
A New Data Structure for Shannon Decomposition
Prof. Dr. Jörg Keller, FernUniversität-GHS Hagen, FB Informatik, D-58084 Hagen, Germany
Dipl.-Inf. Milan Manasijevic, FernUniversität-GHS Hagen, FB Informatik, D-58084 Hagen, Germany

Abstract

When modeling a dependable computer system of components that can fail, one often expresses the structure in
the form of a boolean function f , where each variable represents one component. Function f is normally given
as a polynomial. To compute reliability parameters from the components’ failure probabilities, one transforms
boolean operators in f into arithmetic operators. This transformation can lead to an exponential growth of the
formula if monomials are not disjunct. This leads to huge evaluation times. To keep formula size acceptably small,
one can apply an orthogonalization algorithm first. These algorithms are time– and space–consuming because of
the huge number of intermediate boolean functions that must be represented and processed. We will concentrate
on Shannon decomposition and present a data structure to represent intermediate functions in a compact way that
allows fast execution of a decomposition step.
We sketch an implementation and give results of our experiments. The experiments show that even for a polynomial
with 272 monomials in 26 variables, the time for decomposition is at most 3 seconds on a conventional personal
computer. Hence, a system for reliability modeling, e.g. SyRePa, can now be used (almost) interactively, which
raises productivity, allows fast and iterative changes of the systems according to the findings of the previous
analysis, and thus hopefully improves the outcome of the modeling effort.

1 Introduction

We consider computer systems of several components where each component has a probability of failure. To
compute the unavailability of such a system, i.e. the probability that that the system fails, one derives from the
system’s structure the boolean function of the fault-tree, a boolean polynomial, and transforms it into an arithmetic
expression of the failure probabilities. To obtain an expression of acceptable length, one applies an orthogonal-
ization algorithm such as a Shannon decomposition to the polynomial before transforming it. In the course of the
decomposition, many intermediate polynomials are generated.
We investigate representations of boolean functions with regard to their space efficiency and their suitability to
perform decomposition steps efficiently. We propose a new data structure which is compact and allows for the
exploitation of word-level parallelism during the decomposition, thus accelerating it. We present an example
implementation within a system for reliability modeling. We give experimental results which indicate that for
medium-sized systems (up to 25 components, fault-tree function with up to 272 monomials), the decomposition
can be performed in a few seconds. This allows for the interactive design and tuning of a dependable computer
system which is to yield a certain reliability. The data structure can easily be extended to handle arbitrary boolean
polynomials.
The remainder of the paper is organized as follows. In Section 2, we detail the role of Shannon decomposition
in reliability modeling and sketch the data structure used so far. In Section 3, we present our data structure and
show how to efficiently perform a decomposition step with it. In Section 4, we give performance results for some
benchmarks. Section 5 concludes the paper.

2 Preliminaries

We consider a computer system S consisting of k components, where each component i has a probability pi of
failure. We assume that the failure probabilities of the components are independent of each other. We assign a
variable xi to each component i with xi � 1 if component i fails. Then the structure of the system defines a boolean
function ϕ with ϕ�x1� � � � �xk� � 1 if the system fails. The function ϕ is called the structure function of the system
S. It can be generated from a fault tree of S and is normally given as a polynomial where no variable appears



boolean � arithmetic
x̄ � 1� x

x� x� � x � x�

x�� x� � x� x�� x � x�

Table 1 Replacement of boolean operators by arithmetic operators

inverted. In order to compute from the pi � Prob�xi � 1� reliability parameters of S such as the unvailability,
i.e. E�ϕ� � Prob�ϕ � 1�, one normally proceeds as follows (see e.g. [2]). First, the boolean operators in ϕ are
replaced by arithmetic operators according to the identities in Table 1. As a sidenote, the arithmetic operators were
originally used by Boole in his book “Laws of Thought”. Then, the variables xi are replaced by the probabilities
pi. Evaluation of the resulting formula computes E�ϕ� � Prob�ϕ � 1�.
Because of the third identity, the replacement can lead to an exponential growth in formula size if the monomials
are not disjunct. As formula size directly influences evaluation time and numeric stability of the result, a short
formula is needed. As an example, we consider the simple polynomial

ϕ�x1� � � � �x4� � x1 � x2� x2� x3� x3� x4 �

We first transform the disjunction of the first two monomials:

x1� x2� x2� x3 � x1 � x2 � x2 � x3� x1 � x2 � x3 �

The complete transformation proceeds as follows:

ϕ�x1� � � � �x4�

� �x1 � x2 � x2 � x3� x1 � x2 � x3�� x3 � x4� �x1 � x2 � x2 � x3� x1 � x2 � x3� � x3 � x4

� x1 � x2 � x2 � x3� x1 � x2 � x3 � x3 � x4� x1 � x2 � x3 � x4� x2 � x3 � x4 � x1 � x2 � x3 � x4

� x1 � x2 � x2 � x3 � x3 � x4� x1 � x2 � x3� x2 � x3 � x4 �

There were only 5 boolean operators, but there are 11 arithmetic operators.
One avoids the blow-up in size if one applies an orthogonalization algorithm to ϕ first. Application of such an
algorithm also increases formula size but at a much smaller scale. Two commonly used algorithms are Abraham’s
algorithm [1] and Shannon decomposition (see e.g. [2] for an overview). Both have their advantages, and both
have been cited to be “faster” than the other due to some (out of plenty) improvements. We therefore refrain from
a comparison but concentrate on the latter.
A Shannon decomposition on ϕ consists of several steps according to the rule

