
ABSTRACT
Almost all current anti spam measures are reactive,
filtering being the most common. But to react means
always to be one step behind. Reaction requires to predict
the next action of the attacker. So the focus on fighting
spam should rather be on prevention. Current proposals
focus on fixing SMTP's lack of authentication, but
introduce two new major problems: First, all current
attempts break existing SMTP functionality and, second,
it seems to be hardly possible to enforce a change of
SMTP world wide. Therefore other preventive measures
should be implemented. The most promising approach is
to prevent spammers from collecting email addresses.
Several proposals show ways to obfuscate addresses on
web pages and to create HTTP tar pits in order to catch
spammers' harvesters. In our previous work, we combined
a HTTP tar pit with a SMTP tar pit and found it to be very
effective in trapping harvesters.
Here, we extend the use of the combined tar pit to identify
harvesters and to dynamically block access to web pages
for harvesters, because of the combined tar pit's high
efficiency. We present a test setup to validate the
effectiveness of our tool. As the experiment is still
running, we can only report on preliminary findings so far.

KEYWORDS
Spam, harvester, dynamic access control, SMTP, HTTP,
tar pit, proactive protection

1. Introduction
Participants of email communication currently suffer from
lots of unsolicited commercial email, commonly known as
spam. As current anti-spam measures such as filtering,
blacklisting, and greylisting are not effective enough, and
efforts to correct spam-enabling deficiencies in the
underlying SMTP protocol probably will not have any
effects in the next years, we feel that one way to take
immediate action is to prevent spammers from collecting
email addresses, which they mostly do by visiting web
pages with harvesters. In previous research [1] we
provided methods to obfuscate email addresses on web
pages so that harvesters cannot recognise them, and
methods to trap harvesters in a tar pit [2] so that they
cannot visit regular web pages. In this research we
combine both approaches: we use a tar pit to identify

harvesters, and consequently use this information to block
access to regular web pages for those harvesters. We
report on the implementation issues and on a test setup to
validate the effectiveness of our approach. As the
experiment is still running, we can only discuss some very
preliminary findings. Yet we are confident to be able to
present more results on the final version of this paper.
The remainder of this paper is organised as follows. In
Section 2, we review the state of the art in anti-spam
measures. In Section 3, we summarise information on a
http tar pit in order to provide the information necessary
to understand our combined approach. In Section 4 we
present our approach to identify harvesters with a tar pit.
In Section 5, we discuss how to block access to web pages
based on information received from the tar pit. In Section
6 we present the test setup for validation. In Section 7 we
conclude and give an outlook on future research.

2. Current anti spam measures
2.1. Reactive methods
Currently, most relevant methods to reduce the amount of
unsolicited commercial email (UCE, spam) in any user's
inbox rely on some kind of filtering. Different filtering
technologies are in use: probably the best known, but
simplest is blacklisting, i. e. each SMTP client's IP-
address connecting to a SMTP server is tested against a
list of known spamming hosts. When invented back in the
late 1990s, this approach both helped filtering spam and
supported the demand of switching off so called open
relays. But this solution has also been known for having
heavy side-effects: Almost all big email-providers have
already been blacklisted on at least some of the widely
available blacklists [3][4][5]. By now, the increasing
usage of so called zombie PCs, i.e. mostly Windows
computers infected by some worms, to send spam from,
turned those black lists more and more useless: They
either have to block entire subnets known to be used by
dial-in providers to block potential abuse and thereby
block thousands of legitimate mail users that run their
MTAs on Unix machines at home, or their filtering
becomes more and more ineffective, as spam is not
relayed anymore through open relays.
Other solutions are content filters applied to the header
and / or the body of a mail message. Filtering is mainly

