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Abstract

In PRAM emulations� universal hashing is a well�known method for distributing the address
space among memory modules� However� if the memory access patterns of an application
often result in high module congestion� it is necessary to rehash by choosing another hash
function and redistributing data on the �y� For the case of linear hash functions h�x� �
ax mod m we present an algorithm to rehash an address space of size m � �u on a PRAM
emulation with p processors in time O�m�p � logm � L�� where L denotes the network
latency� For the common case that m is polynomial in p and L � O�log p� the runtime is
O�m�p� log p�� The algorithm requires O�logm� L� words of local storage per processor�
We show that an obvious simpli�cation of the algorithm will signi�cantly increase runtime
with high probability�

� Introduction

Parallel machines give their users more and more the view of a global shared memory�
This simpli�es parallel program design because it frees the programmer from partitioning
data and from programming communications in message�passing networks� As massively
parallel machines with a physical shared memory are unrealistic	 the shared address space
is mapped onto distributed memory modules by a hash function and accessed via a packet

switching network	 both invisible for the user� A hash function distributes almost every
memory access pattern evenly among the memory modules� If a particular application	
however	 requests one memory module much more frequently than the others �denoted as
high module congestion�	 it is necessary to choose a new hash function and redistribute
data on the �y� This is called rehashing� Rehashing has often been neglected in theoretical
investigations� However	 if it can be done fast	 it is an important technique to obtain the
expected performance without restarting the application�
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Rehashing in a machine with p processors and a shared memory of size m is very simple if
there is additional storage of size at least m� Either a shadow memory or disk space of size
m�p per processor is su
cient� The application is interrupted	 the contents of the shared
memory are copied to the additional storage	 and then written back in permuted order�
This works in time O�m�p� but is either expensive in case of shadow memory or slow in
case of disks� We are interested in rehashing without using secondary storage� We also will
stop the application in order to rehash as it is unclear how to interleave both tasks� We
investigate the rehashing problem in the setting of PRAM emulations�

The PRAM �parallel random access machine� ��� is a widely used theoretical machine model
for processors working synchronously on a shared memory	 with unit memory access time�
Many numerical and combinatorical parallel algorithms have been designed for the PRAM
��	 �	 ���� Much e�ort has been put in emulating PRAMs on processor networks ���	 ��	 ����
We restrict to randomized solutions� we omit the deterministic solutions because they use
special expander graphs for which no constructions are known today� A second approach
for shared memory emulations uses caches to avoid using the network� An example is the
DASH multiprocessor ����� We do not consider that approach here�

To obtain unit memory access time when emulating a PRAM	 multiple threads are run per
processor to mask the network latency L ��	 ��� Each thread has its own register set� The
threads are executed in a round
robin manner with one instruction per turn� The processors
are pipelined with pipeline depth L� Hence every L steps of the machine	 each thread has
executed another instruction� We will call the N � Lp threads of the emulation virtual
processors�

Hashing is done by using classes of universal hash functions ���� Each function of the
class provides low module congestion for almost every access pattern� Before running an
application	 one function of the class is picked randomly� Hence	 the probability of an
application using patterns that induce high module congestion is very small�

The emulations mentioned above use polynomials of degree O�log p�� But already Ranade
mentions that in simulations of his emulation algorithm linear functions h�x� � ax mod m	
where amust be relatively prime tom	 �perform well in practice� ���	 p� ���� We will restrict
to the case m � �u� The most signi�cant log p bits of the u
bit binary representation of
h�x� specify the memory module	 the remaining bits specify the location on that module�
Our own detailed simulations support Ranade�s assessment of the usefulness of linear hash
functions ���� In contrast to polynomials	 linear functions bijectively map addresses to
memory cells	 which avoids secondary hashing at the modules and the waste of memory
caused by it ����� They also have a shorter evaluation time� We will therefore consider
linear hash functions�

Rehashing then consists of choosing a new hash function h��x� � a�x mod m and redistrib

uting the address space according to the new hash function� As the hash functions h and h�

both are bijective	 the redistribution is a permutation of the contents of the memory cells�
It can also be expressed as a permutation � of the addresses� This allows to formulate the
rehashing algorithm as a PRAM program to permute an array of items according to ��

The permutation problem on PRAMs was investigated by Aggarwal	 Chandra and Snir ����
However	 their permutation must be �xed� If we consider the hash functions themselves
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as permutations of f�� � � � � m � �g	 then we could think of choosing a start hash function
h� and a �xed permutation � and generate other hash functions hi � � � hi�� � �i � h�
when rehashing for the ith time� As however the group of units in Z�mZ is not cyclic if m
is a power of two ���	 p� ����	 the choice of new hash functions would be restricted� This
argument even holds for arbitrary permutations	 as the symmetric group Sn is not cyclic
for n � �� Hence we must deal with a permutation � that is not �xed�

We present an algorithm to permute m data items on a PRAM emulation with p processors
and memory modules in time O�m�p� logm� L� if the permutation is a linear function�
The algorithm does not require any global storage and can therefore be used to rehash the
address space of the PRAM emulation�

In section � we provide facts and notations to be used later on� In section � we present the
rehashing algorithm and analyze its runtime and space complexity� In section � we discuss
when to invoke the rehashing algorithm� In section � we show that an obvious simpli�cation
of the rehashing algorithm will probably be slow due to long cycles�

� Linear permutations

To express the rehashing problem as a permutation of addresses	 we consider an arbitrary
address x� Before rehashing	 x is mapped to cell h�x�	 after rehashing it will be mapped
to cell y � h��x�� Before rehashing	 address x� � h���y� is mapped to cell y� Hence	 the
redistribution can be expressed as permuting addresses according to ��x� � x��

In Z�mZ	 the numbers relatively prime tom form a multiplicative group	 the group of units
���	 p� ����� It follows that a and a� can be inverted and that h and h� are bijective� Then

��x� � h���h��x�� � a��a�x mod m � ���

As a and a� are units	 b � a��a� mod m also is a unit and ��x� � bx mod m is bijective� In
the following we will restrict to the case m � �u� The group of units here is the set of odd
numbers between � and m� ��

We want to permute the addresses without using secondary storage� This can be accom

plished if we permute cycles of � sequentially and employ parallelism by permuting several
cycles with di�erent processors� Then each processor only needs to bu�er one item locally
in addition to the information about the cycle structure of ��

The above idea leads to the following high level description of our rehashing strategy�

� Split permutation � into its cycles C�� C�� � � �

� Find an element of each cycle�

� Distribute the cycles among the processors such that work is evenly balanced�

� Have each processor permute its assigned cycles sequentially�

To follow our idea	 we need to explore the cycle structure of �� For each cycle	 we need to
know an entry element and its length� The length is necessary to schedule the cycles among
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the processors	 as the time to permute a cycle is proportional to its length� Fortunately	
the structure of linear permutations is very regular�

For x in U�m� � f�� � � � � m� �g we de�ne j�x� � maxfk j �k divides xg� Then every x in
U�m� has a unique representation x � �j�x�x� where � � j � u and x� � m��j�x� is odd�
We can now partition U�m� into sets

Uk�m� � fx � U�m�jj�x� � kg � fx � U�m�jx � �kx� and x� oddg �

We apply � to an address x in Uk�m�� Then ��x� � bx mod m � b�kx� mod m� As b and
x� are units	 �x � bx� mod m��k � bx� � rm��k for some r also is a unit and �k�x mod m �
�k�bx�� rm��k� mod m � ��x�� Hence ��x� is an element of Uk�m�	 too� We conclude that
each cycle of � is contained completely in one of the Uk�m��

Furthermore �k�x� � x��k is a bijection from Uk�m� to U��m��k�	 �k�x� � bx modm��k

is a permutation on U��m��k� and for x � Uk�m� we have ��x� � ���k ��k��k�x����

We therefore restrict our attention to �nding the cycles of � in U��m�� We can use that
method and the bijections �k to �nd all cycles of � in Uk�m� for k � �� � � � � u� �� As the
Uk�m� partition U�m� we have then found all cycles of � and hence we have ful�lled the
the �rst task in our rehashing strategy�

Note that U��m� is the set of units and hence a multiplicative group� Consider the cy

cles of � when applied on U��m�� A cycle starting with an element x has the form�

x� bx� b�x � � � � bl��x� x� Then l is the order of b in U��m�� We can conclude that all cy

cles in U��m� have the same length� This length must be a power of two because the order
of U��m� is a power of two� The number of cycles	 which must also be a power of two	 is
denoted by 	 � jU��m�j�l�

We call x the entry element of the cycle and denote the cycle with entry element x by
C�x�� Note that each element of a cycle can be chosen to be the entry element� To ful�ll
the second task in our rehashing strategy	 we �rst try to �nd a set of entry elements ci	
i � �� � � � � 	 � �	 such that C�ci� �� C�ck� for i �� k� The cycles C�ci�	 i � �� � � � � 	 � �	
span U��m�� Lemma � makes sure that there is such a set where the entry elements of the
cycles have a very regular form� To �nd entry elements to the cycles in Uk�m� we use the
bijections �k as we did to �nd the cycles�

Lemma � If b �� ��� then the elements c�k � �k and c�k�� � �����k� where � � k � 	���
are all on di	erent cycles� If b � ��� then the elements ck � �k� where � � k � 	� are all
on di	erent cycles�

Proof� U��m� is generated by �� and � ���	 p� ����� Each x in U��m� thus has a unique
representation x � �������

�

mod m	 where 
 � f�� �g and 
� � f�� � � � � m�� � �g� Let
b � �������

�

� If b � � or b � ��	 then the result is straightforward�

Let us now consider that b �� f��� �g and therefore that �� �� �� We have to show that
for every k� v � f�� � � � � 	�� � �g and any g � f�� � � � � l � �g	 �k �� bg�v if k �� v and

�We omit writing bx mod m� b�x mod m� � � � here to simplify notation�
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�����k �� bg�v� The �rst inequality is equivalent to �k�v �� bg� With b � �������
�

	 we
obtain �k�v �� ����g��g�

�

� As � � jk � vj � 	��	 we have the desired property if �� is a
multiple of 	���

The second inequality is equivalent to �����k�v �� ����g��g�
�

� In order to meet ���� �
����g�	 g has to be odd	 especially not equal to zero� But if �� is a multiple of 	��	 then
�g�

�

can never equal �k�v because � � jk � vj � 	���

We �nish the proof by showing that �� �� � is a multiple of 	��� Consider bl	 which equals
� modm because l is the order of b� With the above representation we obtain ����l��l�

�

�
� modm� It follows that l�� � � mod m��� This is equivalent to �� � � modm���l�	
because l is a power of two� As l � jU��m�j�	 � �m����		 we obtain �� � � mod 	���
Therefore �� must be a multiple of 	��� �

� Algorithm

We will now describe the permutation algorithm for a PRAM withN processors� We assume
N to be a power of two� The algorithm works in phases	 in each phase the cycles of one
Uj�m� are permuted	 as long as jUj�m�j 	 N � All Uj�m� with jUj�m�j � N are handled
together in a �nal phase� We ensure with a preprocessing phase that each processor can
�nd the entry elements of its assigned cycles in constant time� We will distinguish l and 	

in di�erent phases by an index j�

To permute the cycles of Uj�m� in phase j	 we have each processor permute 	j�N cycles
sequentially if 	j 	 N � As all of these cycles have the same length	 the work is balanced�
Processor y is assigned to cycles C�cy�� C�cy�N�� � � � �

If there are fewer than N cycles	 then v � N�	j processors work together to permute one
cycle� Processor y is assigned to cycle C�ck� with k � y mod 	j � We split each cycle in
pieces of size v	 each piece is moved in one round� If the entry element of this cycle is ck	
then the �rst piece consists of the elements ck� bck� b�ck� � � � � bv��ck	 the second piece consists
of bvck� � � � � b

