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Abstract. We introduce a formalism which allows to treat computer architecture as a formal opti-

mization problem. We apply this to the design of shared memory parallel machines. While present

parallel computers of this type only support the programming model of a shared memory but often

process simultaneous access by several processors to the shared memory sequentially, theoretical

computer science offers solutions for this problem that are provably fast and asymptotically opti-

mal. But the constants in these constructions seemed to be too large to let them be competitive. We

modify these constructions under engineering aspects and improve the price/performance ratio by

roughly a factor of 6. The resulting machine has surprisingly good price/performance ratio even if

compared with distributed memory machines. For almost all access patterns of all processors into

the shared memory, access is as fast as the access of only a single processor.
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Figure 1: Concurrent Write on ALLIANT FX/2816

1 Introduction

Commercially available parallel machines can be classified as distributed memory ma-

chines or shared memory machines. Exchange of data between different processors is done

in the first class of machines by explicit message passing. In the second class programs on

different processors simply access variables in a common address space. Thus one gets a

more comfortable programming model.

One is tempted to suspect big differences between the hardware architectures of the two

classes, but this is actually not so. Processors of present shared memory machines1 tend

to have local memories as well as large caches, and the exchange of cache lines between

processors can be viewed as an automated way of message passing. As a consequence of

this implementation one gets a large variation of the memory access time depending on the

access patterns of the processors. In fact a single concurrent write of all say p processors of

a parallel machine to the same memory location might very well be slower than p accesses

of a single processor to its local memory. As an example figure 1 shows the time of a

concurrent write by p 	 �� � � � � � processors to the same memory location in an ALLIANT

FX/2816. Thus present shared memory machines support only the programming model but

not the timing behaviour of a true shared memory.

1Notable exceptions are Tera MTA and Cray T3E [5, 34].
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Parallel machines which support both the programming model and the timing behaviour

of true shared memory are called PRAMs in the theoretical literature. The problem of

simulating PRAMs by more technically feasible models has been extensively studied [4, 8,

12, 21, 25, 26, 32, 37, 38, 39]. The construction from [32], called the Fluent Machine, is

considered a promising candidate because of its combined simplicity and efficiency.

We will describe the design of a reengineered version of the Fluent Machine. We will

review a formalism from [28] which permits to compare cost–effectiveness of architectures.

It will turn out that the reengineered version of the Fluent Machine is more than 
 times

more cost–effective than the original machine and that it is surprisingly cost–effective when

compared to distributed memory machines.

In section 1.1 we define the formalism to compare machines. Section 1.2 describes the

theoretical PRAM model and principles of emulations on more realistic machines. Chapter

2 contains the description of the Fluent machine and the reengineered version. In chapter

3 we analyze both machines and compare them in the formalism given in section 1.1. In

chapter 4 we show that it is worthwhile to support concurrent accesses by hardware. In

chapter 5 we compare PRAMs and distributed memory machines.

1.1 Comparison of Machines

Definition 1 LetD be a design of a machine with cost cD. LetB be a program with runtime

tD on design D. B is called benchmark. We call cDtD the time depending cost function

TDC of design D with benchmark B.

A motivation for the TDC is the well–known price/performance ratio, if we take perfor-

mance as the reciprocal value of runtime at constant work B.

We determine cD and tD of a machine by specifying the whole machine by circuits and

switching networks. Each type of gates has basic cost and delay given by functions cost

and delay. The values are normalized relative to the cost (resp. delay) of an inverter.

Examples are shown in table 1. The cost of a circuit is the sum of the basic costs of its

gates multiplied with packing factors which are examples of technology parameters. They

represent the fact that structures such as logic, arithmetic and static RAM can be packed

3



INV AND, OR EXOR 1 bit Reg.

cost 1 2 6 12

delay 1 1 3 5

Table 1: Basic cost and delay functions

Structure Parameter Value

Logic � 1

Arithmetic �A ���


small SRAM �S ���


large SRAM �L ����

Table 2: Packing Factors

more or less densely. Typical parameters for different technologies can be derived from

chip producers’ statements about placement results. We will use particular parameters

derived from [27] which are shown in table 2. The cost of a machine is the sum of the costs

of all switching networks, main memory is not counted.

We take a carry–chain adder for 8–bit numbers as an example. It consists of 8 fulladders.

A fulladder consists of two halfadders and an OR gate. A halfadder consists of an AND gate

and an EXOR gate. We have 8 OR gates, 16 AND gates and 16 EXOR gates in total. The

adder is an arithmetic unit and thus has a packing factor of ���
. The cost of the adder is

�A � �costOR� � ��costAND� � ��costEXOR�� 	 ���.

We compute the execution times of the machine instructions (ignoring delays on wires) by

searching for the maximum delay of all paths in all circuits. The delay of a path is the sum

of the gate delays on this path plus a short time to load a register at the end of the path.

This is a lower bound for the cycle time. The execution time of a machine command is

the cycle time multiplied with the number of cycles the command needs (if all cycles have

equal length).

In our example the longest path is the following one: in the first fulladder from input
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ain or bin to carryout, in the �nd to the �th fulladder from carryin to carryout, in the �th

fulladder from carryin to sumout. If the carryin of a fulladder goes to the �nd halfadder,

our path meets an EXOR, an AND and an OR in the �st fulladder, an AND and an OR in

the �nd to the �th fulladder and an EXOR in the �th fulladder. The total delay is Ttotal 	

�delayAND� � �delayOR� � �delayEXOR� 	 ��.