DYNAMICALLY BLOCKING ACCESS TO WEB PAGES FOR SPAMMERS'
HARVESTERS

Tobias Eggendorfer
ITIS e. V. Institut für Technik Intelligenter Systeme

An-Insitut der Universität der Bundeswehr Neubiberg
Werner-Heisenberg-Weg 39
85579 Neubiberg, Germany

tobias.eggendorfer@unibw.de

Jörg Keller
FernUniversität in Hagen

Lehrgebiet Parallelität & VLSI
58084 Hagen, Germany

joerg.keller@fernuni-hagen.de

based on a “bad-word-list”. This solution needs individual
fine tuning, off-the-shelf products are often too imprecise,
e.g. a bank clerk can not filter on “mortgage”.
To improve filtering, scoring-mechanisms to weight
words and other signs that a message might be spam were
implemented. Those filters also require lots of fine-tuning
and maintenance: Spammers are reported to register mail
accounts with online services known to have spam
filtering and to first test their spam against those filters.
This leads to a permanent “one-step-behind”-situation for
filters, no matter how advanced content-filtering becomes
[6].
Collaborative filtering is yet another approach to identify
spam: To do so, large mail providers analyse mails their
customers get and compare them to both mails directed to
other customers and mails received on special honeypot
addresses. In [7] some interesting statistics on this kind of
filtering have been published: A spammer might wait
between delivering two spam messages to different
accounts at the same provider for some time. In only 92%
of the cases, the two messages were received within 15
minutes of each other. This approach would require to
store and delay each incoming message for at least 15
minutes to identify it with 92% probability as a part of a
spam run. Storing messages on a MTA and comparing
them requires huge amounts of both disk space and
computing power and it rises important privacy questions.
And again, spammers learnt their lessons: They already
include random words and characters somewhere in the
message to make it look different to collaborative filters.
Another still reactive way to reduce spam is greylisting, i.
e. forcing the sending MTA of a message to resend it after
a short time by issuing a temporary error during the
SMTP connection. As of now, this solution is quite
potent, as most spam is sent through zombies. Those
worms contain their own SMTP engine, which is usually
quite simple and only implements a subset of SMTP.
Most of them are still unable to handle the temporary
unavailable condition used in greylisting and therefore
consider this condition as a fatal error and stop delivery.
Greylisting has two major disadvantages: It slows down
email communication and it is likely to be useless when
those worms will implement better SMTP-engines, which
is to be expected soon.

2.2. Modifying SMTP
The disadvantages of reactive anti-spam-methods as
discussed above, initiated a discussion on fixing one of
the supposed causes for spam: SMTP lacks authentication.
So the key approach is to implement some kind of
authentication and authorisation. Beside some side-
effects seen on current methods, like breaking intended
mail-forwarders, the real problem is to enforce the
modified standards world-wide.
This is not only an organisational problem resulting from
competing standards and companies trying to win their
share of market by patenting their solutions, but also and
mainly due to the broad, not centrally maintained base of
billions of SMTP-clients and millions of servers in the
Internet. Back at ARPANET times it was possible to

change the standard to IP almost over night, but the
Internet has grown. In [8] the amount of existing mail
servers has been estimated to exceed 22.5 million
machines world wide. By end of 2005 there were 938
million computers in use world wide [9], there were
probably as many SMTP clients installed, as each PC
implements at least one client.
There are still thousands of open relays out there,
although open relays are deprecated and blacklisted since
at least ten years. Considering this, any change to SMTP
would need at least another ten years to be broadly
available.

2.3. Preventing harvesters
Considering this, the search for new solutions has been
opened. The probably most promising is to prevent
spammers from collecting email addresses. Spammers
collect email addresses both on places where they are
publicly available (albeit not for the purpose of being
harvested), the Web being the most prominent example,
and places where the emails are not for public use. A
popular example for the second case are worms and
Trojans that get installed on computers and read local
address books, emails or even all files to collect email
addresses found there and send them to the spammer, so
that he can spam to them.
There is an obvious solution to this: Have users install
decent and safe operating systems, virus scanners and
personal firewalls and protect their PCs with external
firewalls and application level malware filters. Also, for
all other non-public places where emails are stored, e.g.
databases of companies' customers, appropriate protection
is demanded to fulfil the appropriate privacy laws.
Trading email addresses is not considered here, because
those email addresses once were collected on one of the
ways already described.
The other, public source of email addresses for spammers
is the Internet, most notably the WWW and the usenet.
There, they collect email addresses using spidering
technology known from search engines. The programmes
doing this job are called “harvesters”.
A harvester is a program that visits web pages, extracts all
links in those pages and adds them its web pages to visit
list. Besides extracting links its main goal is the collection
of email addresses.
Again there are some ways how to handle them: One is to
obfuscate email addresses, so they would not be
recognised by harvesters. In [10] some different solutions
are suggested, that are both compatible to any installed
browser and barrier free, and proved their effectiveness in
a still ongoing real world experiment. One of those
solutions dynamically obfuscates email addresses
published on the web [1], thereby solving the problem to
modify or redo existing web pages to block out harvesters.

