PERIOD LENGTHS OF CHAOTIC PSEUDO-RANDOM NUMBER
GENERATORS

Jorg Keller

Hanno Wiese

FernUniversitat in Hagen
LG Parallelitat und VLSI
58084 Hagen, Germany
j oerg. kel | er @ er nuni - hagen. de

ABSTRACT

Cryptographic communication protocols frequently em-
ploy random numbers to achieve desirable properties. Of-
ten, generators for pseudo-random numbers (PRNGs) are
employed. A class of PRNGs that currently gains popular-
ity are chaotic PRNGs which are derived from chaotic sys-
tems in physics. While their mathematical properties make
them promising, typical implementations of such genera-
tors use IEEE 754 floating point representations instead of
real numbers. We show that this leads to periods that are
much shorter than expected, and thus renders these PRNGs
potentially insecure.

KEY WORDS
Cryptographic protocols, pseudo-random number genera-
tors, random mappings, chaotic systems.

1 Introduction

Many cryptographic protocols need random numbers to
achieve their objectives. Instead of random numbers, most
generators supply pseudo-random numbers. There is a
wealth of pseudo-random number generators (PRNGSs) for
cryptographic applications. Every PRNG should have a
reasonably long period before its output sequence repeats
itself, and its output sequence should pass statistical tes
suites so that it sufficiently resembles a truly random se-
guence. A cryptographic PRNG additionally should have
the property that its future behaviour cannot be predicted
from its past output [9].

In recent years, a class of algorithms callgwotic
PRNGs have appeared in the literature. Those chaotic
PRNGs originate from physics. Their states a real in
the intervall0 : 1], their output bit is computed as a func-
tion of the state. In the simplest casesif> 0.5, then the
output is 1, else the output @5 The state transition func-
tion is a functionf : [0 : 1] — [0 : 1] that exhibits chaotic
behaviour. Because of this chaotic behaviour, the output is
assumed to have desirable statistical properties.

If such an algorithm is implemented on a contempo-
rary computer, the reals are typically implemented as float-
ing point numbers, normally following the standard IEEE
754. Thus, the sef of representations available for the
interval [0 : 1] is finite, e.g. the sizex of S is about

230 for single precision floats. The state transition func-
tion changes frony to a functionf : S — S, where for

x € S, the valuef(x) corresponds to an evaluation pf
with IEEE 754 arithmetic on:. Thus the implementation
of a chaotic PRNG is a finite state automaton with state
transition functionf. Thus, it also has a period with a fi-
nite length. The period length is an important parameter of
a cryptographic PRNG, because if it is too short, then the
PRNG is suspectible against attacks.

Restricting a chaotic system to a finite universe al-
ways can cause problems because the Lyapunov exponent
is not greater than zero anymore. In order to test the quality
of a finite-state PRNG, one can apply statistical tests to its
output sequence, see e.g. [8] for theoretical underpirsning
or the Diehard, NIST and other suites for practice. How-
ever, we will follow a different path, that directly allows t
test the period length of implementations.

As f has chaotic properties, one assunfe® look
rather “random”, i.e. as if chosen equiprobable from the set
of all functions fromsS to S, which has a size ofS|*!.
Such a situation has been calledandom mapping, and
expected values have been derived [3] e.g. for the length of
the longest cycle, which is the best period to be hoped forin
such a mapping. For a random mapping on assef size
n, the expected length of the longest perio®is/n), with
a constant factor close to 1, the largest connected compo-
nent has an expected size of about- n, and the expected
number of connected components is abeat- Inn [3].
Hence, also a floating point implementation of a chaotic
PRNG should have at least such a behaviour.

We have implemented several several chaotic PRNGs
and computed their period experimentally. Our findings
are that in all cases, the period lengths are much shorter
than expected. Thus, despite the desirable mathematical
properties of the chaotic functions, their use in floating-
point based implementations of PRNGs cannot be recom-
mended. Our analysis of the logistic map partly explains
the experimental results.

The remainder of this paper is organized as follows.
In Section 2, we present the investigated chaotic functions
In Section 3, we review our method to compute the periods
in random mappings. In Section 4, we present experimen-
tal results. In Section 5, we underpin our findings by an
analysis of the logistic map, and in Section 6, we conclude.

2 Chaotic Functions

The definitions of a chaotic functiofi: R — R, whereR
is a an interval in the reals, vary widely. Most definitions
agree on the following properties of a sequence of points

x, f(x), f(f(2)),.. [2,5]:

e [reacts sensibly to changes in i.e. even small
changes to the value af result in large changes of
the sequence.

e fistopologically transitive, i.e. almost every element
of R can be connected to almost every other element
of R by a finite sequence.

e fistopologically dense, i.e. even small intervalgdf
contain periodic pointsof f.