We formulate benchmarks in PASCAL with the pardo construct [16] as parallel extention.

This is sufficient for an analysis, but implementation of this language would be difficult. A

better solution is given by the language FORK [18].

We determine the runtime of a benchmark B by compiling it by hand and analyzing the

machine code. Depending on the CPU architecture the result is something like the number

of LOAD, STORE and COMPUTE commands. For each group we multiply its number of

commands with its execution time, then we sum over the groups. The result is the runtime

tD in gate delays. If pipelining is allowed, things become messier, but can still be handled.

Definition 2 If two designs D� and D� have costs cD� and cD� and a benchmark B has

runtime tD� on D� and tD� on D� then D� is called better on B than D� if and only if

TDCD�� B� � TDCD�� B�.

If one compares scalable parallel machines, one really compares two families of machines,

the members of which are only different in size. Their costs and the runtime of the bench-

mark depend on the number of processors. To compare the families we take corresponding

”representatives” of them. These will be members of the two families that have equal pro-

cessor numbers. By this, both will require the same degree of parallelism in the benchmark.

1.2 The PRAM Model and Emulation

The PRAM model was introduced by FORTUNE and WYLLIE [15], we will briefly sketch

the features important for our work.

Definition 3 An n–PRAM (parallel random access machine) is a parallel register ma-

chine with n processors P�� � � � � Pn��, their local memories and a shared memory of size
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m which is polynomial in n. In each step each processor can work as a separate register

machine or can access a cell of the shared memory. The processors work synchronously.

We consider the following kinds of PRAMs:

EREW: (exclusive read exclusive write) a memory cell cannot be accessed simultaneously

by several processors.

CREW: (concurrent read exclusive write) It is only possible to read a cell simultaneously.

CRCW: (concurrent read concurrent write) Processors can read or write a cell simultane-

ously (nothing is specified about simultaneous reads and writes). Concurrent write

forces to define which one of the concurrent processors will win. Usually three pos-

sibilities are studied:

arbitrary: One processor wins, but it is not known in advance which one wins.

common: All processors must write identical data, thus it does not matter which

one wins.

priority: The processor with the largest or lowest index wins.

The last model is the most powerful. Overviews about algorithms for the different models

can be found in [3, 16, 22].

One simulates an n–PRAM on a multi–computer machine (MIMD) by distributing the

shared memory uniformly among memory modules M�� � � � �Mn�� each of size m�n. Pro-

cessors and memory modules are connected by an interconnection network. If processor

Pi wants to access a memory cell that is stored in module Mj , Pi sends a packet to Mj

specifying the required memory cell. In case of a LOAD instruction Mj sends the content

of that cell back to Pi.

In order to map the address space onto the memory modules one uses a hash function

g � f�� � � � � m � �g � f�� � � � � m � �g. One would rather expect a pair h� l� of functions

where h � f�� � � � � m��g � f�� � � � � n��g specifies the module and l � f�� � � � � m��g �
f�� � � � � m�n� � �g specifies the location within the module. One gets h and l from g by
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hx� 	 gx� mod n, lx� 	 gx� div n. Binary representations for hx� und lx� can be

easily obtained from the binary representation of gx� by taking the logn least significant

bits and the logm�n� most significant bits respectively.

The communication between processors and memory modules can be handled by packet

routing on the chosen interconnection network.

The time to simulate one step of the PRAM depends on the memory congestion cm (the

maximum number of packets that one memory module receives) and the network latency

(for which the diameter of the interconnection network is a lower bound). If we restrict to

constant degree networks this diameter is at least logn. This implies that it is sufficient to

demand cm 	 Ologn�.

Hash functions that distribute provably well are examined in [12, 21, 26]. Provably well

here means that for each n–tuple of distinct addresses (the cells accessed by the proces-

sors in this step) the module congestion is cm 	 Ologn� with very high probability. An

example are randomly chosen polynomials of degree Ologn�. Simulations [13, 32] indi-

cate that for practical use particular linear hash functions g of the type gx� 	 ax mod m

where m is a power of two, greatest common divisor gcd(a�m)=1, a � f�� � � � � m � �g
randomly chosen, are good enough. The advantages of the function gx� are its bijectivity

and the short evaluation time. In this case, the definition of h and l has to be changed to

hx� 	 gx� div m�n and lx� 	 gx� mod m�n [11].

Constant degree networks with diameter logn are for example butterfly networks. Routing

algorithms for these networks that handle logn–relations (at most logn packets go to the

same module) in time Ologn� are presented in [25, 31]. The latter algorithm also handles

concurrent access to the same cell by combining packets.

The simulation so far causes a slowdown of Ologn�, because one step of the PRAM takes

constant time but one step of the simulation takes time Ologn�. We overcome this by

increasing the number of processors and memory modules of the simulating machine to

n� 	 n logn. The time for one step now is Ologn�� 	 Ologn logn�� which is still

Ologn�. But the number of necessary steps has reduced by a factor of Ologn� if we

assume that the problem to be solved has enough parallelism to keep n logn processors
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running. This reduces the slowdown to O��.

We base our work on RANADE’s Fluent Machine as described in section 2.1 that uses the

routing algorithm mentioned above and polynomials for hashing.

2 The Machine D1

We first give a short summary of the Fluent Machine which is precicely described in [31,

32]. Then we present some improvements that lead to our design D�.