3. HTTP Tar pit
Our approach to bar harvesters from collecting mail
addresses is to trap them in a tar pit. The basic concept is
to create random web pages containing links to the same
or other tar pits. This pollutes the list of web-pages-to-
visit the harvester has, and keeps the harvester returning

and finally staying in the tar pit. As soon as the harvester
is caught, all of its resources are attracted to the tar pit,
thereby preventing it to visit any other web pages and
collect email addresses there.

3.1. HTTP Tar Pit Requirements
Setting up a functional and safe tar pit is not as easy as it
might seem at first glance: First, “honest” spiders, such as
GoogleBot, should not be trapped. Second: If the tar pit
publishes links to itself, they need to be different. And last
but not least the tar pit needs to make sure it is not hit by a
denial of service condition if a harvester runs in circles
through the site.

3.2. Do not catch good spiders
The first requirement, safe guarding the good, is easily
implemented: Any decent spider should obey the
robots.txt standard [11], [12]. Excluding any spider from
the page would do. As of now, harvesters ignore
robots.txt. From the harvester developers' point of view
this is a logical decision to find even more email
addresses.
Practical experiments proved this assumption to be
correct. Both downloaded harvesters and those visiting a
test tar pit ignored this standard.
If in the future harvesters would learn not to ignore the
robots.txt-standard, this would be a positive result of
using tar pits: Hiding email addresses on web pages would
then become as easy as hiding those pages from robots
with a robots.txt file.

3.3. Generate different links pointing to the same file
The next step was to generate new pages containing links
to the tar pit using different URLs. The different URLs are
necessary, because otherwise the harvester will detect that
it has already visited the tar pit, and will leave it. With
different URLS, this is not possible and the harvester is
kept busy by pages generated only for the purpose of
catching the harvester. In the test setup, filenames might
have between 5 and 30 characters each and there is a
choice of different filename extensions like “.htm”,
“.html”, “.shtml” or “.shtm”.

3.4. Avoid Denial of Service
The most difficult task is to avoid a denial of service
condition: If the tar pit publishes 20 links per page, the
harvester will add those links to its list of pages to visit.
On each of those links visited, it will receive yet another
20 links. Within a short time, the harvester has some
millions of links in his list all pointing to the tar pit.
If the harvester supports parallel spidering and is running
on multiple machines, it might have enough bandwidth to
pull the whole server down. If the server is only serving
the tar pit, this does not matter – but if the tar pit is run on
a server also used for other purposes, the “real” pages
become undeliverable.
To avoid those problems, the instances of the tar pit
running should be limited to a maximum. The
determination of the exact number of instances is quite a
tricky task, because it depends both on the tar pit server
and on the unknown capabilities of harvesters. We have
done it iteratively by testing several different numbers,

and chose the one that fitted best.