A popular chaotic function, that underlies also some
other chaotic functions, is the so-callegjistic map [1]:

filz) = a-xz-(1-2), ax4.

Another, so-called trigonometric chaotic function, was-pr
sented in [6]:

fo o+ [0:1]—=10:1]
f2(x) = sin®(z-arcsiny/z), 2> 1
A third, k-dimensional function [7], is defined by:
FAE (RN TR (RN
(@1, .. o) (Y1, Yk)
i = (1—¢)- fi(zr) +e- fi(ar)
yi = (1-) fi(@i) +e- fi(wiz1)
i > (

0:1).

While this function is intended as a stream cipher, we note
that a stream cipher is also a kind of pseudo-random num-
ber generator that generates a random key stream that is
mixed with the plain text to form the cipher text. We will
consider variants of; for k = 2 andk = 4. Note that for

k = 2, we get a special casedf= 0.5: After one step,

y1 = yo and thusfs reduces tgf;.

3 Computing Periods of Random Mappings

A finite state machine with state s€tof sizen and state
transition functionf can be represented by a directed graph
G with node setS and edgesz, f(z)) for eachz € S,

i.e. each node has exactly one outgoing edge. Each weakly
connected component (wcc) of such a graph consists of one
cycle and a number of trees directed towards their roots,
where the roots connect the trees and the cycle. An exam-
ple is depicted in Figure 1.

1These are points to which the sequence returns after a finitdoer
of steps when starting from there.

Figure 1. Example of a state transition graph for 16 nodes.
Tree nodes are shaded, root nodes are encircled. The cycle
lengths in the two weakly connected components are 5 and
3, respectively.

If n is small enough that the adjacency list fits into
memory, then one can start at some nogaot yet visited
and follow the path starting im;, marking all visited nodes
with tags, until we meet a visited nodgfor the first time.
If the tag ofy also isi, then we have found a new cycle,
the length of which we can compute by starting frgmn-
til we meet it again. Then we increasdy 1. If y's tag
is different fromi, we have hit on a path already treated,
and replace all tags from; to y by y's tag. We start with
¢+ = 1 at an arbitraryz;, and continue until all nodes are
visited. The runtime of this algorithm ©9(n), and all cy-
cles and their lengths are found. The number of the cycles
corresponds to the number of the weakly connected com-
ponents. Counting the nodes with tagomputes the size
of weakly connected componeint

If nis too large to hold the adjacency list in memory,
we also follow paths from some starting nodes, but mark
only a small fraction of the nodes on the way. So we will
detect when we have hit a new cycle, and can abort a path
in a known component early when we hit a marked node.
If we use all nodes as starting nodes, then we also get the
complete picture. If we use only a random samplée:of
nodes as starting nodes, then we will at least get the cy-
cles of the larger components, which tend to be the longest
ones. As the expected length of a path to a cycle, and the
expected length of the longest cycle both éxg/n) for a
randomly choserf, the expected runtime of this algorithm
is O(k+/n). It can be parallelized on cluster computers to
achieve results faster [4].

4 Experimental Results

We have investigated all the chaotic PRNGs from Section 2
with the methods of Section 3. In our implementation, we

used floating point arithmetic compliant to the IEEE 754
standard. We have tried to achieve state space sizes of the
same order for all four cases. Therefore we have used dou-
ble precision arithmetic fof; and f-, and single precision
arithmetic forf? and f3.

For single precision arithmetic, there &€ - (27 —
1) + 1 ~ 23Y representations of reals in the inter{@t 1],
if denormalized numbers are used as well. There are 23 bits
for the mantissa, and with the characteristics values fiom
to 126 we represent the interv) : 1). Finally, we have
one representation for 1. For double precision arithmetic,
there are°2 - (210 — 1) + 1 ~ 292 representatioff reals
in the interval[0 : 1], as the mantissa has now 52 bits, and
one can use characteristics values froro 1022 for the
interval[0 : 1).

Thus, forf, andf, we have state spaces of abafi,
and for 3 we have a state space of ab@2it’)? = 2. In
order to have a similar state space size fipras well, we
artificially shortened the mantissa in this case so that the
state space size wa$*.

Each chaotic function was investigated by the last al-
gorithm of the previous section, with a random sample of
starting values, untit?® states had been seen. Our findings
are as follows.

The parameter settings below, (z,) are chosen to
reflect the known chaotic behaviour of the respective func-
tions.

4.1 LogisticMap

For the logistic mapf;, we would expect a longest cycle
of size about2.4 - 10?, and about 22 weakly connected
components. In our experiments, which we conducted for
a = 3.80,3.90,3.91,. .., 3.99 we only hit one component,
which indicates that further components, if they exist, mus
be very small, because none of the randomly chosen start-
ing points lay in them. The cycle lengths in this component
ranged betwee®- 10° (a = 3.92) and67 - 10° (a = 3.99),
which is about 40 times smaller than expected even for the
largest of those cycles.

