
A Hardware-Based Attack on the A5/1 Stream Cipher
Prof. Dr. J̈org Keller, FernUniversiẗat, 58084 Hagen, Germany

Dipl.-Inf. Birgit Seitz, Rohde & Schwarz GmbH & Co. KG, 81614 München, Germany

Abstract

We present a known-plaintext attack on the A5/1 stream cipher, the encryption algorithm used by the GSM customers in Europe

during their conversations with cellular phones. The attack differs from previous approaches in two aspects: it only needs a very

small amount of plaintext, and it is not solely based on software. A crucial part of the attack algorithm is implemented in a

field programmable gate array (FPGA). We present performance figures which suggest that a distributed implementation on 1,000

ASICs could recover a session key in less than a minute, from which on the conversation could be deciphered by an eavesdropper

in real-time. We conclude that, at least for longer conversations, A5/1 is not secure and that its replacement might be even more

urgent than for the DES algorithm, where a successor already has been announced.

1 Introduction

The A5/1 algorithm is the encryption algorithm used in the
GSM system, i.e. during calls with cellular phones in Europe.
With such a wide deployment, its security against attacks is
a crucial issue. However, several known-plaintext attacks on
the A5/1 have already appeared in the literature, see [1] for a
survey. A common feature of these attacks is that they are per-
formed in software alone and need several minutes to derive
the key, and thus are not really to be considered real-time at-
tacks. Also, they need at least several seconds of plaintext data
to start work.

As known from the DES cracker [2], the implementation of
an attack in simple hardware units can make even simple ap-
proaches feasible at a — considering the potential of such a
machine — moderate cost.

We present an attack on the A5/1 cipher that draws ideas from
previous attacks but needs only a few frames of plaintext. For
the time-consuming part of the attack, we provide an imple-
mentation for a field programmable gate array (FPGA), and
give performance estimations for this implementation. We dis-
cuss a possible, distributed re-implementation for application
specific integrated circuits (ASIC). Our conclusion is that this
re-implementation could yield a performance increase by a fac-
tor such that the computation of a session key would be possi-
ble in less than a minute on a machine containing about 1,000
cracker ASICs.

The remainder of the paper is organized as follows. In Section
2 we briefly review the A5/1 algorithm. In Section 3 we review
previous attacks on the A5/1 and present our attack. In Section
4 we discuss the performance of an FPGA implementation and
the projected performance in a distributed implementation on
ASICs. In Section 5, we summarize and conclude.

2 The A5/1 Algorithm

In conversations according to the GSM standard, the commu-
nicating parties exchange data in frames of length 228 bits (114
bits in each direction) every 4.6 milliseconds. For the transmis-
sion between the cellular phone and the base station, the data
is encrypted.
Each frame is encrypted by a bitwise exclusive-or (addition
modulo 2 in GF(2)) with the output of the stream cipher gener-
ator A5/1; decryption happens in the same manner, seeFigure
1. Before encrypting or decrypting a frame, the generators on
both sides of a communication are initialized with a key that
is fixed during the call, and a frame number which is publicly
known [1].
The A5/1 algorithm was not made public by the GSM organi-
zation. The following description is based on [1], which in turn
refers to a description athttp://www.scard.org based
on reverse engineering of a GSM telephone; the latter descrip-
tion is referenced as being confirmed to be correct by the GSM
organization.



Figure 1: Use of the A5/1 generator in GSM.

Figure 2: Construction of the A5/1 generator in GSM.

The A5/1 generator consists of three linear feedback shift reg-
isters (LFSRs) called R1, R2, R3 of lengths 19, 22, and 23 bits
respectively, seeFigure 2. The most significant bits of the reg-
isters are processed by an exlusive-or operation, which forms
the output of the generator. The feedback for each register, i.e.
the value to be entered at the least significant bit when the reg-
ister is clocked, is formed by an exclusive-or of several of the
register’s bits. These so-called tap bits are at positions 13, 16,
17, 18 for R1, 20, 21 for R2, and 7, 20, 21, 22 for R3. The
decision whether a register is clocked in normal operation is
done by the following “clock control”. Bit 8 of R1, and bits 10
of R2 and R3 form the clock bits, of which a majority value is
computed. A register is clocked if its clock bit contains a value
equal to this majority value. If the clock control is disabled,
then each register is clocked.

The generator is initialized for every frame with a 64-bit ses-
sion key, which is secret and fixed for the conversation, and a
publicly known 22-bit frame number. The initialization hap-
pens by setting all registers to zero and clockingall registers
for 64 + 22 = 86 cycles, using the key bits and the frame
number bits as additional feedback bits. Then the generator is
run for 100 cycles with the above clock control enabled, the
output is not used. Then, the initialization is complete and the
sequenceO of the next 228 output bits is used to encrypt the

part of the frame to be sent and to decrypt the part of the frame
which was received.