3.5. Combining SMTP and HTTP tar pits
Although in real-world experiments the tar pit described
above proved to be efficient, tests with off-the-shelf
harvesters available in the web gave some hints on how to
modify the tar pit to be even more effective.
Most harvesters implement some kind of progressmeter by
listing the last email addresses found. The first tar pit
implementation did not deliver any email addresses.
Therefore, a human operator could realise that his
harvester got caught by a tar pit. He could even blacklist
the tar pit and inform other spammers of its existence.
To have harvesters stick longer to the tar pit, the tar pit
should offer some email addresses to the harvester. But
those addresses need to be existent: Random addresses
under random domains might easily contain existing email
addresses belonging to someone else who then will
receive spam.
The other downside to random addresses is the so called
bounce spam. This is spam sent to a non-existent address
seeming to originate from another domain or email
address than the one the spammer has. For each
undeliverable spam message an error message is created
and sent to the supposed sender's address, and, if it is also
non-existent, to the postmaster of his domain.
Considering this, email addresses published by the tar pit
should be existent and a mail server should accept
messages to them. To achieve this, the authors suggested
in [2] to use a SMTP tar pit as pseudo-MTA for the HTTP
tar pit.

3.6. SMTP tar pit
SMTP tar pits usually accept mails, but they answer
incoming SMTP connections very slowly and thereby
waste the time of the sender. There are two basic concepts
in slowing down the connection: One is to slow down the
connection on the TCP/IP-Level by using minimum
framesizes, sending each frame on its own etc. [13], the
other, more common, is to use application level slow
downs. To do so, SMTP-continuation-lines [14] are used:
Each request is answered with dozens of response lines.
Those lines are usually sent with short delays in between,
adding an extra slowdown.
Doing so, bulk mailers should be slowed down on each
connection they have to a tar pit. But set up on their own,
SMTP tar pits are quite ineffective: They only slow down
one connection to a certain mail server at a time, which
usually has almost no impact, as one server is able to
accept many mails during one connection and most bulk
mailers are capable of connecting to many mail servers in
parallel [8].

3.7. Real world experiment
In the authors' real world experiment's configuration, a
slightly modified version of smtarpit [15] has been used.
This programme uses an application level slow-down
technique with continuation lines.
The combined tar pit proved to be 20 times more effective
than a standalone HTTP tar pit [2]. It was able to attract
harvesters for several weeks. At least one harvester

continually connected to the tar pit until the machine
running the harvester was disconnected from the internet
by its provider due to spamming complaints.

4. Identifying harvesters with the combined
tar pit
Thanks to previous real world experiments with HTTP
and combined tar pits, our tar pits are heavily linked from
many web pages in the Internet. They therefore attract
harvesters that follow links on web pages. Humans that
accidentally followed a link to the tar pit will soon notice
that the page they came across is not intended for human
visitors. Harvesters by contrast will stay in the tar pit, as
field experiments proved.
This makes the tar pit a useful mean to tell apart humans
from machines: As soon as a visitor stays for more than a
few visits in the tar pit, it is very likely to be a machine.
If the visitor is a machine, it did not obey the robots.txt
standard [11], [12], that protects good spiders from being
trapped in the tar pit. Therefore, the visiting machine is
likely to be a harvester.
To understand harvesters' behaviour, the log files of the
authors' tar pits were analysed and evaluated. As
expected, there were no time patterns to be identified –
harvesters seem to wait for a random time between two
visits and they also have different length lists of pages to
visit that also influence when they will visit the next link
to the tar pit in their list.
Accidental human visitors by contrast usually visit the tar
pit for at most 15 minutes and have then left it. Those that
stayed so long seemed to have analysed the tar pit's
behaviour. This at least is made plausible by looking at
entry points harvesters used when visiting the tar pit:
Some webmasters who linked the tar pit understood well
how it worked and crafted their own, specific links to it.
As harvesters' timing is unpredictable, but humans' is, the
first piece of information to identify a harvester is that it is
not visiting the tar pit for only fifteen minutes. Humans
should not be blocked from visiting other web sites, but
harvesters should.
If our assumption from the log file is true, that human
visitors who click on more than one link in the tar pit are
likely to be people who try to understand how the tar pit
works, it might be safe to also assume that those people
will understand why their access to other web pages has
been blocked for a certain time.
So the real problem are “one link visitors” who by
accident came across the harvester trap. To avoid them to
be banned from web page access for too long, the ban is
imposed depending of the amount of visits during a
certain time period.
Another important piece of information derived from log
file analysis was that a non negligible fraction of
harvesters are operated from dynamic dial-in IPs, i.e. their
IP address is changing at least every 24 hours. Therefore,
it should be avoided to block IP addresses for more than
24 hours, if, after 24 hours after the first harvesting report
from this address has occurred, harvesting suddenly
ceased.