�v��ck and so on� The number of pieces of one cycle is lj�v � jUj�m�j�N �

To move the wth piece of cycle C�ck�	 the processors k� k � 	j � � � � � k � �v � ��	j load the
contents of b�w���vck� � � � � b

wv��ck and store them to b�w���v��ck� � � � � b
wvck�

Permuting a cycle this way is somewhat tricky	 because the processor that picked the last
element of one piece may store it only if another processor has picked the �rst element of
the next piece� Hence	 movements of pieces have to be overlapped� before the wth piece is
stored	 the �w� ��st piece is loaded�

An alternative would be to split each cycle C�ck� into v pieces of length lj�v� The wth
piece consists of b�w���lj�vck� � � � � b

wlj�v��ck� Each processor assigned to this cycle would
then move one piece sequentially� However	 the computation of b�w���lj�v would lead to
di
culties in the preprocessing phase� Therefore the �rst method is preferred�

Note that while working on Uj�m�	 each element x � Uj�m� represents address �jx because
we have to apply ���j � Therefore	 when permuting a cycle	 the entry element has to be
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for�j � �� j � f � j ���f � phase j	 work on Uj�m�  �
if�	j 	 N�f � if at least N cycles  �
x � �j 
 FirstEntry�j� y�� � entry element of �rst cycle  �
for�k � �� k � 	j�N � k���f

PermuteCycle�x� lj�� � permute C�x�  �
x �NextEntry�x�� � entry element of next cycle  �

g
gelsef � less than N cycles  �
x � �j 
 FirstPiece�j� y�� � element of �rst piece  �
for�k � �� k � jUj�m�j�N � k���f
MovePiece�x�� � move pieces overlapped  �
x �NextPiece�x�� � element of next piece  �

g
g

g

x � y 
 �f � � �nal phase  �
tmp � A�x��
A��b 
 x� mod m� � tmp�

Figure �� Rehashing Algorithm for virtual processor y

multiplied with �j before processors start to move elements�

Now we consider the �nal phase� jUj�m�j � m��j�� is less thanN for j 	 log�m�N� � f andP
j�f jUj�m�j � N � �� When applying ���j 	 we see that those Uj�m� represent addresses

i�f 	 � � i � N � To permute the cycles in these Uj�m�	 processor i loads the content of i�f

and stores it to bi�f mod m�

The program in C notation for processor y is shown in Figure �� Array A represents the
shared memory	 all other variables are local�

��� Preprocessing phase

The preprocessing phase has to provide the processors with 	j and lj for all j	 and with the
entry elements of their assigned cycles and pieces of cycles� The preprocessing phase works
only on processors� local memories� Therefore	 we will not run multiple threads during the
preprocessing phase�

Each physical processor z �rst computes eight tables� Each table is stored once per physical
processor� Tables t�	 t� and t� are identical for all processors	 the contents of the other tables
depend on z� Let �zlog p��� � � � � z�� be the binary representation of z� The �rst six tables are
necessary for b �� ��	 the last two tables are needed for the case b � ���

Table t� consists of some powers of b	 i�e� t��i� � b�
i

mod �u for � � i � logm� Table t� can
be computed by repeated squaring	 i�e� t���� � b	 t��i � �� � t��i� 
 t��i� mod �u for i 	 ��
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Table t� does the same for powers of �	 i�e� t��i� � ��
i
mod �u for � � i � logm� Table

t� contains the �rst L powers of b	 i�e� t��i� � bi mod �u for � � i � L� Table t� can be
computed by repeatedly multiplying with b	 i�e� t���� � �	 t��i � �� � t��i� 
 b mod �u for
i 	 ��

Table t� has the form t��i� � �b�zmod�i�����c mod �u for � � i � log p� As b�z mod �i�����c �
bz��c mod �i �

Pi��
s	� zs�� 
 �

s it follows that

t��i� �
i��Y
s	�

�
��

s�zs��
mod �u �

Hence	 t� can be computed as t���� � �	 t��i� �� � t��i� 
 �t��i��
zi�� mod �u for i 	 ��

Table t
 has the form t
�i� � �b�z�ip���c mod �u for � � i � L� As b�z � ip���c � bz��c� i 