3 Attacks on the A5/1

All known attacks (see [1] for a survey) are known-plaintext at-
tacks. We too make the assumption that we are able to intercept
an encrypted frame and that we are in possession of the corre-
sponding plaintext data. We also make the assumption that we
are in possession of the publicly known frame number. While
the first assumption is common in the cryptanalysis of ciphers
[4] and we do not want to dive into the details of data intercep-
tion, we would like to give some support why this assumption
is feasible. The frames are used to transmit both signalling
and voice data. The signalling data have a specific format and
hence, if we are able to intercept an encrypted frame with such
data, we will with a certain probability know what its content
(the plaintext) will be. This is especially true as our attack only
needs a small number of frames (normally only one), whereas
other attacks assume to be in possession of seconds of plaintext
frame data.
The ciphertext was obtained by a bitwise exclusive or of the
plaintext and the outputO of the generator. Hence, by comput-
ing the bitwise exclusive or of the plaintext and the ciphertext,
we obtain the output of the stream generator used to encrypt
the plaintext. The task of the attack is to find the session key
from this output and the frame number. Then, any future frame
of this conversation can be decrypted.
Finding the key is equivalent to computing the state of the three
registers R1, R2, R3 after the first 64 cycles of the initializa-
tion, as this state only depends on the key, and can be used as
starting point for the decryption of all future frames during the
intercepted conversation.
A simple attack could now be the following: for each of the
219+22+23 = 264 possible states of the three registers after
input of the key, perform the remaining22 + 100 = 122 cy-
cles of the initialization and check whether the known output
sequenceO is generated. In the worst case, this attack takes
264 · (122 + 228) ≈ 1.37 · 272 cycles on a device that performs
one cycle of the generator at a time.
Instead, we first test for each possible stateS after the end
of the initialization whether the generator, starting in stateS,
generates the output sequenceO. We will deal with this test in
more detail in the remainder of the section, as it constitutes the
majority of work.
For each of the few statesS that generateO, one computes the
corresponding stateS′′ after the key has been input — if such
a state exists1— by a 2-phase backtracking algorithm. The
first phase tries to generate fromS the stateS′ after the frame
number has been input, i.e. 100 cycles beforeS was reached.
As not every register is clocked in each cycle due to the clock
control, there could be up to 4 predecessor states for each cy-
cle. However, as the average number of predecessor states is 1,

1The state transistion function of the A5/1 algorithm is not injective [3].



the number of possible states in the tree of predecessor states
grows only linearly with the height of the tree [3].

The second phase consists of computing, for each stateS′

found, the corresponding stateS′′ of the registers after the in-
put of the key, i.e. 22 cycles beforeS′ was reached. As in
these cycles all registers are clocked, and the frame number is
known, stateS′′ can be generated easily if it exists.

In [3] it is shown that already for the first 64 bits of the output
sequenceO, there will be only one stateS′′ leading toO with
very high probability, hence, the backtracking will derive the
actual session key. If this is not the case, one has to repeat the
procedure with a different frame.

Let us return to the test of all statesS that generate the output
sequenceO. A simple test of all states is no advantage over the
simple attack described at the beginning of the section, as264

states have to be tested, and each test takes 228 cycles in the
worst case. Instead, we compute for each of the219+22 = 241

states possible for R1 and R2 at the end of the initialization, all
states that R3 could have had at that time, given the state of R1
and R2 and the output sequenceO. For this computation, only
the first bits ofO are inspected. As soon as the state of R3 is
available, we test whether the sequenceO is indeed generated.

As the first bit of the output sequenceO is generated by an
exclusive-or of the most significant bits of R1, R2, and R3,
we can immediately derive the most significant bit of R3 from
the knowledge of R1, R2, andO. We clock the registers, and
can again derive the most significant bit of R3 from the most
significant bits of R1 and R2 and the second bit ofO. The bit
now derived had been next to the most significant bit in R3, i.e.
in position 21, in the previous cycle. Hence, by proceeding for
at most 23 cycles, we can derived all bits of R3.

The difficulty lies in the fact that we do not know which reg-
isters will be clocked in each cycle, as the clock control in the
first 11 cycles depends on the values of the bits 0 to 10 of reg-
ister R3 at the end of the initialization. However, we derive
these bits only at later stages of the check. In order to avoid
going over all211 possible values of these bits, we proceed as
follows.

If the clock bits of R1 and R2 are identical, then both registers
are clocked. If we assume the clock bit of R3 to be different,
then R3 will not be clocked, and its most significant bit in the
next cycle will remain the same. The output bit generated by
an exclusive-or operation of the most significant bits can then
be compared to the bit of the output sequenceO. If they differ,
then this possibility was a false one and the clock bits must be
equal. If the output bit produced and the bit from the output
sequence are identical, we pursue this possibility. Thus, in one
half of the situations (R1 and R2 having identical clock bits)
on the average, we reduce the number of possibilities from two
to one and have to check(3/2)11 ≈ 85 cases. For each pos-
sibility, after 11 cycles one can check whether the assumption
about the clock bits in previous cycles matches with the gen-
eration of the most significant bit 12 cycles later. Then, false
possibilities can be eliminated fast.