5. Blocking Harvesters
To block harvesters, the Apache1 output filter presented at
last years CNIS [1] that provided a solution to
dynamically obfuscate email addresses, has been
enhanced to look up in a database of known harvesters
whether the IP address of the machine requesting a web
page from the Apache server is listed in the database of
known harvesters. This database is populated with data
from the combined SMTP HTTP tar pit and regularly
maintained in a way, that, if an IP is found in the database,
the output filter knows, that this IP is to be blocked.
If a blocked IP has been identified, a preconfigured web
page is delivered informing the visitor that his IP was
blocked due to harvesting and giving him advice on what
to do if he feels to have received this message in error.
For obvious reasons we recommend to offer only
obfuscated email addresses on this page as it will mostly
be seen by harvesters and not humans. However, it is a
good suggestion to politely explain why access has been
denied, just in case the visitor uses a dynamic IP still
blocked from its previous owner.

6. Test setup
6.1. Tar pits
To test the concept, a combined tar pit has been installed
on three servers in the web. Each of those machines
served at least three domains, where on each machine one
domain was registered among the generic and country
code top levels and the others were DynDNS2 domains.
Under each domain, subdomains could randomly be
choosen – this was supported by both the webserver and
the DNS configuration. This was done to allow a high
degree of obfuscation and to trick harvesters that only
allow a certain amount of links for each virtual server.
One of those virtual servers has been configured to be the
mail exchange (MX) for all domains used for tar pitting.
This seems reasonable, as in previous tests, the SMTP tar
pit had much less requests to handle than the HTTP tar
pit.
We decided on using three tar pits in three different
networks to both have a bigger chance to catch harvesters
and to reduce the risk of network failure.

6.2. Storing Harvesters' IPs
In our test setup we decided to keep the installation
process as simple and therefore stable as possible. Thus,
we decided to use a MySQL3 database to store the IPs and
access times on the tar pit. MySQL already implements
the necessary serialisation required to handle parallel
requests from different servers, it has an acceptable level
of access control for our test setup, it is easily accessible
both from Perl we used for the Apache output filter and
PHP used for the tar pit and it offers a well documented
interface to analyse and modify data stored in the
database.

1 http://httpd.apache.org
2 http://www.dyndns.com Dynamic DNS allows a domain name such

as example.org to be bound to frequently changing IP addresses. It
also offers DNS services for free.

3 http://www.mysql.com

To satisfy our safety requirements, we installed MySQL
on a seperate, hardened server guarded by some firewalls
and used reverse SSH-tunnels from this server to the tar
pit servers to encrypt and secure the connection to the
database. By using a reverse SSH tunnel the database
server was to initiate the connections and not the exposed
tar pits, that are likely to become
the target of an attack when a spammer detects that one of
the tar pit machines carries a tar pit that caught his
harvester, and thinks of revenge. We restricted the access
rights for the database user, which the tar pits use to
connect to the database to a bare minimum: it was only
allowed to perform insert statements on one table.

6.3. Imposing bans on IPs
To analyse tar pit access, we decided to use another Perl
programme. This programme would determine which IPs
have been banned long enough and delete those outdated
IPs from the database.
We decided to keep the decision logic out of the Apache
output filter to both keep its performance as high as
possible and to have an easy opportunity to modify the
logic according to our findings during testing. If we had
implemented the logic into the output filter , any
modification would have required to restart Apache, as
mod_perl1 precompiles output modules upon the
webserver's start and would not notice changes made to
the module while the server is running.
We found that the ban time should increase with the
square of the number of visits. We decided a minimum
ban time of fifteen minutes. Formula 1 describes the basic
ban time algorithm we used.