�p���	 table t
 can be computed as t
��� � t��log p� ��	 t
�i� �� � t
�i� 
 t��log p� �� mod �u

for i 	 ��

Table t� has the form t��i� � bbz��
ic for � � i � log p� As bz��ic � � 
 bz��i��c� zi	 table t�

can be computed as t��log p� � �	 t��i� � t��i� �� 
 t��i� �� 
 bzi mod �u for i � log p�

The last two tables are obtained by changing tables t� and t
 to t���i� � �zmod�i�� and
t�
�i� � �z�ip� The computation of those tables is easily derived from the computation of t�
and t
�

The computation of lj and 	j is done once per physical processor and is identical for all

processors� We obtain the lj by checking whether b�
i

mod m��j equals �� As the lj are
decreasing with increasing j	 we have to traverse table t� only once� The 	j are obtained
as jUj�m�j�lj�

We show that the eight tables are su
cient to compute the entry elements for all cycles and
pieces of cycles if physical processor z simulates virtual processors z� z� p� � � � � z��L� ��p�

Lemma � The procedures FirstEntry� NextEntry� FirstPiece and NextPiece can be com�
puted with constant numbers of operations in each phase j�

Proof� We start with b �� �� mod �u�j � If 	j 	 N 	 virtual processor y is assigned to
cycles C�cy�� C�cy�N�� � � �� Hence	 FirstEntry�j� y� has to compute cy	 NextEntry�x� has to
compute cy��s���N when given x � cy�sN �

If y is even then cy � �y�� mod �u�j 	 if y is odd then cy � ������y����� mod �u�j � As
virtual processor y is simulated on physical processor z with y � z� ip	 it follows that cy �
����ymod��b�z�ip���c mod �u�j � Hence	 procedure FirstEntry�j� y� consists of computing
����ymod� 
 t
�by�pc� mod �u�j �

From Lemma � it follows directly that cy��s���N � cy�sN 
 �N��� As N is a power of two	
procedure NextEntry�x� simply consists of computing x 
 t��logN � �� mod �u�

If 	j � N��	 virtual processor y is assigned to cycle C�ck�	 where k � y mod 	j 	 and will
move the wth element of each piece for w � by�	jc� Procedure FirstPiece�j� y� has to
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compute the wth element of the �rst piece of this cycle	 NextPiece�x� has to compute the
wth element of the next piece when given x	 the wth element of one piece�

Procedure FirstPiece works di�erently for 	j � p and �p � 	j � N��� If 	j � p	 then
k � �z� ip� mod 	j � z mod 	j 	 as both 	j and p are powers of two� The entry element ck
has the form ����zmod��b�zmod�j���c� Hence	 it can be computed as ����zmod� 
 t��log 	j �
�� mod �u�j �

To �nd the wth element of the �rst piece	 the entry element has to be multiplied with
bw� As y � z � ip	 w � by�	jc � bz�	jc � i�p�	j�� If i � �	 bw can be computed as
t��log 	j � mod �u�j � Otherwise	 it can be computed by multiplying bw�p��j �computed by
virtual processor z � �i � ��p on the same physical processor� and bp��j 	 which can be
obtained from t��log p� log 	j ��

If �p � 	j � N��	 then k � z � �ipmod 	j� � z � p 
 �i mod �	j�p��� If i mod �	j�p� � �	
then ck � ����zmod��bz��c	 which can be computed as ����zmod� 
 t��log p � �� mod �u�j �
Otherwise	 ck can be computed by multiplying ck� 	 where k

� � z � p 
 ��i� �� mod �	j�p��
�computed by virtual processor z��i���p on the same physical processor� and �p��	 which
can be obtained from t��log p� ���

To �nd the wth element of the �rst piece	 we have to compute bw� As 	j 	 �p	 w � v � L���
Hence	 bw can be obtained from t��w��

Each piece of each cycle in phase j has length v � N�	j� Hence	 the result of NextPiece�x�
must be bvx� As v is a power of two	 one only needs to compute t��logN� log 	j � 
x mod �u�

If b � �� mod �u�j 	 then FirstEntry has to compute �y which can be obtained from
t�
�by�pc� mod �u�j � NextEntry has to compute x 
 �N mod �u	 �N can be obtained from
t��logN �� In procedure FirstPiece	 only the computation of ck is changed� If 	j � p	 then
ck can be obtained from t���log 	j � ��� If �p � 	j � N��	 then ck can be obtained from
t���log p� �� if i mod �	j�p� � � and from ck� and �p � t��log p� otherwise� The computation
of the wth element in procedure FirstPiece and procedure NextPiece remain unchanged� �

��� Example

We illustrate the rehashing algorithm by an example� We will assume m � �� � ��	
p � �� � � and L � �� Hence N � Lp � � and f � �� If h�x� � ��x mod �� and the new
hash function is h��x� � ��x mod ��	 the permutation is ��x� � ��x mod ��	 as ���� � ��
and �� 
 �� � ��� The cycle structure of � is shown in Figure �� The numbers in the left
column show the phase in which the cycles are permuted	 the numbers in the top row show
the number of the processor that permutes the entry element of the cycles in that column�

We start by computing the eight tables and the lj and 	j � The results are shown in table ��

In phase j � �	 each processor is assigned two cycles	 each of length two� The procedure
FirstEntry computes the following values for processors � to �� c� � �	 c� � ��	 c� � �	 c� �
��	 c
 � ��	 c� � ��	 c� � ��	 c� � �� The procedure NextEntry computes c
 � c� 
 �� � ��	
c� � ��	 c�� � ��	 c�� � ��	 c�� � �	 c�� � ��	 c�
 � ��	 c�� � ���
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Figure �� Cycle Structure of the example permutation
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Table �� Precomputed tables for example permutation
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In phase j � �	 each processor is assigned one cycle of length two� As �� � �� mod ��	
FirstEntry computes values di�erent from those in phase �� c� � �	 c� � ��	 c� � ��	
c� � ��	 c
 � ��	 c� � ��	 c� � ��	 c� � ���

In phase j � �	 two processors are assigned to one cycle of length two	 hence there is only
one piece and NextPiece is not needed� FirstPiece computes �	 ��	 ��	 ��	 ��	 ��	 ��	 ���

In the �nal phase	 the processors load the values �	 �	 ��	 ��	 ��	 ��	 ��	 �� and move them
to their destination�

��� Analysis

We will now analyze the runtime and the memory requirements of the rehashing algorithm�
The results are summarized in Theorem ��

Theorem � Rehashing of linear hash functions on a PRAM emulation with p processors�
network latency L and a shared memory of size m � �u can be done in time O�m�p �
logm� L�� Each processor needs local storage of size O�logm� L��

If we only consider polynomial time algorithms	 we can assume that m is polynomial in p�
Furthermore	 there are PRAM emulations with L � O�log p� ��	 ���� With these assump

tions the runtime is O�m�p� log p�	 the storage requirements are O�log p��

Proof� We assume that multiplication	 shifts of integers	 blog��x�c for positive integers x
and x mod �u�j can be computed in one instruction�

All operations during the preprocessing phase work on local memories� Computing tables
t� and t� takes time O�logm� and O�logm� space per physical processor� Computing tables
t�	 t

�
� and t� takes time and space O�log p� � O�logm�	 because m 	 p� Computing tables

t�	 t
 and t�
 takes time O�L� and O�L� space per physical processor� Computation of lj
and 	j for all j requires one traversal of table t� and takes time and space O�logm��

Hence	 the runtime of the preprocessing phase is O�logm � L�	 and so are the space re

quirements� Also the preprocessing phase guarantees that all entry elements can be found
in constant time per element during the rehashing phases	 as shown in Lemma ��

The rehashing phases �including the �nal phase� are completely parallelized as all cycles
of one phase have equal length� The total work is !�m� and hence the runtime of the
rehashing phases is O�m�N� rounds of the emulation� Each of these rounds takes L steps�
Thus for an arbitrary network with p pipelined processors and latency L the runtime will
be m�p � L steps� The rehashing phases need O�L� space per physical processor as each
virtual processor only needs a constant amount of local storage during rehashing�

The total runtime is O�m�p� logm � L�� The storage requirements are O�logm� L� per
physical processor� �
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� Detection

When using the algorithm for rehashing in a PRAM emulation	 we encounter the problem
of automatically detecting the necessity to rehash� A complete solution to this problem
would consist of predicting the address trace of the remaining program part	 computing
the distributions with and without rehashing and computing from this the runtimes Tb and
Ta	 respectively� If the time to rehash the address space is Tr	 then rehashing is useful if
Tb � Tr � Ta�

However	 this prediction is often impossible because of future input or it would take too
much time to compute Tb and Ta	 even if we perform it only every x steps to predict the
next x steps�

To avoid prediction	 we take advantage of the regular structure of programs� A lot of
applications spend most of their time in loops� Hence	 future performance can be guessed
by observing current performance� A simple approach consists of counting the fraction of
stalled steps within the last x steps� By stalled steps we mean steps where the active virtual
processor cannot execute an instruction because it waits for an answer to a read request
with latency larger than L�

If this fraction gets larger than a certain user
de�ned threshold ��t	 then rehashing is
initiated� This detection can be done by maintaining two counters COST and COTO for
the number of stalled and the total number of machine steps	 and a register for storing t� In
the beginning	 both counters are set to zero� If COTO reaches x	 we want to check whether

COST
COTO

�
�

t
�

To do this	 we multiply COST with t and subtract COTO from it� If the result is positive	
we initiate rehashing� Afterwards	 the counters are set to zero again�

This allows the user to de�ne a threshold in a wide range	 and detection can be made without
�oating point operations or divisions� The value of t might depend on the application and
on the particular implementation of the rehashing algorithm�

The counter COTO is normally present in the system as a timer	 the counter COST can be
realized in software� One can modify the compiler to increase a register R by the number
of executed instructions at the end of each basic block� This gives COST � COTO � R�

� Simpli�cation of the algorithm

One might think about simplifying the algorithm for phases where there are less than N

cycles� Instead of having several processors permuting one cycle	 one could use only 	j
processors� The runtime of this phase then will increase from 	j lj�N to lj � If this does not
happen to often and lj is not too large	 the loss in runtime would be quite small� However	
Theorem � shows that the probability of a small loss of performance is quite small�
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Theorem � Let T� and T� be the runtimes of the original and the simpli�ed algorithm for
a randomly chosen b� Then

Prob�T��T� � �� � ���N ���

for any real number � with � � � � N���

After choosing an element b	 the quotient T��T� can be computed in time O�logm�� One
might think to increase Prob�T��T� � �� by repeatedly choosing b until T��T� � � or until
a time bound	 e�g� m�p	 is reached� However	 this would a�ect the random choice of a new
hash function and should not be done�

The proof of Theorem � relies on the distribution of orders of elements in U��m�� This
distribution is given in the following Lemma ��

Lemma � If we randomly choose an element b of U��m�� then its order can be �j� where
� � j � u � �� Furthermore�

Prob�ord�b� � �j� �

�
���u�j�� if j �� �
���u�� if j � ��

���

Proof� As the order of U��m� is �u��	 the order of an element b has to be a power of two
because it has to divide the group�s order� As U��m� is not cyclic ���	 p� ����	 the order of
b can be at most �u���

The group U��m�	 which is the group of units in Z��uZ	 is isomorphic to the product
U � � U �� � �f�� �g��mod �� � �f�� � � � � �u�� � �g�� mod �u��� by an isomorphism 
 ���	
p� ����� The group U��m� is generated by �� and �	 their orders are � and �u�� respectively�
Hence	 each x � U��m� has a unique representation x � ������� mod m	 where 
 � f�� �g
and � � f�� � � � � �u�� � �g� We de�ne 
�x� � �
� ���

The order of an element b in U��m� with 
�b� � �b�� b�� is determined by the order of b� in
U �� if b� �� �	 and by the order of b� in U � otherwise� U �� is cyclic and therefore the number
of elements in U �� with order �j equals ���j� �the Euler function� ���	 p� ����� If b� �� � and
hence ord�b�� 	 �	 there are two elements 
����� b�� and 
����� b�� in U��m� with order
ord�b��� If b� � � and hence ord�b�� � �	 there are are two elements 
����� �� and 
����� ��
in U��m� with orders � and �	 respectively� It follows that the number of elements in U��m�
with order �j is ����j� if j 	 �	 ������ � if j � �	 and � if j � ��

For a randomly chosen element b in U��m� we can now de�ne Prob�ord�b� � �j� as the
quotient of the number of elements in U��m� with order �j and the order of U��m�� With
��P r� � �P � ��P r�� for a prime P and an integer r ���	 p� ����	 Equation ��� follows� �

Proof of Theorem �� We will prove the Theorem by computing T�	 a lower bound B on
T�	 and Prob�B�T� � ��� Then we obtain

Prob�T��T� � �� � �� Prob�T��T� � ��

� �� Prob�B�T� � �� � ���
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We measure the runtime in number of movements per processor� In the original algorithm	
this is jU��m�j�N for all stages but the last one	 where it is �� Hence

T� � � �

u�logN��X
j	�

jUj�m�j�N � �u�N �

In the simpli�ed algorithm	 the runtime increases to lj in stages where 	j � N � Hence

T� � � �

u�logN��X
j	�

max�jUj�m�j�N� lj� � ���

We now show that lj�� 	 lj��� As lj�� is the order of b in Uj���m�	 blj�� mod �u��j��� � �
and hence blj�� � � � i 
 �u��j��� for some i� Then

�blj���� mod �u�j � �� � �i 
 �u��j��� � i� 
 ��u��j������ mod �u�j � � �

It follows that the order lj of b in Uj�m� is at most �lj���

From lj�� 	 lj��	 it follows that lj 	 l���j� We will assume that l� � �x� We also know
that jUj�m�j � �u�j��� We bound T� from below by putting these facts into Equation ����

T� 	 � �

u�logN��X
j	�

max��u�j���logN � �x�j� �

If x � u � � � logN 	 then the maximum always takes the left term�s value	 and it follows
that T� 	 T�� If x 	 u� logN 	 then the maximum always takes the right term�s value	 and

T� 	 � � �x�� � �x�u�logN�� � ���

If u 	 logN � �	 then �x�u�logN�� � �x and we can simplify Equation ��� to T� 	 �x�

With this we have a lower bound B on T� with

B �

�
�x if x 	 u� logN
T� if x � u� �� logN �

We use B to compute Prob�B�T� � ��� B�T� � � can only happen if x 	 u � logN 	
because B � T� otherwise� As B�T� � �x��u�logN 	 the condition B�T� � � is equivalent
to x � log � � u� logN � �� With ord�b� � l� � �x	 we get

Prob�B�T� � �� � Prob�x � ��

�
u��X

j	���

Prob�ord�b� � �j�

�

�
�� ���N if � � N��
� otherwise �

���

By combining Equations ��� and ���	 we prove the claimed Equation ��� of the Theorem�
�
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� Conclusions

Under reasonable assumptions for memory size and network latency	 PRAM emulations that
use linear hash functions can be rehashed in optimal time� The algorithm does not require
secondary storage devices like hard disks� The computations only require multiplication and
shifts of integers at instruction level� The counters needed for the detection of rehashing
are present at system level or can be implemented in software� Therefore the rehashing
algorithm can be implemented without any hardware changes�

The practical usefulness of rehashing has not yet been tested	 because there is no working
prototype of a PRAM emulation� However	 Lipton and Naughton ���� construct programs
that use timers to measure emulation times of PRAM rounds and base their future behavior
on these times� These programs are called �clocked adversaries� and they lead provably to
bad distributions of requests and hence to long runtimes� This hints that rehashing will be
needed in practice�

The concept of rehashing will be implemented in the SB
PRAM ���	 the prototype of the
PRAM emulation described in ����

It is still an open problem whether on
line rehashing is possible� By on
line rehashing	
we understand that c rounds of the PRAM application and c rounds of the rehashing
procedure can be executed alternately for the time span of rehashing� Currently	 the PRAM
application has to be stopped while rehashing the address space�
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