore consider linear hash
functions.

Unfortunately, if an application uses a memory ac-
cess pattern that leads to high module congestion, it
tends to use this pattern several times. Then it is bet-
ter to rehash the address space: choose a new hash
function h'(z) = o’z mod m and redistribute the ad-
dress space according to the new hash function. If A
and h’ both are bijective, then the redistribution is a
permutation of the contents of the memory cells. It
can also be expressed as a permutation 7 of the ad-
dresses while still using &. This allows to formulate the
rehashing algorithm as a PRAM program to permute
an array of items according to 7.

The permutation problem on PRAMs was inves-
tigated by Aggarwal, Chandra and Snir [3]. How-
ever, their permutation must be fixed. If we con-
sider the hash functions themselves as permutations of
{0,...,m—1}, then we could think of choosing a start
hash function hy and a fixed permutation = and gen-
erate other hash functions h; = Toh;_1 = 7t ohgy when
rehashing for the i-th time. As however the group of
units in Z/mZ is not cyclic if m is a power of two
[17, p. 124], the choice of new hash functions would
be restricted. This argument even holds for arbitrary
permutations, as the symmetric group S, is not cyclic
for n > 2. Hence we must deal with a permutation =
that is not fixed.

We present an algorithm to permute m data items
on a PRAM emulation with p processors and memory
modules in time O(m/p + logp) if the permutation is
a linear function. The algorithm does not require any
global storage and can therefore be used to rehash the
address space of the PRAM emulation.

In section 2 we provide facts and notations to be
used later on. In section 3 we present the rehashing

algorithm and analyze its runtime and space complex-
ity. In section 4 we show how to decide when to invoke
the rehashing algorithm. In section 5 we show that an
obvious simplification of the rehashing algorithm will
probably be slow due to long cycles.

2 Linear permutations
2.1 Form of permutation =

We want to express the rehashing problem as a per-
mutation of addresses while still using the hash func-
tion h. If we do this, we can redistribute the address
space by executing the PRAM program to permute
the addresses, and then switch the hash function to
h'. Consider an arbitrary address z. Before rehash-
ing, « is mapped to cell h(x), after rehashing it will
be mapped to cell ' = h'(x). Before rehashing, ad-
dress y = h=1(2') is mapped to cell #’. Hence, the re-
distribution can be expressed as permuting addresses
according to w(z) = y.

In Z/mZ, the numbers relatively prime to m form
a multiplicative group, the group of units [17, p. 119].
It follows that @ and a’ can be inverted and that h and

h' are bijective. Then

7(x) = h_l(h/(a:)) =a'd'z modm. (1)

Lo’ mod m also is a

As a and a' are units, b = a~
unit and #(x) = bz mod m is bijective. We investigate
m = 2¥. The group of units here 1s the set of odd

numbers between 1 and m — 1.
2.2 Structure of permutation 7

We want to permute the addresses without using
secondary storage. This can be done by splitting per-
mutation 7 into its cycles Cy, (s, .. ., distributing the
cycles among the processors, and then having each
processor permute its assigned cycles sequentially. A
processor needs only local space to buffer one item if
it permutes a cycle sequentially.

To follow this idea, we need to explore the structure
of w. For each cycle, we need to know an entry element
and its length. The length is necessary to schedule the
cycles among the processors, as the time to permute
a cycle is proportional to its length. Fortunately, the
structure of linear permutations is very regular.

For z in {0,...,m — 1} we define j(z) =
max{k|z can be divided by 2¥}. Then every z in
{0,...,m—1} has a unique representation x = 2/(*)z’

where 0 < j < v and 2’ < m/2j(x) is odd. We can
now partition the set U(m) = {0,...,m— 1} into sets

Up(m) = {zxeUm)j(z) =k}
= {zelUm)x= 264" and 2’ odd}

We apply 7 to an address z in Up(m). w(x) =
brx modm = 2%z’ mod m. As b and z’ are units,
& = bz’ mod m/2* also is a unit and 2% mod m =
28 (bz' — rm/2%) mod m (for some r) = w(x). Hence
w(x) is an element of Ui (m), too. We conclude that
each cycle of 7 is contained completely in one of the
Uy (m). Furthermore ¢¢(x) = z/2* is a bijection from
Uk (m) to Us(m/2%), mp(2') = bz’ mod m/2* is a per-
mutation on Up(m/2%) and for = € U(m) we have
w(x) = qf)];l(ﬁk(d)k(l‘))) We therefore restrict our
attention to the problem of permuting odd numbers
(Ug(m/2%)) and then apply this method by using qb;l
to permute Uy (m). Note that Up(m) is the set of units
and hence a multiplicative group. Consider the cycles
of m when applied on Up(m). A cycle starting with an
element z has the form «, bz, 0%z ..., 6" 'z, z. Then {
is the order of b in Uy(m). We can conclude that all
cycles have the same length, which must be a power of
two because the order of Up(m) is a power of 2. The
number of cycles o = |Ug(m)|/{ then also is a power
of two.