To find out whether this map contains any further
weakly connected components, we re-implemeifteslith
single precision arithmetic, in order to be able to explore
the graphG; completely. Here we would expect about
10 components and a longest cycle of size al5au000.

For the same values af as above, we found from 5

(a = 3.80,3.94) to 10 (3.95) components, and longest cy-
cles of lengths fron345 (¢ = 3.96) to 3,630 (a = 3.98).

So while there are more components, there is one compo-
nent that is very large (about® nodes), and the cycles
again are much shorter than expected.

2|EEE 754 floating point numbers store the characteristipgarnt
minus fixed bias) instead of exponents so that it is a nontivegaumber.

a=3.90 a=3.99

€ #wcce | longest cycle| #wcc | longest cycle
0.05 3 2,652,338 2 2,815,820
0.1 5 61,552 4 319,817
0.2 26 6,203 7 77,543
0.3 10 4,073 10 790

0.4 12 1,621 6 1,956
0.5 10 4,172 11 2,077
0.6 13 1,222 10 1,605
0.7 8 1,764 12 1,426
0.8 13 5,762 14 391,838
0.9 13 122,783 4 1,998,897
9.95 6 701,680 3 1,832,524
0.99 6 10,682 6 4,677,937

Table 1. Experimental results for functigi.

4.2 Trigonometric Function

For the trigonometric functiorfs, that has the same state
space size as the logistic map, we also would expect a
longest cycle of size abogt4 - 10°, and about 22 weakly
connected components. We performed our experiments for
z = 2,3,3.99,4,4.11, 20, 150. In each case, we only hit
one component, so that we assume a situation with one
overwhelmingly large component, similar to the logistic
map. The length of the longest cycle ranges fram. 10°

(z = 3.99)t091.2 - 105 (2 = 4.0). This is between 25 and

1, 400 times shorter than expected!

4.3 Two-Dimensional Function

For the function f2, we expect about 21 weakly
connected components and a longest cycle of length
about 0.83 - 10°. We used parameter values =
0.05,0.1,0.2,...,0.9,0.95,0.99 anda = 3.90,3.99. The
number of components (#wcc) and the longest cycle
lengths found are depicted in Table 1. We see large spans
for component count and cycle lengths, but even the longest
cycles found are 200 times shorter than expected, while the
cycles are very short in the majority of cases.
Astonishingly, while values of close to 0 or 1 are
said to bring most chaos, far= 3.90 ande = 0.99 we see
a very short cycle.

4.4 Four-Dimensional Function

The expected number of components here is about 22, the
expected length of the longest cycle is abdu6 - 10°.

We used the same values fgrbut restricted ta = 3.99.

The number of components ranges frome2 £ 0.95)

to 52 € = 0.05), with half the cases having at most 10
components. The maximum cycle length ranges from 496
(e =0.7)t0 1,527,4994 = 0.95), with all except two be-

ing shorter than 50,000. Basically, the same comments as

for the two-dimensional function apply, with the differenc
that the cycle lengths are even farther off from the expected
value.

5 Analytical Underpinning

We partly explain the experimental findings for chaotic
PRNGs by analyzing the logistic mdp(z) = a-z-(1—x).
As a is typically chosen close td, we chooser = 4 to
simplify the analysis. The derivative of the logistic map is
fi(z) = =8z +4, which is strictly monotonous decreasing
on[0:0.5].

The IEEE 754 floating point representation partitions
the interval[0 : 1) into sub-intervald; = [27¢ : 271
of length2—%, wherel < i < 127, and one sub-interval
I1as = [0 : 27127), the so-called denormalized numbers.
In many implementations, the only denormalized number
allowed is zero. Hence, we will not further consider that in-
terval. In each sub-intervd}, the223 representations (sin-
gle precision) are equi-spaced with distagcé23. Obvi-
ously,

9—it+2 _ 9—2i+2

fl (2—1') —
fl (2—i+1)

We thus see that the sub-interval= [0.5 : 1] is mapped
onto f1(I;) = [0 : 1], that the sub-interval, = [0.25 :
0.5) is mapped ontgf; (Iz) = [0.75 : 1), i.e. half of sub-
interval I;, and that fori > 3, each sub-interval; is
mapped onto parts of the two neighbouring sub-intervals
I = 2727 andl;_o = [27%F2 : 27743); from
the former, a fraction of=2¢+2 /2= = 2-i*1 js ysed,
from the latter, a fraction of2—¢+2 — 272i+4) /2=i+2 —
1 — 272, Thus, fori > 3, a sub-interval is mapped onto
a fraction of1 — 27! of a sub-interval. Hence, we see
a slight form of compression by mapping eakhwhere
7> 2.

As soon as > 0.5, the sub-interval is mapped onto
the union of all sub-intervals.

