
PERIOD LENGTHS OF CHAOTIC PSEUDO-RANDOM NUMBER
GENERATORS

Jörg Keller Hanno Wiese
FernUniversität in Hagen
LG Parallelität und VLSI
58084 Hagen, Germany

joerg.keller@fernuni-hagen.de

ABSTRACT
Cryptographic communication protocols frequently em-
ploy random numbers to achieve desirable properties. Of-
ten, generators for pseudo-random numbers (PRNGs) are
employed. A class of PRNGs that currently gains popular-
ity are chaotic PRNGs which are derived from chaotic sys-
tems in physics. While their mathematical properties make
them promising, typical implementations of such genera-
tors use IEEE 754 floating point representations instead of
real numbers. We show that this leads to periods that are
much shorter than expected, and thus renders these PRNGs
potentially insecure.

KEY WORDS
Cryptographic protocols, pseudo-random number genera-
tors, random mappings, chaotic systems.

1 Introduction

Many cryptographic protocols need random numbers to
achieve their objectives. Instead of random numbers, most
generators supply pseudo-random numbers. There is a
wealth of pseudo-random number generators (PRNGs) for
cryptographic applications. Every PRNG should have a
reasonably long period before its output sequence repeats
itself, and its output sequence should pass statistical test
suites so that it sufficiently resembles a truly random se-
quence. A cryptographic PRNG additionally should have
the property that its future behaviour cannot be predicted
from its past output [9].

In recent years, a class of algorithms calledchaotic
PRNGs have appeared in the literature. Those chaotic
PRNGs originate from physics. Their states is a real in
the interval[0 : 1], their output bit is computed as a func-
tion of the state. In the simplest case, ifs ≥ 0.5, then the
output is 1, else the output is0. The state transition func-
tion is a functionf : [0 : 1] → [0 : 1] that exhibits chaotic
behaviour. Because of this chaotic behaviour, the output is
assumed to have desirable statistical properties.

If such an algorithm is implemented on a contempo-
rary computer, the reals are typically implemented as float-
ing point numbers, normally following the standard IEEE
754. Thus, the setS of representations available for the
interval [0 : 1] is finite, e.g. the sizen of S is about

230 for single precision floats. The state transition func-
tion changes fromf to a functionf̃ : S → S, where for
x ∈ S, the valuef̃(x) corresponds to an evaluation off
with IEEE 754 arithmetic onx. Thus the implementation
of a chaotic PRNG is a finite state automaton with state
transition functionf̃ . Thus, it also has a period with a fi-
nite length. The period length is an important parameter of
a cryptographic PRNG, because if it is too short, then the
PRNG is suspectible against attacks.

Restricting a chaotic system to a finite universe al-
ways can cause problems because the Lyapunov exponent
is not greater than zero anymore. In order to test the quality
of a finite-state PRNG, one can apply statistical tests to its
output sequence, see e.g. [8] for theoretical underpinnings,
or the Diehard, NIST and other suites for practice. How-
ever, we will follow a different path, that directly allows to
test the period length of implementations.

As f has chaotic properties, one assumesf̃ to look
rather “random”, i.e. as if chosen equiprobable from the set
of all functions fromS to S, which has a size of|S||S|.
Such a situation has been called arandom mapping, and
expected values have been derived [3] e.g. for the length of
the longest cycle, which is the best period to be hoped for in
such a mapping. For a random mapping on a setS of size
n, the expected length of the longest period isΘ(

√
n), with

a constant factor close to 1, the largest connected compo-
nent has an expected size of about0.7 ·n, and the expected
number of connected components is about0.5 · ln n [3].
Hence, also a floating point implementation of a chaotic
PRNG should have at least such a behaviour.

We have implemented several several chaotic PRNGs
and computed their period experimentally. Our findings
are that in all cases, the period lengths are much shorter
than expected. Thus, despite the desirable mathematical
properties of the chaotic functions, their use in floating-
point based implementations of PRNGs cannot be recom-
mended. Our analysis of the logistic map partly explains
the experimental results.