2.1 The Fluent Machine

The Fluent Abstract Machine simulates a CRCW priority PRAM with n logn processors.

The processors are interconnected by an n logn butterfly network as given in Definition 4.

Definition 4 The butterfly network of degree 2 consists of n� � logn� network nodes.

Each node is assigned a unique number hcol� rowi where � � col � logn� � � row �
n � �. hcol� rowi can be viewed as the concatenation of the binary representations of col

and row. Node hcol� rowi, col � logn is connected to node hcol � �� rowi and to node

hcol � �� row � �coli, where � denotates the bitwise exclusive or.

Each network node contains a processor, a memory module of the shared memory and

the routing switch. If a processor hcol� rowi wants to access a variable Vx it generates a

packet of the form (destination,type,data) where destination is the tuple hx�� lx�� and

type is READ or WRITE. This packet is injected into the network and sent to node hx� 	

hrow�� col�i and back (if its type is READ) with the following six phase deterministic packet

routing algorithm.

1. The packet is sent to node hlogn� rowi. On the way to column logn all packets

injected into a row are sorted by their destinations.

2. The message is routed along the unique path from hlogn� rowi to h�� row�i. The

routing algorithm used is given in [31].
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Figure 2: 6 phase routing of the Fluent Machine

3. The packet is directed to node hcol�� row�i and there the memory access takes place.

4. – �� The packet is sent the same way back to hcol� rowi.

Figure 2 shows the phases performed on a network consisting of 6 butterflies. RANADE

realizes these six phases with two butterfly networks where column i of the first network

corresponds to column logn � i of the second one. Phases 1,3,5 use the first network,

phases 2,4,6 use the second network. Thus the Fluent Machine consists of n logn nodes

each containing one processor, one memory module and 2 network switches.

The reason for sorting in phase 1 is given in section 2.2.

2.2 Combining

In a CRCW PRAM several (possibly all) processors could access the same cell with address

xj at the same time. Let

Sj 	 fPijPi reads xj in current stepg�
PACj 	 fpacijPi � Sj sends paci into networkg�

We talk only of READ accesses because WRITE accesses can be treated in a similar way

with the simplification that they do not return an answer to the processor.

If all packets in PACj reach memory module hxj�, the module congestion cm equals

jPACjj. In the worst case this could be n. Because the routing algorithms require module

congestion Ologn� (see last section) the number of packets in PACj that reach hxj� has

to be reduced in the following way: The paths of the packets in PACj form a tree. However

there is no need to send more than one packet along any branch of this tree. If a packet
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paci � PACj simply waits at each tree node until a packet pacl � PACj appears along

the other incoming edge (unless the node ‘knows’ that all future packets of the current

step must originate from processors P �� Sj), then the two packets can be merged and one

forwarded along the tree. This merging is called combining.

In order to decide whether two incoming packets pac� � Si� pac� � Sj have to be com-

bined, a network node has to compare the destinations gxi� and gxj�.

How can a network node know that no more packets will arrive in the future? RANADE

gives in [31] the following solution: sort the packets during phase 1 by their destinations

and then maintain for each node the sorted order of the packets that leave the node.

2.3 Improvements

Definition 5 A round is the time interval from the moment when the first of all n logn

packets is injected into the network to the moment when the last packet is returned to its

processor again with the answer of a READ access.

In RANADE’s algorithm the next round can only be started when the actual round is finished

completely. This means that overlapping of several rounds (pipelining) is not possible in

the Fluent Machine. This is the first disadvantage that we want to eliminate. This could

be reached by using 6 physical butterfly networks as shown in figure 2. But the networks

for phases 1 and 6 can be realized by n sorting arrays of length logn as described in

[1, 24] and networks for phases 3 and 4 can be realized by driver trees respective OR trees.

Both solutions have smaller costs than butterfly networks and are not slower. The sorting

arrays only have one input and require that all logn processors of a row inject their packets

sequentially into this input.

This leads to the following construction as shown in figure 3. The logn processors of a row

inject their packets into the sorting array sequentially, the sorted packets are routed like in

RANADE’s phase 2, the packets are directed to the right modules via driver trees. Then the

packets go all the way back to their processors.

The second disadvantage is that the processors spend most of the time waiting for returning

packets. This cannot be avoided. But we can reduce the cost of the idle hardware by
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Figure 3: 6 phase Routing in the New Machine

replacing the logn processors of a row by only one physical processor (pP) which simulates

the original logn processors as virtual processors (vP). Another advantage of this concept

is that we can increase the total number of PRAM processors by simulating X 	 c logn

(with c � �) vP’s in a single pP. The simulation of the virtual processors by the physical

processor is done by the principle of pipelining. This principle is well known from vector

computers and was also used in the first MIMD computer marketed commercially, the

Denelcor HEP [20, 36]. A closely related concept is Bulk Synchronous Parallism in [39].

In vector processors the execution of several instructions is overlapped by sharing the ALU.

Figure 4 shows how pipelining is used in our design. Here the ALU needs x cycles. A

single instruction in this example needs x � � cycles. Execution of t instructions needs

t� x � � cycles. Without pipelining they need tx � �� cycles.

Instead of accelerating several instructions of a vector processor with a pipeline, we use

pipelining for overlapped execution of one instruction for all X vP’s that are simulated in

one physical processor. To simulate X vP’s we increase the depth of our ALU artificially

to x 	 X � �. The virtual processors are represented in the physical processor simply by

their own register sets. We save the costs of X � � ALU’s.