The reason for using a quadratic growth of ban time was
to reflect the increasing likelihood for a harvester by one
IPs visit count. We choose the fifteen minute minimum
ban by looking at our tar pits log files that indicated that
most often harvesters would return within the first ten
minutes of their first visit to the tar pit. We also took into
account that accidental human visitors should not be
blocked for too long. To compare and optimise ban time
formulas is part of our still ongoing testing.
As described above, some harvesters use dial-in accounts
with dynamic IP addresses that change after 24 hours. To
avoid banning the next person who would inadvertly
receive this IP, if a IP address has been reported for
harvesting within the last 25 hours and no harvesting has
occurred during the last hour, this IP is removed from the
harvester list. This is only done once after 25 hours of the
first harvesting report of a IP in the database.
As soon as the ban has expired, all entries from the
database will be removed to allow the Apache output filter
to just look up an IP in the database, allowing maximum
search performance. So, any IP listed in the database is a
harvester.

1 http://perl.apache.org

6.4. Apache output filter
We enhanced the Apache output filter presented in [1] to
test if the remote IP is listed in our database of known
harvesting hosts. If the IP is found, a special web page is
sent and regular page data is omitted.
Although Apache allows filtering in almost any stage of
its process handling [16], we chose not to create an
additional filter residing for example in the input chain,
but to stick to our output filter, as we wanted to use its
email obfuscation functionality if the web page is being
delivered to a not banned IP. And we wanted to keep
things simple for testing purposes.
However, using an output filter to only deliver a static
page forces the web server to do all processing of the web
page before it is possibly thrown away by the filter. In a
non-testing environment, it might be useful to use an input
filter instead to reduce the workload on the server.
It is worth noticing that the position where the filter is
implemented in the processing chain is only a question of
performance but not on whether the concept is effective or
not. In our test setup, we were able to accept small
performance trade offs, as we supposed that most visits to
our test page will be real people and harvester visits
would make up for less than 1 percent of all visits.
Furthermore, our test web site consisted only of static
pages, so the webserver would not require to much
processing power to first prepare each page.

6.5. Efficiency of this setup
The test setup was running for ten weeks. The website had
an average of 899 hits per day.
In terms of delivery perfomance of the web page, our test
setup is almost as fast as the output filter solution we
presented in [1]. This additional filter's impact on the
webserver's overall performance is therefore small and
acceptable compared to its promised spam reduction.
Our test web server's log files documented, that some
visitors were already denied access to the web site. On
average 2% of all visits to the web page were blocked due
to the remote IP being blacklisted. By comparing IPs, we
did not find any IP that has been blocked to have later or
earlier accessed the web page. This indicates that the
choosen block time algorithm seems to fit.
Logfile analysis did not show any blocked access by
legitimate users or spiders, like GoogleBot. This indicates,
that the harvester detection by using our combined SMTP-
and HTTP-tar pits is working efficiently.
It is however possible that harvesters visited the web page,
that were never caught by our tar pits. This is likely
because there were still only a few tar pits installed in the
world wide web.
Neither our test email accounts nor real user accounts
published on this page did receive any spam.
However, by blocking at least some of the harvesters –
even in a simple test setup – and by not blocking
legitimate users, from our point of view, using this
dynamic approach to prevent spammers from collecting
email addresses from web pages is efficient. A larger scale
test implementation is planned and will be used to further
verify our findings.

Formula 1: ban time (tban) in seconds depending on visit count (v)
tbanv =v

2⋅900 sec

7. Possible enhancements
The basic setup we used for testing offers some
possibilities for further enhancement. As the test setup
does not keep record on harvester IPs, harvesters could
unlock their IP if they stopped harvesting every 24 hours
for one hour. In this case, they would only be locked for
one day.
However this would require spammers to know how a
harvester is identified. As the setup we provide in this
paper is highly modular and offers many ways to
configure the length of the time ban imposed, each user
could easily decide to alter our suggestions and thereby
further obfuscating the decision criteria.
Another improvement would be an automatic report on
the existence of a harvester to the provider of the IP
address harvesting has been reported from with a view to
shut down the malicious machine. This would increase the
economical and legal risk a spammer takes and expose
him at an earlier stage than sending spam. [17] e.g. reports
on identifying harvester's users by feeding harvesters
specially created, unique email addresses and thereby
documented that harvesters are often run from within the
spamming company, as spammers still do not see any
need to hide their harvesting activity.