We call ¢ the entry element of the cycle and denote
the cycle with entry element # by C(z). Note that
each element of a cycle can be chosen to be the entry
element. We try to find a set of entry elements ¢;,
i =0,...,0 — 1, such that C(¢;) # C(cp) for i # k
and that all cycles together span Ug(m). The following
Lemma makes sure that there is such a set where the
entry elements of the cycles have a very regular form.

Lemma 1 If b # —1, then the elements 5% and
(=1)5%, where 0 < k < 0/2, are all on different cycles.
Ifb = —1, then the elements 5*, where 0 < k < o, are
all on different cycles.

Proof: Uy(m) is generated by —1 and 5 [17,
p. 124]. Each x in Uy(m) thus has a unique repre-
sentation z = (—1)*5% mod m, where o € {0,1} and
o €{0,...,m/4—1}. Let b= (=1)P5°". Ifb=1or
b= —1, then the result is straightforward.

Let us now consider that b & {—1,1} and therefore
that 8 # 0. We have to show that for every k,v €
{0,...,0/2—1} and any g € {0,...,1— 1}, 5% #£ b95Y
if & # v and (—1)5% # b95Y. The first inequality
is equivalent to 5¥~V £ b9. With b = (—1)5551, we
obtain 5F = £ (=1)9759%" As 0 < |k — v| < ¢/2, we
have the desired property if 4’ is a multiple of o/2.

The second inequality is equivalent to (—1)5¥~¥ =
(—1)955951. In order to meet (—1) = (—1)%?, g has to
be odd, especially not equal to zero. But if 3 is a mul-
tiple of /2, then 598" can never equal 5~V because
0< |k —v|<a/2.

We finish the proof by showing that 8/ # 0 is a
multiple of ¢/2. Consider b', which equals 1 mod m
because [is the order of . With the above repre-
sentation we obtain (—1)155151 = 1l modm. It fol-
lows that /3 = 0mod m/4. This is equivalent to
3" = 0 mod m/(4!), because [is a power of two. As
= |Uy(m)|/o = (m/2)/c, we obtain §' = 0 mod ¢/2.
Therefore 8/ must be a multiple of o /2. a

2.3 Working with multi-threaded proces-
sors

Assume that the time to access a shared memory
cell via the network is L. In order to hide this latency
from the user, each processor runs L threads. Each
thread has its own register set. The threads are ex-
ecuted in a round-robin manner with one instruction
per turn. The processors are pipelined with pipeline
depth L. Hence every L cycles, each thread has exe-
cuted another instruction. We will call the N = Lp
threads of the emulation wirtual processors. We as-
sume N to be a power of two.

Consider a problem with sequential time complex-
ity 7', which 1s also called work. If it can be com-
pletely parallelized on N virtual processors, then it
needs T'/N steps on a p-processor PRAM emulation,
each taking L cycles. Thus the runtime will be T'/p.
We will proceed in the same way with the rehashing
problem.

3 Algorithm

We will now describe the permutation algorithm for
a PRAM with N processors. The algorithm works in
rounds, in each round one U;(m) is permuted, as long
as |U;(m)] > N. All U;(m) with |U;(m)| < N are
handled together in a final round. We will distinguish
{ and ¢ in different U;(m) by an index j.

To permute one U; (m), we have each processor per-
mute o;/N cycles sequentially if o; > N. If there
are fewer than N cycles, then N/o; processors work
together to permute one cycle. We split each cycle
in pieces of size N/o;, each piece is permuted in one
step. Permuting a cycle piece after piece is somewhat
tricky, because the virtual processor that picked the
last element of the piece may store it only if another
processor has picked the first element of the next piece.

Now, consider the final round. |U;(m)| = m/2/+!
is less than N for j > log(m/N) = f and
Y5 [U(m)| = N — 1. We split the cycles in these
Uj(m) completely and obtain N — 1 pieces consisting
of single cells, that can be permuted in a single step.