The remainder of this paper is organized as follows.
In Section 2, we present the investigated chaotic functions.
In Section 3, we review our method to compute the periods
in random mappings. In Section 4, we present experimen-
tal results. In Section 5, we underpin our findings by an
analysis of the logistic map, and in Section 6, we conclude.

2 Chaotic Functions

The definitions of a chaotic functionf : R → R, whereR
is a an interval in the reals, vary widely. Most definitions
agree on the following properties of a sequence of points
x, f(x), f(f(x)), . . . [2, 5]:

• f reacts sensibly to changes inx, i.e. even small
changes to the value ofx result in large changes of
the sequence.

• f is topologically transitive, i.e. almost every element
of R can be connected to almost every other element
of R by a finite sequence.

• f is topologically dense, i.e. even small intervals ofR
contain periodic points1 of f .

A popular chaotic function, that underlies also some
other chaotic functions, is the so-calledlogistic map [1]:

f1 : [0 : 1] → [0 : 1]

f1(x) = a · x · (1 − x), a ≈ 4 .

Another, so-called trigonometric chaotic function, was pre-
sented in [6]:

f2 : [0 : 1] → [0 : 1]

f2(x) = sin2
(

z · arcsin
√

x
)

, z > 1 .

A third, k-dimensional function [7], is defined by:

fk
3 : [0 : 1]k → [0 : 1]k

fk
3 (x1, . . . , xk) = (y1, . . . , yk)

y1 = (1 − ε) · f1(x1) + ε · f1(xk)

yi = (1 − ε) · f1(xi) + ε · f1(xi−1)

i ≥ 2, ε ∈ (0 : 1) .

While this function is intended as a stream cipher, we note
that a stream cipher is also a kind of pseudo-random num-
ber generator that generates a random key stream that is
mixed with the plain text to form the cipher text. We will
consider variants off3 for k = 2 andk = 4. Note that for
k = 2, we get a special case ifε = 0.5: After one step,
y1 = y2 and thusf3 reduces tof1.

3 Computing Periods of Random Mappings

A finite state machine with state setS of sizen and state
transition functionf̃ can be represented by a directed graph
Gf with node setS and edges(x, f̃(x)) for eachx ∈ S,
i.e. each node has exactly one outgoing edge. Each weakly
connected component (wcc) of such a graph consists of one
cycle and a number of trees directed towards their roots,
where the roots connect the trees and the cycle. An exam-
ple is depicted in Figure 1.

1These are points to which the sequence returns after a finite number
of steps when starting from there.

14

8

2

9

12

4

3

01

15

7

5

611

10 13

Figure 1. Example of a state transition graph for 16 nodes.
Tree nodes are shaded, root nodes are encircled. The cycle
lengths in the two weakly connected components are 5 and
3, respectively.

If n is small enough that the adjacency list fits into
memory, then one can start at some nodexi not yet visited
and follow the path starting inxi, marking all visited nodes
with tagi, until we meet a visited nodey for the first time.
If the tag ofy also isi, then we have found a new cycle,
the length of which we can compute by starting fromy un-
til we meet it again. Then we increasei by 1. If y’s tag
is different fromi, we have hit on a path already treated,
and replace all tags fromxi to y by y’s tag. We start with
i = 1 at an arbitraryx1, and continue until all nodes are
visited. The runtime of this algorithm isO(n), and all cy-
cles and their lengths are found. The number of the cycles
corresponds to the number of the weakly connected com-
ponents. Counting the nodes with tagi computes the size
of weakly connected componenti.

If n is too large to hold the adjacency list in memory,
we also follow paths from some starting nodes, but mark
only a small fraction of the nodes on the way. So we will
detect when we have hit a new cycle, and can abort a path
in a known component early when we hit a marked node.
If we use all nodes as starting nodes, then we also get the
complete picture. If we use only a random sample ofk
nodes as starting nodes, then we will at least get the cy-
cles of the larger components, which tend to be the longest
ones. As the expected length of a path to a cycle, and the
expected length of the longest cycle both areO(

√
n) for a

randomly choseñf , the expected runtime of this algorithm
is O(k

√
n). It can be parallelized on cluster computers to

achieve results faster [4].