The depth � of this pipeline serves to hide network latency. This latency is proved to

be c logn for some c with high probability [31]. Thus, if � 	 c logn, then normally no

vP has to wait for a returned packet. This c increases the number of vP’s and the network

conguestion. But network latency only grows slowly with increasing c. Thus there exists an

optimal c. The exact value and its influence on the length of the sorting arrays is discussed
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Time 1 2 3 4 5 6 x+3 x+4

Stage

Fetch I1 I2 I3

Decode I1 I2 I3

Load arguments I1 I2 I3

Compute cycle 1 I1 I2 I3
...

Compute cycle x I1 I2

Store results I1

Figure 4: Pipelining in the Processor

in section 2.4. VALIANT calls this parallel slackness [38].

Definition 6 A round in machineD� is the time interval from the moment when the first vP

injects its packet into the network to the moment when the last vP injects its packet into the

network.

At the end of a round there are on the one hand still packets of this round in the network,

on the other hand the processors have to proceed (and thus must start the next round) to

return these packets. CHANG and SIMON prove in [9] that this works and that the latency

still is Ologn�. The remaining problem how to separate the different rounds can easily be

solved. After the last vP has injected its packet into the network, an End of Round Packet

(EOR) is inserted. This is a packet with a destination larger than memory size m. Because

the packets leave each node sorted by destinations, it has to wait in a network switch until

another EOR enters this switch across its other input. It can be proved easily that this is

sufficient to separate rounds.
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2.4 Delayed LOAD and Sorting

One problem to be solved is that virtual processors that execute a LOAD instruction have to

wait until the network returns the answer to their READ packets. Simulations indicate, that

for c 	 � this works most of the time (see [1]). But this is quite large in comparison to logn.

We partially overcome this by using delayed LOAD instructions as in [30]. We require an

answer to a READ packet to be available not in the next instruction but in the next but one.

Investigations show that insertion of additional ‘dummy’ instructions happens very rarely

[19]. But if a program needs any dummy instructions, they can be easily inserted by the

compiler. This reduces c to 3 without significantly slowing down the machine.

The sorting arrays should have length c logn too. But breaking a round in z parts is an

alternative. This reduces the lengths to c�z� � logn but could slow down the machine’s

speed. Simulations show [1] that z 	 � is the maximum value that does not slow down

speed if we double the sorting networks. The doubling garantuess that always one sorting

array can be filled while the other sends packets into the butterfly network. Therefore we

choose this value.

In order to examine the exact constants for runtime and costs in machine D� by the method

sketched in section 1.1 we have to model the processor for this machine. In [32] nothing

special about it is mentioned except that the use of RISC processors is proposed.

2.5 A Processor

We use a processor similar to the Berkeley RISC processor [30]. Instead of register win-

dows we have the register sets of the virtual processors. The processor has a LOAD–STORE

architecture, i.e. COMPUTE instructions only work on registers and immediate constants

and memory access only happens on LOAD and STORE instructions. The COMPUTE in-

structions involve adding, multiplying, shifts and bit oriented operations. All instructions

need the same amount of time. In order to get a pipeline of depth c logn, the ALU depth is

increased artificially.

Because of the LOAD–STORE architecture the same multiplier can be used for multiplica-

tions in COMPUTE instructions and for hashing global addresses with a linear hash function
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in LOAD and STORE instructions. This means that hashing does not require much special

hardware.

A more detailed description of the processor can be found in [23].

3 Cost and Speed

3.1 Cost of the machine

We compute the costs of the improved Fluent Machine with the method introduced in

section 1.1. We will ignore control logic because it usually occupies only a fraction of at

most 10 percent of the total costs. This would change if we would use CISC processors.

The RISC processor of section 2 mainly consists of an ALU and a register file. The ALU

consists of a 32 bit WALLACE tree multiplier, a barrel shifter and a carry lookahead adder

[40]. The register file of the Fluent Machine consists of 16 registers each 32 bits wide, the

one in the improved machine consists of c logn � �� registers each 32 bits wide. Let the

basic costs of the ALU be A and the basic costs of the Fluent Machine’s register file be F .

If we use the packing factors of table 2 we have costs cP 	 �AA � �Lc lognF for the

processor of our design D� and c �P 	 �AA� �SF for the Fluent Machine’s processor.

Simulations [1] indicate that network nodes need buffers of length 2. A node consists

of 2 buffers and 2 multiplexers on the way from processors to memory, 2 buffers and

2 multiplexers on the way back, a direction queue of length �c logn and a comparator

and a subtractor to compare addresses. Sorting nodes only need buffers of length 1 and 1

multiplexer for each direction. Let the basic costs of a network node beNA for its arithmetic

part and NS for its SRAM, the basic costs of a sorting node SA and SS .

Then we have costs cN 	 �ANA � �SNS for a network node and cS 	 �ASA � �SSS for a

sorting node.