We ensure with a preprocessing phase that each
processor can find the entry elements of its assigned
cycles and pieces in constant time.

3.1 Preprocessing phase

The preprocessing phase has to provide the proces-
sors with o; and [; for all j, and with the entry el-
ements of their assigned cycles and pieces of cycles.
We assume that multiplication and shifts of integers
and [log,(z)] for positive integers x can be computed
in one instruction. The preprocessing phase works
only on processors’ local memories. Therefore, we will
not run multiple threads during the precomputation
phase. We assume that physical processor will run
virtual processors x, 2 +p, ..., + (L —1)p during the
rehashing phase.

The computation of [; and ¢; has to be done once
per physical processor and is identical for all proces-
sors. We compute a table of 4% for 0 < i < u by
successively computing b2 = 2. b2, We obtain
the {; by checking whether b mod m/2’ equals 1. As
the [; are decreasing with increasing j, we have to
traverse the table only once. The o; are obtained as
103 (m) /1.

To compute entry elements, we build up a ta-
ble of values 52" similarly to the table of b*". Each
physical processor & computes 5% as Hx,:l 52" if
(Zlogp—1,---,%0) is the binary representation of z.
With the help of this value and the table, the entry
elements for each virtual processor run on this phys-
ical processor can be computed in constant time per
entry element, for an appropriate assignment of cycles
to processors.

For the final phase, we split each cycle completely
and assign each processor one element to move. This
can be done in constant time.

3.2 Analysis

The preprocessing phase takes time O(logm + L).
If we only consider bounded-degree networks, then
L = Q(logp). Moreover, there are emulations with
L = 0O(logp) [2, 15]. For m polynomial in p, logm =
O(logp) and hence the time for the preprocessing
phase is O(logp). The space needed for each physi-
cal processor also is ©(logp).

The rehashing phase is completely parallelized.
The total work 7' = O(m) is distributed evenly and
hence the runtime is O(m/p) due to subsection 2.3.
The rehashing phase needs O(L) = O(log p) space per
physical processor.

The total runtime is O(m/p + logp). For m >
plogp, this is O(m/p), which is optimal.

4 Detection

When using the algorithm for rehashing in a PRAM
emulation, we encounter the problem of automatically
detecting the necessity to rehash. A complete solution
to this problem would consist of predicting the address
trace of the remaining program part, computing the
distributions with and without rehashing and comput-
ing from this the runtimes 7} and 7T,, respectively. If
the time to rehash the address space is T,., then re-
hashing is useful if Ty + 7, < Tj.

However, this prediction is often impossible because
of future input or 1t would take too much time to com-
pute Tp and Ty, even if we perform it only every =z
cycles to predict the next x cycles.

To avoid prediction, we take advantage of the regu-
lar structure of programs. A lot of applications spend
most of their time in loops. Hence, future performance
can be guessed by observing current performance. A
simple approach consists of counting the fraction of
stalled cycles in the last « cycles. If this fraction gets
larger than a certain user-defined threshold 1/¢, then
rehashing is initiated. This detection can be done by
maintaining two counters COg and COp(y for the
number of stalled and the number of total cycles, and
a register for storing ¢{. In the beginning, both coun-
ters are set to zero. If COp(y reaches x, we want to
check whether

COgT

1
Coro 1

To do this, we multiply COg with ¢ and subtract
COp@ from it. If the result is positive, we initiate
rehashing. Afterwards, the counters are set to zero
again.

This allows the user to define a threshold in a wide
range, and detection can be made without floating
point operations or divisions. The value of ¢ might
depend on the application and on the particular im-
plementation of the rehashing algorithm.

5 Simplification of the algorithm

One might think about simplifying the algorithm
for rounds where there are less than N cycles. In-
stead of having several processors permuting one cy-
cle, one could use only o; processors. The runtime
of this round then will increase from ¢;/; /N to [;. If
this does not happen to often and [; is not too large,
the loss in runtime would be quite small. However,
Theorem 2 shows that the probability of a small loss
of performance is quite small.

Theorem 2 Let Ty and Ty be the runtimes of the
original and the stmplified algorithm for a randomly
chosen b. Then

Prob(T1/Ty < 6) < 46/N (2)
for any real number & with 1 < § < N/8.