4 Experimental Results

We have investigated all the chaotic PRNGs from Section 2
with the methods of Section 3. In our implementation, we

used floating point arithmetic compliant to the IEEE 754
standard. We have tried to achieve state space sizes of the
same order for all four cases. Therefore we have used dou-
ble precision arithmetic forf1 andf2, and single precision
arithmetic forf2

3 andf4
3 .

For single precision arithmetic, there are223 · (27 −
1) + 1 ≈ 230 representations of reals in the interval[0 : 1],
if denormalized numbers are used as well. There are 23 bits
for the mantissa, and with the characteristics values from0
to 126 we represent the interval[0 : 1). Finally, we have
one representation for 1. For double precision arithmetic,
there are252 · (210 − 1)+1 ≈ 262 representations2 of reals
in the interval[0 : 1], as the mantissa has now 52 bits, and
one can use characteristics values from0 to 1022 for the
interval[0 : 1).

Thus, forf1 andf2 we have state spaces of about262,
and forf2

3 we have a state space of about(230)2 = 260. In
order to have a similar state space size forf4

3 as well, we
artificially shortened the mantissa in this case so that the
state space size was264.

Each chaotic function was investigated by the last al-
gorithm of the previous section, with a random sample of
starting values, until228 states had been seen. Our findings
are as follows.

The parameter settings below (a, z, ε) are chosen to
reflect the known chaotic behaviour of the respective func-
tions.

4.1 Logistic Map

For the logistic mapf1, we would expect a longest cycle
of size about2.4 · 109, and about 22 weakly connected
components. In our experiments, which we conducted for
a = 3.80, 3.90, 3.91, . . . , 3.99 we only hit one component,
which indicates that further components, if they exist, must
be very small, because none of the randomly chosen start-
ing points lay in them. The cycle lengths in this component
ranged between8 · 106 (a = 3.92) and67 · 106 (a = 3.99),
which is about 40 times smaller than expected even for the
largest of those cycles.

To find out whether this map contains any further
weakly connected components, we re-implementedf1 with
single precision arithmetic, in order to be able to explore
the graphGf completely. Here we would expect about
10 components and a longest cycle of size about57, 000.
For the same values ofa as above, we found from 5
(a = 3.80, 3.94) to 10 (3.95) components, and longest cy-
cles of lengths from345 (a = 3.96) to 3, 630 (a = 3.98).
So while there are more components, there is one compo-
nent that is very large (about109 nodes), and the cycles
again are much shorter than expected.

2IEEE 754 floating point numbers store the characteristic (exponent
minus fixed bias) instead of exponents so that it is a non-negative number.

a = 3.90 a = 3.99
ε #wcc longest cycle #wcc longest cycle
0.05 3 2,652,338 2 2,815,820
0.1 5 61,552 4 319,817
0.2 26 6,203 7 77,543
0.3 10 4,073 10 790
0.4 12 1,621 6 1,956
0.5 10 4,172 11 2,077
0.6 13 1,222 10 1,605
0.7 8 1,764 12 1,426
0.8 13 5,762 14 391,838
0.9 13 122,783 4 1,998,897
9.95 6 701,680 3 1,832,524
0.99 6 10,682 6 4,677,937

Table 1. Experimental results for functionf2
3 .

4.2 Trigonometric Function

For the trigonometric functionf2, that has the same state
space size as the logistic map, we also would expect a
longest cycle of size about2.4 · 109, and about 22 weakly
connected components. We performed our experiments for
z = 2, 3, 3.99, 4, 4.11, 20, 150. In each case, we only hit
one component, so that we assume a situation with one
overwhelmingly large component, similar to the logistic
map. The length of the longest cycle ranges from1.7 · 106

(z = 3.99) to 91.2 · 106 (z = 4.0). This is between 25 and
1, 400 times shorter than expected!