The improved machine consists of n physical processors, of � � c��� �n logn sorting nodes

and of n logn network nodes. It has total costs

cD� 	 ncP � cS
�c

�
n logn� cNn logn�
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A F NA NS SA SS

13572 6144 2576 6696 1928 4104

Table 3: Actual Parameters

The exact numbers for A� F�NA� NS� SA� SS are shown in table 3, the computation can be

found in appendix A. The result is

cD� 	 �����n� �

��n logn� (1)

The Fluent Machine’s network nodes have slightly larger basic costs �NA 	 ����� �NS 	

���� because RANADE’s routing algorithm needs full routing information in forward and

backward network. c �N is computed in analogy to cN . The costs of the Fluent Machine then

are

cD� 	 c �P � n logn� c �N � n logn 	 ����
��n logn�

For n 	 ��� the Fluent Machine is ����� times more expensive than our improved machine.

3.2 Speed of the Machine

In section A.3 we compute the maximal delay path in network nodes. We get a minimal

cycle time of 	N 	 �� gate delays for the network and sorting nodes. For a particular

processor design in [23] we computed a minimal cycle time 	P 	 �� gate delays, which

comes from access times to the register file. In current VLSI technology with gate delays

of �ns we get cycle times of ���ns and ��ns.

One step of the improved machine takes c logn processor cycles which is 
 	 c logn �
���ns. RANADE reports in [32] simulation results such that one step of the Fluent machine

takes �� logn network cycles which is 
� 	 �� logn� ��ns.

The improved machine then has a power of cn logn��
 Instructions per second. For n 	

��� we get 1066 MIPS. The corresponding value for the Fluent Machine is 193 MIPS. Thus

the improved machine 
�
 times faster and ��� times more cost–effective than the Fluent

Machine.
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In order to have the same number of virtual processors, we also investigate a modified

Fluent Machine �D� with N 	 kn� � logkn� processors. We choose k such that N 	

cn logn. Then c �D� 	 N � c �P � c �N 	 ����
��N . One step of �D� takes �
 	 �� logkn��
��ns. A benchmark B with sequential runtime T that can be parallelized with efficiency

� will need T��N� steps on both machines. Then, for n 	 ���, machine D� is only

t �D��tD� 	 �
�
 	 ���� times faster but c �D��cD� � �
�
 	 ���� times more cost-efficient

than �D�.

4 CRCW vs. EREW

4.1 Main Result

We investigate the question whether combining should be done by hardware (hardwired

combining) or whether concurrent accesses should be simulated by software. We will prove

the following theorem 1.

Theorem 1 Let D� be a CRCW PRAM as described in section 2.3 which supports com-

bining by hardware. Let D� be an EREW PRAM as described in section 4.2 on which each

concurrent access is simulated by software as described in section 4.3. If a benchmark B

that needs tD� steps consists of �tD� concurrent accesses with � � � � � then

TDCD�� B� � TDCD�� B� for � � �����
�

logn��
�

This means: if a benchmark that needs tD� steps consists of more than �����logn���tD�

concurrent accesses it is better to run it on a CRCW PRAM instead of simulating it on an

EREW PRAM.

4.2 Design of an EREW PRAM

To determine TDCD�� B� it is necessary to sketch the design of an EREW PRAM D�. We

get D� from D� by skipping all hardware that supports combining. These are the sorting

networks in phases 1 and 6 of the routing and the comparators in the network switches
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which detect that combining is necessary. Additionally one can reduce the width of the

direction queues in the switches to two bits because only four cases remain: ‘ini to outj’

where i� j � f�� �g. Removing the sorting networks reduces routing time and c can be

decreased to c� 	 ��
. The costs for the new processors are cP � 	 �AA � �Lc
� lognF 	

����� � ��
� logn. The costs for network and sorting nodes decrease from NA to N �

A 	

���� and NS to N �

S 	 ���� as shown in appendix A. The total costs for D� are

cD� 	 cP �n � cN �n logn 	 �����n� ������n logn� (2)

The cycle time of D� is exactly the same as of D�, one step of D� takes c�logn processor

cycles.

4.3 Simulation of CRCW on EREW

KARP and RAMACHANDRAN show in [22] how to simulate a CRCW PRAM on an EREW

PRAM. They use the following method to simulate one step in which concurrent accesses

can happen:

Suppose processor Pi wants to access variable Vj. Then it writes i� j� to location i in global

memory (we assume that locations 0 to n�� are not accessed by the PRAM program). The

contents of locations 0 to n�� get sorted now by j. Duplicates which represent concurrent

accesses are replaced by dummy accesses i��j�. Pi reads the content i�� j �� of location i

and accesses Vj� if j � 	 �. Then Pi writes the result of a READ access to location i�. The

processors with eliminated duplicates duplicate now the results. At last Pi reads the result

of its own access from location i and assigns it to variable Vj .

The most time consuming part of the simulation is the sort of the tuples i� j�. The sort can

be parallized by using all n processors to sort the n tuples. Because a sequential sort by

comparison of n elements needs time �n logn�, an optimal parallel algorithm using all n

processors should need parallel time �logn�. Optimal sorting algorithms are described in

[2, 10, 29], a randomized one is given in [33]. The constant factor in their runtime however

is quite large. We will use BATCHER’s bitonic sort [7], a parallel sorting algorithm with

small constant that needs time Olog� n� to sort n elements using n processors. The bitonic
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sorting network can be defined recursively as in definition 7.

Definition 7 B� and S� are identical circuits sorting two numbers. Bn is a circuit that

merges two bitonic sequences each of length n�� to one bitonic sequence of length n. The

bitonic sorting network for n numbers is a circuit Sn. For one of these circuits S, �S denotes

the circuit with reversed order of outputs.