By solvingy = 4x(1 —z) forz € [0.5 : 1], we obtain
z = (1+ /T —y)/2. We see foy; = 2~ that

2; =0540.5-4/1—2"¢

and thus a fraction of; = (x; — x;_1)/0.5 of the 2% rep-
resentations from intervdl is mapped onto sub-interva|
by function f;. Table 2 tabulates the fractions for intervals
I, to I5. The fractions decrease very quickly.

Therefore, as soon ashas once reached the interval
I, which it will do starting fromZ; in only j/2 to j steps,
from the following step on only a small fraction of the rep-
resentations will lead outside sub-interval Because of
the compression mentioned above, and because atimost
steps are needed to reaGhfrom I;, the number of repre-
sentations in use aftdy has been reached can be bound
from above by

229.% "ia; ~1.56- 2%,

i>1

9—it+3 _ 9—2it4

a; = (.%'l — xi_l)/0.5
0.707106781
0.158918623
0.069388943
0.03283149
0.016005148

GAWN P

Table 2. Fractions of; mapped td; by f;.

which is much lower than th2*® representations available
in[0:1].

For 32-bit fix-point representations, where the repre-
sentations are equi-spaced oyer: 1), we can take into
consideration the symmetric nature fafbetweer{0 : 0.5)
and[0.5 : 1). As f] is strictly monotonous decreasing on
[0:0.5), f1(3/8) = 1, andf; is strictly monotonous in-
creasing orf0 : 0.5], we see that each sub-interyal: b
with 0 < a < b < 3/8 is mapped byf; onto a sub-interval
[fi(a) : f1(b)] with f1(b) — fi(a) > b — a. In particular,
the intervall0 : 3/8] is mapped ontd0 : 15/16], i.e. on av-
erage only 40% of the representationg(in 15/16] are a
target. The intervgB/8 : 1/2] is mapped ont§l5/16 : 1],

i.e. on average each representatiofilif/16 : 1] is twice

a target. Taking the symmetry ¢gf into account, the in-
terval[1/2 : 5/8] is also mapped td15/16 : 1], and the
interval[5/8 : 1] is also mapped tf) : 15/16]. Thus, in to-
tal, from 15/16 of the representations about 40% are used
(each twice as target), and fralyi16 of the representations
each is used four times as target, and thus albgu$ of

the available representations5 - 23°) are used. This in-
dicates that fix-point representations are better suitad th
floating point representations to implement chaotic func-
tions.

6 Conclusions

We have investigated implementations of several chaotic
pseudo-random number generators (PRNG) on the basis of
IEEE 754 floating point numbers. Our focus was on com-
puting the finite period lengths of those implementations.
We have found that the periods are much shorter than fore-
casted by the theory of random mappings. An analysis of
the logistic map partly explains this behaviour. The mea-
sured values also do not allow to give hints which param-
eter combinations to choose to obtain somehow acceptable
cycle lengths. Thus implementations of chaotic PRNGs
based on floating point numbers cannot be recommended
for use in cryptographic applications, except if the num-
ber of pseudo-random bits to be delivered is very small,
in which case however many other methods of good qual-
ity exist. Future investigations will investigate fix-pbin
implementations of chaotic PRNGs, because our analysis
indicates that they are better suited to implement chaotic
functions.

References

[1] M. Ausloos, editor.The Logistic Map and the Route to
Chaos. Springer, 2006.

[2] R. L. Devaney.An Introduction to Chaotic Dynamical
Systems. Addison-Wesley, 1998.

[3] P. Flajolet and A. M. Odlyzko. Random mapping
statistics. IrProc. Eurocrypt 89, pages 329-354, 1989.

[4] J. Heichler, J. Keller, and J. F. Sibeyn. Parallel sterag
allocation for intermediate results during exploration
of random mappings. IRroc. 20th Workshop Paral-
lel Algorithms, Computing Structures and System Soft-
ware (PARS’05), pages 126-134, 2005.

[5] T. Kapitaniak and S. R. Bisho@he lllustrated Dictio-
nary of Nonlinear Dynamics and Chaos. Wiley, 1999.

[6] Z. Kotulski and J. Szczepanski. On constructive ap-
proach to chaotic pseudorandom number generators. In
Proc. Regional Conf. on Military Communication and
Information Systems (RCMIS2000) vol. 1, pages 191—
203, 2000.

[7] P. Li, Z. Li, W. A. Halang, and G. Chen. A stream ci-
pher based on a spatiotemporal chaotic systénaos,
Solutions & Fractals, accepted for publication, 2005.

[8] U. Maurer. A Universal Statistical Test for Random Bit
GeneratorsJ. Cryptology, 5:89-105, 1992.

[9] A. Menezes, P. van Oorshot, and S. Vanstohland-
book of Applied Cryptography. CRC Press, 1996.