4.3 Two-Dimensional Function

For the function f2
3 , we expect about 21 weakly

connected components and a longest cycle of length
about 0.83 · 109. We used parameter valuesε =
0.05, 0.1, 0.2, . . . , 0.9, 0.95, 0.99 anda = 3.90, 3.99. The
number of components (#wcc) and the longest cycle
lengths found are depicted in Table 1. We see large spans
for component count and cycle lengths, but even the longest
cycles found are 200 times shorter than expected, while the
cycles are very short in the majority of cases.

Astonishingly, while values ofε close to 0 or 1 are
said to bring most chaos, fora = 3.90 andε = 0.99 we see
a very short cycle.

4.4 Four-Dimensional Function

The expected number of components here is about 22, the
expected length of the longest cycle is about3.36 · 109.
We used the same values forε, but restricted toa = 3.99.
The number of components ranges from 2 (ε = 0.95)
to 52 (ε = 0.05), with half the cases having at most 10
components. The maximum cycle length ranges from 496
(ε = 0.7) to 1,527,499 (ε = 0.95), with all except two be-
ing shorter than 50,000. Basically, the same comments as

for the two-dimensional function apply, with the difference
that the cycle lengths are even farther off from the expected
value.

5 Analytical Underpinning

We partly explain the experimental findings for chaotic
PRNGs by analyzing the logistic mapf1(x) = a·x·(1−x).
As a is typically chosen close to4, we choosea = 4 to
simplify the analysis. The derivative of the logistic map is
f ′
1(x) = −8x+4, which is strictly monotonous decreasing

on [0 : 0.5].
The IEEE 754 floating point representation partitions

the interval[0 : 1) into sub-intervalsIi = [2−i : 2−i+1)
of length2−i, where1 ≤ i ≤ 127, and one sub-interval
I128 = [0 : 2−127), the so-called denormalized numbers.
In many implementations, the only denormalized number
allowed is zero. Hence, we will not further consider that in-
terval. In each sub-intervalIi, the223 representations (sin-
gle precision) are equi-spaced with distance2−i−23. Obvi-
ously,

f1(2
−i) = 2−i+2 − 2−2i+2

f1(2
−i+1) = 2−i+3 − 2−2i+4 .

We thus see that the sub-intervalI1 = [0.5 : 1] is mapped
onto f1(I1) = [0 : 1], that the sub-intervalI2 = [0.25 :
0.5) is mapped ontof1(I2) = [0.75 : 1), i.e. half of sub-
interval I1, and that fori ≥ 3, each sub-intervalIi is
mapped onto parts of the two neighbouring sub-intervals
Ii−1 = [2−i+1 : 2−i+2) andIi−2 = [2−i+2 : 2−i+3); from
the former, a fraction of2−2i+2/2−i+1 = 2−i+1 is used,
from the latter, a fraction of(2−i+2 − 2−2i+4)/2−i+2 =
1 − 2−i+2. Thus, fori ≥ 3, a sub-interval is mapped onto
a fraction of1 − 2−i+1 of a sub-interval. Hence, we see
a slight form of compression by mapping eachIi, where
i ≥ 2.

As soon asx ≥ 0.5, the sub-interval is mapped onto
the union of all sub-intervals.

By solvingy = 4x(1−x) for x ∈ [0.5 : 1], we obtain
x = (1 +

√
1 − y)/2. We see foryi = 2−i that

xi = 0.5 + 0.5 ·
√

1 − 2−i

and thus a fraction ofai = (xi − xi−1)/0.5 of the223 rep-
resentations from intervalI1 is mapped onto sub-intervalIi

by functionf1. Table 2 tabulates the fractions for intervals
I1 to I5. The fractions decrease very quickly.

Therefore, as soon asx has once reached the interval
I1, which it will do starting fromIj in only j/2 to j steps,
from the following step on only a small fraction of the rep-
resentations will lead outside sub-intervalI1. Because of
the compression mentioned above, and because at mosti
steps are needed to reachI1 from Ii, the number of repre-
sentations in use afterI1 has been reached can be bound
from above by

223 ·
∑

i≥1

i · ai ≈ 1.56 · 223 ,

i ai = (xi − xi−1)/0.5
1 0.707106781
2 0.158918623
3 0.069388943
4 0.03283149
5 0.016005148

Table 2. Fractions ofI1 mapped toIi by f1.

which is much lower than the230 representations available
in [0 : 1].