Sn

Bn

Sn

�

�Sn

�

n

n
�

n
�

Bn

Bn

�

...

...

Bn

�

...

...t t

t t

0

0

n
� � �

n
� � �

n
�

n
�

n� �

n� �

B�� S�

t t

a b

min�a� b�max�a� b�

The bitonic sorter can be formulated as a program. The program needs n processors that

simulate in step i the n comparators B� in depth i of the circuit. The algorithm looks as

shown in figure 5.

We assume that the compiler for our benchmark can recognize all instructions in which

concurrent access can occur and that only these instructions are simulated in the way de-

scribed above. We further assume that the compiler knows the number of processors that

are working at this time. Now the compiler can generate code for the bitonic sort with-

out using loops or subroutine calls. This makes it much faster. An assembler program

would need ��
 logn��� � ���
 logn� instructions for the bitonic sort as described above.

n� is the smallest power of two larger than the number of processors. In our design D�

n� 	 c�n logn. The complete simulation of one step then takes

tsim 	
��

�
logn��

�
�

��

�
logn� � ��� (3)
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for pnum �	 � to n� � pardo

for i �	 � to logn do

for k �	 i� � to 0 do

if bit k of pnum 	 � then

if bit i of pnum 	 � then

A�pnum� �	 minA�pnum�� A�pnum� �k��

else

A�pnum� �	 maxA�pnum�� A�pnum � �k��

fi

else

if bit i of pnum 	 � then

A�pnum� �	 minA�pnum� �k�� A�pnum��

else

A�pnum� �	 maxA�pnum� �k�� A�pnum��

fi

fi

od

od

od;

Figure 5: Bitonic Sort Algorithm
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instructions. The complete analysis of the assembler program can be found in [23]. Now

we will prove theorem 1 using the results of the previous subsections.

Proof: (indirect) Let B be a benchmark that needs time tD� on D�. On D� it will need time

tD� 	 tD� �tsim � �� �� �� � (4)

TDCD�� B� � TDCD�� B�

cD�tD� � cD�tD�

���
 � �
cD�

cD�

� �

tsim � �

If we assume in favour of D� that n� 	 c�n logn then with equations 1, 2, 3 we get � �
�����logn���.

For moderate n however, the exact value is even smaller.

4.4 Consequences

We mentioned in section 1 that PRAMs are classified in theory as EREW, CREW and

CRCW PRAMs. Relations among these classes are given in [16, 22]. A further class of

ERCW PRAMs is not considered there.

Definition 8 A machine model A is said to be hierarchically weaker than B (A � B) if

each problem that can be solved on modelA in time T and P processors can also be solved

on model B in time OT � and OP � processors.

Obviously EREW � CREW � CRCW.

Theorem 2 If we change our CRCW design D� to an EREW design D�, an ERCW design

D� and an CREW design D� we get the relation

cD� � cD� � cD� 	 cD��
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Thus if a PRAM supports combining in the way we described in section 2.1 it is not worth-

while to consider CREW PRAMs but it might be useful to examine the role of ERCW

PRAMs in the hierarchy.

Proof: (of theorem 2)

We get D� from D� by reducing the width of the direction queues with the same argument

as in subsection 4.2. This shows cD� � cD�. We cannot skip the comparators because we

still have to detect concurrent writes. This shows cD� � cD�. For D� we cannot skip the

comparators because we have to detect concurrent reads. We cannot reduce the width of

the direction queues because of the same argument. This shows cD� 	 cD�.

Theorem 2 shows that D� is identical to D� and that for any PRAM program B tD� 	 tD�.

Thus D� has the same TDC as D� but D� �� D�.

5 PRAMs vs. Distributed Memory Machines

PRAMs have always been thought to be uncompetitive to Distributed Memory Machines

(DMM) because some problems do not need the global memory. In order to compare our

PRAM D� with a DMM D
 one has to compute

R 	 TDCD�� B��TDCD
� B� �

We are interested in how much more cost–effective DMMs can be than PRAMs and vice

versa. Therefore we search for bounds U and L with L � R � U independently of B

and of the particular DMM. It will turn out that for reasonable values of n a DMM cannot

be much more cost–effective than a PRAM but vice versa a PRAM can be much more

cost–effective than a DMM.

5.1 Simulation of DMMs by PRAMs

Assume a benchmark that does not use the global memory but can be run on a distributed

memory machine with simple hardwired communication. This is the worst case that can

happen when comparing PRAMs and DMMs. We formulate an upper bound as theorem 3.
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Theorem 3 Assume we have a benchmark B as has just been described that has enough

parallelism to be computed on a distributed memory machine with efficiency � close to 1.

We consider a DMM D
 with N 	 cn logn processors and communication given by a

graph of small degree with N nodes and our PRAM D�. Then we get

R � U � ���� logn� �����

Proof: The distributed memory machine with N processors has costs cD	 	 N � c �P 	

�����N . We only count processor costs c �P and ignore network costs although this is

unfair towards the PRAM. Suppose that B needs T steps on a sequential machine. Then

both the DMM and the PRAM need T��N� steps. We assume in favour of the DMM that

the benchmark B can be pipelined perfectly and thus one step takes only one cycle. Thus

one has tD	 	 �� � T��N�.