8. Conclusions
Trying to prevent harvesters to collect email addresses of
possible spam victims has already been described to be
effective [1]. The usage of combined SMTP and HTTP
tar pits to trap harvesters is also powerful [2]. By using a
combined SMTP and HTTP tar pit to identify harvesters,
it is possible to lock out harvesters from a certain web
page and thereby prevent them to collect email addresses
and links to other web pages there. This combination
helps protecting the Internet from harvesting activity and
safeguards the mail addresses published on this web page.
Further research is aimed at establishing a secure and
covert communication channel between tar pits to safely
exchange data on their visitors, as the reverse ssh tunnel
used in the described test setup is only suitable for testing
purposes. We also plan to conduct research into a secure
and covert information interchange between tar pits to
give them the possibility to dynamically link to each
other, which would help to create a broader and
dynamically changing base of tar pits, which in turn would
increase the probability of harvesters being caught in them
and therefore help identifying harvesters earlier.

References
[1] Eggendorfer, Tobias; Keller, Jörg, Preventing

Spam by Dynamically Obfuscating Email-
Addresses, Proceedings of CNIS 2005, Phoenix,
2005

[2] Eggendorfer, Tobias; Keller, Jörg, Combining
SMTP and HTTP tar pits to proactively reduce
spam, Proceedings of SAM 2006, Las Vegas,
Nevada, 2006

[3] Spam Daily News, Gmail servers blacklisted by
SpamCop again,

http://www.spamdailynews.com/publish/GMail_ser
vers_blacklisted_by_SpamCop_again.asp, 2006

[4] McWilliams, Brian, SpamCop blocking some
Gmail servers,
http://spamkings.oreilly.com/archives/2006/01/,
2006

[5] McWilliams, Brian, AOL lands on spam blacklist,
http://spamkings.oreilly.com/archives/2005/04/aol
_lands_on_sp.html, 2005

[6] Gansterer, Wilfried et. al., Anti-spam methods -
state of the art, Institute of Distributed and
Multimedia Systems, University of Vienna, 2005

[7] Donelli, Giovanni, Email Interferometry,
Proceedings of Spam Conference 2006,
Cambridge, MA, 2006

[8] Eggendorfer, Tobias, Comparing SMTP and HTTP
tar pits in their efficiency as an anti-spam-measure,
Proceedings of Spam Conference 2006,
Cambridge, MA, 2006

[9] ETForecasts, Computers in use. Forecast by
Country,
http://www.etforecasts.com/products/ES_cinusev2.
htm, 2005

[10] Eggendorfer, Tobias, Methoden der präventiven
Spambekämpfung im Internet (in German:
Methods of preventive spam abatement in the
Internet), Masterthesis at Fernuniversität in Hagen,
München, Hagen, 2005

[11] Hemenway, Kevin, Calishain, Tara, Spidering
Hacks. 100 Industrial-Strength Tips & Tools,
O'Reilly, Sebastopol, 2003

[12] W3C, W3C Recommendations. Appendix B:
Performance, Implementation and Design,
http://w3.org/TR/REC-html40/appendix/notes.html

[13] Li, Kang et al., Resisting Spam Delivery by TCP
Damping in Proceedings of CEAS 2004, Mountain
View, CA, 2004

[14] Klensin, John (Editor), RFC2821: Simple Mail
Transfer Protocol,
http://www.ietf.org/rfc/rfc2821.txt, 2001

[15] Grosse, Paul, SMTarPit v0.6.0,
http://www.fresh.files2.serveftp.net/smtarpit/index.
html, 2006

[16] Stein, Lincoln D., MacEachern, Doug, Writing
Apache Module with Perl and C, O'Reilly,
Sebastopol, 1999

[17] Rehbein, Daniel A., Adressensammler
identifizieren - Ein Beispiel (in German: Identify
address collectors – an example),
http://spamfang.rehbein.net