For 32-bit fix-point representations, where the repre-
sentations are equi-spaced over[0 : 1), we can take into
consideration the symmetric nature off1 between[0 : 0.5)
and[0.5 : 1). As f ′

1 is strictly monotonous decreasing on
[0 : 0.5), f ′

1(3/8) = 1, andf1 is strictly monotonous in-
creasing on[0 : 0.5], we see that each sub-interval[a : b]
with 0 ≤ a < b ≤ 3/8 is mapped byf1 onto a sub-interval
[f1(a) : f1(b)] with f1(b) − f1(a) > b − a. In particular,
the interval[0 : 3/8] is mapped onto[0 : 15/16], i.e. on av-
erage only 40% of the representations in[0 : 15/16] are a
target. The interval[3/8 : 1/2] is mapped onto[15/16 : 1],
i.e. on average each representation in[15/16 : 1] is twice
a target. Taking the symmetry off1 into account, the in-
terval [1/2 : 5/8] is also mapped to[15/16 : 1], and the
interval[5/8 : 1] is also mapped to[0 : 15/16]. Thus, in to-
tal, from15/16 of the representations about 40% are used
(each twice as target), and from1/16 of the representations
each is used four times as target, and thus about7/16 of
the available representations (1.75 · 230) are used. This in-
dicates that fix-point representations are better suited than
floating point representations to implement chaotic func-
tions.

6 Conclusions

We have investigated implementations of several chaotic
pseudo-random number generators (PRNG) on the basis of
IEEE 754 floating point numbers. Our focus was on com-
puting the finite period lengths of those implementations.
We have found that the periods are much shorter than fore-
casted by the theory of random mappings. An analysis of
the logistic map partly explains this behaviour. The mea-
sured values also do not allow to give hints which param-
eter combinations to choose to obtain somehow acceptable
cycle lengths. Thus implementations of chaotic PRNGs
based on floating point numbers cannot be recommended
for use in cryptographic applications, except if the num-
ber of pseudo-random bits to be delivered is very small,
in which case however many other methods of good qual-
ity exist. Future investigations will investigate fix-point
implementations of chaotic PRNGs, because our analysis
indicates that they are better suited to implement chaotic
functions.

References

[1] M. Ausloos, editor.The Logistic Map and the Route to
Chaos. Springer, 2006.

[2] R. L. Devaney.An Introduction to Chaotic Dynamical
Systems. Addison-Wesley, 1998.

[3] P. Flajolet and A. M. Odlyzko. Random mapping
statistics. InProc. Eurocrypt 89, pages 329–354, 1989.

[4] J. Heichler, J. Keller, and J. F. Sibeyn. Parallel storage
allocation for intermediate results during exploration
of random mappings. InProc. 20th Workshop Paral-
lel Algorithms, Computing Structures and System Soft-
ware (PARS ’05), pages 126–134, 2005.

[5] T. Kapitaniak and S. R. Bishop.The Illustrated Dictio-
nary of Nonlinear Dynamics and Chaos. Wiley, 1999.

[6] Z. Kotulski and J. Szczepanski. On constructive ap-
proach to chaotic pseudorandom number generators. In
Proc. Regional Conf. on Military Communication and
Information Systems (RCMIS 2000) vol. 1, pages 191–
203, 2000.

[7] P. Li, Z. Li, W. A. Halang, and G. Chen. A stream ci-
pher based on a spatiotemporal chaotic system.Chaos,
Solutions & Fractals, accepted for publication, 2005.

[8] U. Maurer. A Universal Statistical Test for Random Bit
Generators.J. Cryptology, 5:89–105, 1992.

[9] A. Menezes, P. van Oorshot, and S. Vanstone.Hand-
book of Applied Cryptography. CRC Press, 1996.