The PRAM has costs cD� as computed in equation 1 and needs T��N� 	 T��cn logn�

steps each taking c logn processor cycles. Thus D� needs T��n� cycles and therefore

tD� 	 �� � T��n�. We then get

R 	
cD�

cD	
� tD�

tD	
	

�

��n logn� �����n

�����N
� N
n

	 ���� logn � ���� 	 U�

For reasonable values of n, e.g. n � ��
, the quotient is less than 20. If we would add

floating point arithmetic to the ALU as usual in existing parallel machines, the parameter

A increases toA� � ������ [14] and the quotient decreases dramatically to ��� logn�����.

For n � ��
 the quotient is smaller than ���. If cost of memory is considered too, things

change further in favour of the PRAM.

5.2 Simulation of PRAMs by DMMs

The worst case for a DMM is a benchmark where any known algorithm for a DMM is less

cost–effective than the step–by–step simulation of a PRAM.
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Theorem 4 Let B be a benchmark that fulfils the above assumptions and that is paralleliz-

able with efficiency �. Then

R 	 L 	 �������

Proof: Let the sequential runtime of B be T . B needs T��cn logn� steps on a PRAM

D� with cn logn processors. Because each step takes c logn processor cycles, tD� 	

��T��n�.

Let D
 be a DMM with N 	 cn logn processors interconnected as a hypercube. D
 has

costs cD	 	 c �PN 	 �����N because we ignore network costs. In order to simulate one

step of D� on D
 we adapt RANADE’s routing scheme in software. Because successing

phases can overlap we use a link in forward manner for phases 1,3,5 and in backward

manner for phases 2,4,6. Processors alternately execute one step of phase i and one of

phase i � �. Because of this toggling the routing scheme needs at most twice as many

routing steps as RANADE’s scheme. The number of machine instructions to perform one

routing step is 24:
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# steps comment

6 read address, data, mode of both inputs

1 compare the addresses

1 jump if equal (combining)

1 jump if less (left packet is to send)

1 compare address with routing mask

1 jump if equal (routing to left output)

1 test whether successing queue is full

1 jump if full

3 write address, data and mode

2 append direction queue if mode==read

1 mark input queue not full

1 test whether other successing queue full

1 jump if full

3 write address,data,ghost
P

�� Total

If we assume that RANADE’s scheme needs �� logn steps the new scheme needs �� logn�
�� � � 	 
�� logn instructions. If we further assume that one instruction only takes one

processor cycle, the total time to simulate one PRAM step is at most S logn processor

cycles for S 	 
��. D
 simulates a PRAM with N 	 cn logn processors. Therefore B

needs T��N� steps on D
 and tD	 	 �� � S � T��cn�. We now can compute R:

R 	
cD�

cD	

� tD�

tD	

	 �

��n logn � �����n

�����N
� c
S

	
�

���
	 L

If we add floating point arithmetic L changes to ������.

While it is true that most distributed memory machines incorporate some sophisticated

routing hardware that would make routing faster, we use the machine from section 5.1 in

order to have a common framework for both bounds. Incorporation of routing hardware

makes S small but costs increase. The value of L might well get closer to 1, but the
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corresponding value of R would become smaller too! Note that L will always remain

strictly less than one, because otherwise D
 would simply be considered a better PRAM

emulation than D� and replace it.

5.3 Examples

In order to show that the bounds on R are tight we present two examples matching the

bounds. The first example B� is multiplication of two s � s–matrices. We use design

D� with n physical processors and a distributed memory machine D
 with N processors

interconnected as a
p
N �p

N torus. Each processor of the torus then holds a s�
p
N��

s�
p
N�–submatrix of both matrices. This example comes very close to the worst case

described in section 5.1 and therefore R approximately matches the upper bound.

The second example B� is computing the connected components of an undirected graph

with v nodes and e edges. For the PRAM we use an algorithm of [35] in a form presented

in [17]. Its runtime is Olog v� steps on a PRAM with �e (virtual) processors. The formal

explanation and the proofs for correctness and runtime can be found in [35]. On a PRAM

with n � v physical processors we have tD� 	 ��� � e�n� � ��� � v�n�� � log v as

analyzed in [1] and cD� as computed in equation 1. For the distributed memory machine

we could use an algorithm from [3] that runs on a hypercube. Its runtime is Olog� v� on

v� processors. For a hypercube D
 with N � v processors we would have cD	 	 �����N

as computed in section 5.1, tD	 	 �� � v��N� � log v�� as sketched in appendix B. Using

the fact that e � ��
 � v� leads to R � 
 � logN�v log v��. This would imply R � L and

therefore a simulation of the PRAM algorithm is more cost–effective.

6 Conclusions

We have used the framework from [28] which allows to treat computer architecture as

a formal optimization problem and to deal quantitatively with hardware/software trade-

offs. In this framework we have improved the price/performance ratio of RANADE’s Fluent

Machine by a factor of 6. We have determined when combining should be done in hard-
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ware (namely always for practical purpose). We have compared the cost–effectiveness of

PRAM’s and DMM’s. The results are surprisingly favourable for PRAM’s. In reality things

are somewhat worse, e.g. because of connectors and wires. Nevertheless, a prototype with

4 physical processors is running [6], the construction of a prototype with n 	 �� processors

is underway.

In our analyses, we assumed that the benchmarks can be parallelized with efficiency �, yet

we did not require � to be a constant. If the parallelism available in a problem is restricted,

as e.g. in a vector reduction, this might give a hint about the size of the machine to use.
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Appendices

A Parameter Values

A.1 Processor Costs

The ALU mainly consists of a 32 bit wallace tree multiplier, a barrel shifter and a carry

lookahead adder (see [40]). The multiplication is performed by adding 32 terms of length

1 to 32 bits. Each bit of each term is computed by an AND gate. The AND gates have basic

costs ��� ��� � 	 ����.