After choosing an element b, the quotient T3 /Tp
can be computed in time O(logm). One might think
to increase Prob(71/Ty < &) by repeatedly choosing
b until 71 /Ty < 6 or until a time bound, e.g. m/p, is
reached. However, this would affect the random choice
of a new hash function and should not be done.

The proof of Theorem 2 relies on the distribution
of orders of elements in Up(m). This distribution is
given in the following Lemma 3.

Lemma 3 If we randomly choose an element b of
Uo(m), then its order can be 20, where 0 < j < u — 2.
Furthermore,

1/2¢-3-1

Prob(ord(b) = 2/) = { i1

Proof: As the order of Up(m) is 2471, the order of
an element b has to be a power of two because it has
to divide the group’s order. As Uy(m) is not cyclic
[17, p. 124], the order of b can be at most 292,

The group Uy(m), which is the group of units in
Z/2%7, is isomorphic to the product U’ x U” =
({0,1},+ mod 2) x ({0, ...,2¥=2—1}, 4+ mod 2“~?) by
an isomorphism ¢ [17, p. 124]. The order of an ele-
ment b in Ug(m) with ¢(b) = (b1,b2) is determined
by the order of by in U” if by # 0, and by the or-
der of by in U’ otherwise. U is cyclic and therefore
the number of elements in /" with order 2/ equals
#(27) (the Euler function) [17, p. 119]. If by # 0 and
hence ord(bz) > 2, there are two elements ¢ =1(0, b2)
and ¥~1(1,bs) in Ug(m) with order ord(bsz). If by =0

and hence ord(by) = 1, there are are two elements

¥~1(0,0) and ¥~1(1,0) in Up(m) with orders 1 and 2,
respectively. It follows that the number of elements in
Uo(m) with order 27 is 2¢(27) if j > 2, 2¢(2) + 1 if
j=1,and 1if 5 =0.

For a randomly chosen element b in Uy(m) we can
now define Prob(ord(b) = 27) as the quotient of the
number of elements in Up(m) with order 2/ and the
order of Ug(m). With ¢(P") = (P — 1)P"~! for a
prime P and an integer r [17, p. 120], Equation (3)
follows. ad

Proof of Theorem 2: We will prove the Theo-
rem by computing 7y, a lower bound B on 73, and
Prob(B/Ty > é). Then we obtain

Prob(71 /Ty < &) = 1— Prob(11/Ty > §)
< 1=Prob(B/Ty > 6). (4)

We measure the runtime in number of movements
per processor. In the original algorithm, this is
|Uo(m)|/N for all stages but the last one, where it
is 1. Hence

u—log N—1
Ty=1+ Y. |Uj(m)|/N=2"/N.
j=0

In the simplified algorithm, the runtime increases
to I; in stages where o; < N. Hence

u—log N—1
=1+ Z max(|U;(m)|/N, ;). (5)

From lj 41 > 1;/2, it follows that I; > l5/27. We will
assume that l; = 27. We also know that |U;(m)| =
2u=i=1 We bound 7} from below by putting these
facts into Equation (5).

u—log N—1
Ty>1+ Y max(2U7Im17leN gr-iy
§=0

If z < u—1—log N, then the maximum always takes
the left term’s value, and it follows that 77 > Tg. If
z > u — log N, then the maximum always takes the
right term’s value, and

Tl Z 14 2x+1 _ 2x—u+logN+1] (6)

If u> logN + 1, then 22—u+logN+1 < 97 and we
can simplify Equation (6) to Ty > 2”.
With this we have a lower bound B on 77 with

| 27 fe>u—logN
B_{ .

ife<u—1—logN.

We use B to compute Prob(B/Ty > §). B/Ty >
6 can only happen if z > u — log N, because B =
Ty otherwise. As B/Ty = 2%/2¢7196N the condition
B/Ty > 6 is equivalent to > logé + v — log N = .
With ord(b) = Iy = 2%, we get

Prob(B/Ty > é) = Prob(z > k)
u—2
= Z Prob(ord(b) = Qj)
j=r+1
_ [LB/ S NS o
- 0 otherwise .

By combining Equations (4) and (7), we prove the
claimed Equation (2) of the Theorem. a

6 Conclusions

PRAM emulations that use linear hash functions
can be rehashed in optimal time. The algorithm
does not require secondary storage devices like hard
disks. The computations only require multiplication
and shifts of integers at instruction level. Only for
the detection of rehashing two counters are needed.
The counter COp(y is normally present in the sys-
tem as a timer, the counter COgp can be realized
in software. One can modify the compiler to in-
crease a register R by the number of executed in-
structions at the end of each basic block. This gives
COgT = COp — R. Therefore the rehashing al-
gorithm can be implemented without any hardware
changes.