This heuristic reduces the number of possibilities to be checked

to 85 on the average, with 14 output sequence bits inspected on
the average [5].

4 A Hardware-Based Attack

We decided to invest only the hardware implementation of the
test that we described in detail in the previous section. As only
some statesS will produce the output sequenceO, the gener-
ation of corresponding statesS′′ can be left to software, as the
test will dominate cost and runtime of the attack.
We have implemented this test in VHDL and compiled it with
the Xilinx Foundation software for an Xilinx XC4062 FPGA
[5]. The implementation occupies 313 of its 2300 CLBs.
Therefore, 7 instances of the test are possible on one FPGA,
each doing its share of the241 checks. Due to the complex-
ity of the control logic to generate the bits of register R3, the
frequency that could be achieved was pretty low: 18.65 MHz.
On the average, 85 possibilities for register R3 have to be
checked for each state of R1 and R2; for each of these pos-
sibilities, 14 bits of the output sequence have to be checked on
the average. Thus, a check needs85 ·14 = 1190 cycles or63.8
µs on the average.
We have done an estimation of the cost and performance of
an implementation of the test on an Alcatel ASIC with about
5,000 gate equivalents in0.35µ technology [5]. Such an ASIC
could host 11 instances of the test and would yield a guaranteed
operating frequency of at least 50 MHz, i.e. the test on an ASIC
would be faster than on an FPGA by a factor

50 · 11
18.65 · 7

≈ 4.2

.
A projection of this implementation onto a0.10µ technology
[5] resulted in a frequency increase by a factor three and an
area decrease by a factor 16. Hence, with the same chip area,
a soon to be available ASIC could be16 · 3 · 4.2 ≈ 200 times
faster than the FPGA implementation.
Taking into consideration that ASICs not only get faster with
shrinking feature sizes but also tend to provide more chip area,
we argue that with 1,000 ASICs in0.1µ technology, each pro-
viding 10 times more chip area than the ASIC we considered,
we get the following calculation.
One FPGA would need to perform241 checks, each needing
63.8 µs on the average. A cheap ASIC available today would
by 200 times faster. 1,000 larger ASICs then would need

241 · 63.8
200 · 1000 · 10

· 10−6s≈ 70 s

Given the fact that on the average, only half of the checks have
to be performed until the correct state is found, a machine con-
taining these 1,000 ASICs would need roughly half a minute
to find the key of a phone call from a single frame of the con-
versation.
Such a machine would be very similar to the DES cracker [2],
that hosted 1,536 cracker chips and a normal PC as a host com-
puter. The cracker chips are connected to the host computer by



a hierarchical bus system. In the beginning, they are initial-
ized, and each chip receives the set of states it has to check.
The set is typically given as an interval of states. During op-
eration, a chip reports each state found to the host computer.
As the number of potential solutions is small, a bus system is
sufficient. The cost of the DES cracker was estimated between
1 and 2 million US$. Our machine would be of similar com-
plexity.

5 Conclusions

We have presented a simple-to-implement known-plaintext at-
tack on the A5/1 stream cipher, and given an implementation
on a small FPGA. The attack is novel over previous attacks
in that it needs only a very small amount of plaintext frame
data. A distributed implementation on specialized hardware
was projected to derive a key within half a minute on the av-
erage. We conclude that the A5/1 algorithm is not secure for
longer phone calls.
We have not taken advantage of approaches by others [1] that
try to restrict the number of possible states. This can be done
either by taking into account that in known implementations,
10 bits of the session keys are always set to zero, or by pre-
computing large tables of states that are indexed via the first
bits of the output sequence [1].
If we combine our effort with theirs, the time to derive a key
will shrink or smaller machines to attack A5/1 will suffice,
making the attack even more realistic. It might be suspected
that such machines are already in use by the National Security
Agency (NSA) or other, similar organizations.

References

[1] Alex Birykov, Adi Shamir, David Wagner. Real Time
Cryptanalysis of A5/1 on a PC. Presented at theFast Soft-
ware Encryption Workshop, April 10-12, 2000, New York,
NY. Available at http://cryptome.org/a51-

bsw.htm

[2] Electronic Frontier Foundation (EFF).Cracking DES:
Secrets of Encryption Research, Wiretap Politics, and
Chip Design. O’Reilly & Associates, Sebastopol 1998.

[3] Jovan Dj. Golic. Cryptanalysis of Alleged A5 Stream
Cipher. InProc. Eurocrypt’97, pp. 239–255, Springer
Verlag 1997.

[4] Bruce Schneier.Applied Cryptography 2nd Edition. Wi-
ley & Sons, New York 1996.

[5] Birgit Seitz. Krypto-Cracker auf FPGA-Basis. Diplomar-
beit, FernUniversiẗat Hagen, FB Informatik, Nov. 2000.