4 terms of length i can be reduced to 2 terms of length i � � with an i bit 4–2–Adder

consisting of �i full adders. Thus we get a first stage consisting of a 32 bit 4–2–adder for the

longest terms, up to a 4 bit 4–2–adder for the shortest terms. In total the first stage contains

������ � � ��� 	 ��� bit 4–2–adders. The second stage contains ���������� 	 ��,

the third stage �� � � 	 �� and the last stage 16 bit 4–2–adders. The wallace tree then

consists of ��� � �� � �� � �� 	 �
� bit 4–2–adders containing 512 full adders. As we

saw in section 1.1 a full adder has basic costs 18. The basic costs for the wallace tree then

are 9216.

The carry lookahead adder finishing the multiplication consists of � � �� components to

compute generate and propagate signals. Each component consists of 4 AND and OR gates.

Additionaly we need for each bit 2 EXOR gates to compute the sum bits and 1 AND and
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1 OR gate to produce the generate and propagate signal for that bit. The carry lookahead

adder has basic costs ��� �� � � ��� �� � � �� �� 	 ����.

The barrel shifter consists of 5 stages of multiplexers. Because we allow rotations and

buffering in carry each stage needs 33 multiplexers with 3 inputs. These are built of 2

multiplexers with 2 inputs. A multiplexer with two inputs consists of 2 AND gates, 1 OR

gate and 1 inverter, having costs 7. The total basic costs of the barrel shifter now are


������� 	 ����. The basic costs of the ALU then areA 	 ������������������� 	

�����.

A register file with 16 registers 32 bit wide has basic costs F 	 ��� ��� �� 	 ����.

A.2 Costs of the network

Our simulations [1] show that network nodes only need buffers of length 2. Packets on the

way from processors to memory modules are 76 bits wide (32 bit address, 32 bit data, 12 bit

control). In the backward network 32 bits for transported data are sufficient. Each network

node needs the following hardware: 4 registers with 76 bits each, 4 registers with 32 bits

each, �c logn 3 bit registers with routing informations for the backward network, 2 multi-

plexers with 76 bits and 2 multiplexers with 32 bits. Additionally we need a comparator

and an adder to test identical addresses and to select the smaller one.

The registers have basic costs NS 	 �� �� � �� �� � �� �� �� ��� �� 	 ����. The

multiplexers have basic costs � � �� � � � ��� � � 	 ����. The adder has basic costs

1024 as computed above. The comparator consists of 1 EXOR gate and 1 OR gate for each

of the 32 bits and thus has basic costs �� � � � �� 	 �
�. The arithmetic of a network

node then has total basic costs NA 	 ���� � ���� � �
� 	 �
��.

The nodes for the sorting network only need buffers of length 1 and only 1 multiplexer.

They have basic costs SA 	 ���� and SS 	 ����.

The network nodes for the Fluent Machine have width 76 for the forward and the backward

network. Thus they have basic costs �NA 	 ���� and �NS 	 ����.

If we reduce the network nodes of design D� to design an EREW PRAM, we spare the

costs for the comparator and reduce the width of the instruction queue by one bit. We then
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have basic costs N �

A 	 ���� and N �

S 	 ����.

A.3 Network Speed

In one network cycle the maximum delay path is the following: a packet has to be read out

of the input buffer, its address has to be compared with another, it has to be selected by a

multiplexer, it has to pass a multiplexer that changes the original mode to GHOST and it

has to be stored in the input buffer of the following node. Reading the input buffer takes 5

gate delays, comparing addresses with an i bit carry lookahead adder takes about � log i��

gate delays, selecting with a multiplexer takes 2 gate delays, storing in a buffer takes about

5 gate delays. With 32 bit addresses we have 
�� log ���������
 	 �� gate delays.

Because we did not count driver delays and setup and hold times we take a network cycle

time 	N 	 �� gate delays.

B Analysis of Benchmark B1

Let G 	 V�E� be an undirected graph with v 	 jV j� V 	 f�� � � � � v� �g and E  V � V

with e 	 jEj. Represent E by the adjacency matrix A given by ajk 	 � if j� k� � E, 0

otherwise. A is symmetric because G is undirected. The connected components algorithm

from [3] first computes the connectivity matrix C from the given adjacency matrix. C is

given by cjk 	 � if there exists a path in G from j to k, 0 otherwise. Then it constructs a

matrix D given by djk 	 k if cjk 	 �, 0 otherwise. Finally each vertex k is assigned to

component l with l 	 minfijdki �	 �g.

We assume that sending one word across a link of the hypercube takes only one step and that

source and destination of this word are registers. The connectivity matrix is computed by

log v times multiplyingAwith itself thus computingC 	 Av. It turns out that multiplying 2

v� v matrices on a hypercube with N processors can be done in �� � v��N����� log v�


 � v��N� steps. The computation of the connectivity matrix then needs approximately

log v�� � �� � v��N� � ��� � 
 � v��N� � log v steps. The computation of matrix D takes

approximately � � v��n� steps, finding of minimums takes approximately �� � v�N� � log v
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steps. The total time tD	 then is approximately �� � v��N� � log v��.

33