The practical usefulness of rehashing has not yet
been tested, because there is no working prototype of
a PRAM emulation. However, Lipton and Naughton
[13] construct programs that use timers to measure
emulation times of PRAM steps and base their future
behaviour on these times. These programs are called
“clocked adversaries” and they lead provably to bad
distributions of requests and hence to long runtimes.
This hints that rehashing will be needed in practice.

The concept of rehashing will be implemented in
the SB-PRAM [1], the prototype of the PRAM emu-
lation described in [2].

It is still an open problem whether on-line rehash-
ing is possible. By on-line rehashing, we understand
that ¢ steps of the PRAM application and ¢ steps of
the rehashing procedure can be executed alternately
for the time span of rehashing. Currently, the PRAM
application has to be stopped while rehashing the ad-
dress space.

Acknowledgements

I am very thankful to Dany Breslauer for sugges-
tions about the choice of entry elements and to Mar-
tin Dietzfelbinger for many stimulating discussions. |
also want to thank Stefan Ellwert and Volker Muller
for providing some help in algebraic notation.

References

[1] F. Abolhassan, R. Drefenstedt, J. Keller, W. J.
Paul and D. Scheerer, On the physical design of
PRAMs. Comput. J., to appear.

[2] F. Abolhassan, J. Keller, and W. J. Paul. On the
cost—effectiveness of PRAMs. In Proc. 3rd Symp.
on Parallel and Distributed Processing, pp. 2-9.
IEEE, 1991.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. On
communication latency in PRAM computations.
In Proc. 1st Symp. on Parallel Algorithms and
Architectures, pp. 11-21. ACM, 1989.

[4] S. G. Akl. The Design and Analysis of Parallel
Algorithms. Prentice—Hall, 1989.

[65] R. Alverson, D. Callahan, D. Cummings,
B. Koblenz, A. Porterfield, and B. Smith. The
Tera computer system. In Proc. 1990 Internat.
Conf. on Supercomputing, pp. 1-6. ACM, 1990.

[6] J. Carter and M. Wegman. Universal classes of
hash functions. J. Comput. System Seci., 18:143—
154, 1979.

[7] C. Engelmann and J. Keller. Simulation-based
comparison of hash functions for emulated shared
memory. In Proc. PARLE ’93, Parallel Architec-
tures and Languages Europe, pp. 1-11. Springer
LNCS, 1993.

[8] S. Fortune and J. Wyllie. Parallelism in random
access machines. In Proc. 10th Symp. on Theory

of Computing, pp. 114-118. ACM, 1978.

[9] A. Gibbons and W. Rytter. Efficient Parallel Al-
gorithms. Cambridge University Press, 1988.

[10] A. R. Karlin and E. Upfal. Parallel hashing: An
efficient implementation of shared memory. J. As-

soc. Comput. Mach., 35:876-892, 1988.

[11]

[12]

[17]

R. M. Karp and V. L. Ramachandran. A survey of
parallel algorithms for shared—memory machines.
In J. van Leeuwen (Ed.), Handbook of Theoretical
Computer Science, Vol. A, pp. 869-941. Elsevier,
1990.

D. Lenoski, J. Laudon, K. Gharachorloo, W.-D.
Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M. S. Lam. The Stanford DASH multiprocessor.
Comput., 25(3):63-79, 1992.

R. J. Lipton and J. F. Naughton. Clocked adver-
saries for hashing. Algorithmica, 9:239-252, 1993.

K. Mehlhorn and U. Vishkin. Randomized and
deterministic simulations of PRAMs by parallel
machines with restricted granularity of parallel
memories. Acta Inform., 21:339-374, 1984.

A. G. Ranade. How to emulate shared memory.

J. Comput. System Sci., 42:307-326, 1991.

A. G. Ranade, S. N. Bhatt, and S. L. Johnson.
The Fluent Abstract Machine. In Proc. 5th MIT
Conf. on Advanced Research in VLSI pp. 71-93,
1988.

H.-J. Reiffen, G. Scheja, and U. Vetter. Algebra.
B.I.-Wissensch.v., 2nd edition, 1984.