ϕ�x1� � � � �xn� � xi�ϕ�xi � 1�� x̄i�ϕ�xi � 0� �

In ϕ�xi � 1�, one checks whether some of the monomials can be eliminated because they are absorbed by others. In
ϕ�xi � 0�, one deletes all monomials that contain xi and checks whether some additional variables can be factored
out because they are part of all remaining monomials.
For our example, we apply the rule with i � 1:

ϕ�x1� � � � �x4� � x1� x2� x2� x3� x3 � x4

� x1� �x2� x2 � x3� x3� x4�� x̄1� �x2� x3� x3 � x4� (1)

� x1� �x2� x3 � x4�� x̄1� x3� �x2� x4� (2)

In ϕ�x1 � 1�, the term x2 absorbed x2�x3. In ϕ�x1 � 0�, the variable x3 could be factored out. The resulting formula
has 8 boolean operators and can be transformed in a formula with an equal number of arithmetic operators.
Like any orthogonalization algorithm, the Shannon decomposition is a resource-consuming task itself, which could
hinder its applicability in practice. Hence, it must be performed efficiently. To achieve this goal, a data structure
is needed to represent the intermediate functions in the decomposition process. This representation must be very



1 2

2 3

3 4

Figure 1 Representation of example polynomial by linked lists

compact because of the large number of intermediate functions, and must allow each decomposition step to be
performed fast.
A usual data structure to represent boolean polynomials is a linked list of all monomials, where each monomial
is represented by a linked list of its variables. The representation of our example function ϕ is depicted in Figure
1. Intermediate functions are polynomials with a number of variables factored out. The variables factored out can
also be represented by a linked list.

3 New Data Structure

We will now present a more compact data structure that allows exploitation of word-level parallelism during the
Shannon decomposition. Let B � f0�1g. Given is a set of l monomials mi, 1 � i � l, in k boolean variables
x1� � � � �xk, where no variable appears negated in any monomial. We represent each monomial mi by a unique bit
vector si � Bk, denoted by si :� vec�mi�, such that si� j � 1 if and only if variable x j appears in monomial mi.
The inverse function to vec is mon, i.e. mi � mon�si� :� x

si�1
1 � � �x

si�k
k , where we define x1 :� x and x0 :� 1. Then

mon�0� � 1, where 0 represents a vector of zeroes (of appropriate length). For completeness we also define a
function mon for negated variables, i.e. mon�si� :� x̄1

si�1 � � � x̄k
si�k . We represent the set of monomials by a �l�k�-

bitmatrix S � �s1� � � � �sl�
T , i.e. row i of S represents monomial mi. For example, the monomials of our example

function ϕ � x1� x2� x2� x3� x3 � x4 are represented by

S �

�
� 1100

0110
0011

�
A �

Boolean operators applied to bit vectors are to operate bitwise. Then, for two vectors a�b�Bk, let red�a�b� :� a� b̄.
The function red sets in a those bits to zero that are 1 in b.

3.1 Representation of certain functions

The tuple t � �v��v��r� � Bk�Bk�Bl represents the function

F�t� :� mon�v��mon�v��

�
�

1�i�l�ri�0

mon�red�si�v�� v���

�

� x
v��1
1 � � �x

v��k
k � x̄1

v��1 � � � x̄k
v
��k �

�
� �

1�i�l�ri�0

�

1� j�k�v�� j�v�� j�0

x
si� j
j

�
A �



This means, that v� and v� denote the non-negated and negated variables that have been factored out of the inner
polynomial. The inner polynomial is formed out of monomials from S, where monomials mi marked by ri � 1 in
the row vector r are ignored. In each monomial taken, the variables factored out are ignored.
In our example, the function

x̄1 �ϕ�x1 � 0� � x̄1� x3� �x2 � x4�

as obtained in (2) is represented by

v��� � 0010 because x3 is factored out,
v��� � 1000 because x̄1 is factored out,
r�� � 100 because the first monomial (x1� x2) has value zero in ϕ�x1 � 0�.

The following properties hold:

1. The polynomial formed by disjunction of all monomials is represented by F�0�0�0�.

2. If �v��v�� �� 0, then F�t� � 0, i.e. if a factored out variable appears both in negated and non-negated form.

3. If r � 1, then F�t� � mon�v��mon�v��. This is a deviation from standard conventions, where �i�Iai � 0 if
I � /0 and �i�Iai � 1 if I � /0. The reason for this deviation is that r � 1 will — if we only apply operations
defined below — only occur if we are able to factor out all variables of the inner polynomial.

4. If ri � 0 and red�si�v�� v�� � 0, then the inner polynomial is 1 and F�t� � mon�v��mon�v��.

3.2 Decomposition Step

To perform one step of a Shannon decomposition for a function F�t�, one chooses a variable x j and replaces F�t�
by x jF�t��x j � 1�� x̄ jF�t��x j � 0�. We derive representations t � � �v���v���r�� and t �� � �v����v����r��� such that
F�t �� � x jF�t��x j � 1� and F�t ��� � x̄ jF�t��x j � 0�.
Then obviously v�� � v��one� j�, where one� j� is a k-bit vector consisting of j�1 zeroes followed by a one and
k� j zeroes. Further, v�� � v� and v��� � v��one� j�.
We obtain r� by applying a check for absorption:

t � � �v�
�
�v���r�� � absorb��v�

�
�v���r�� �

Checking for possibilites to factor a variable out is not necessary. However, this check can be applied to detect a
monomial mon�0� and to transform the function into a form as given in remark 3.
In our example, F�0�0�0� represents ϕ in accordance to remark 1. To obtain x1 �ϕ�x1 � 1�, we set v�

�
� v� �

one�1� � 1000 and v�� � v� � 0, thus

F�v���v���r� � x1 � �x2� x2� x3� x3� x4�

as in (1). The check for absorption finds that the first monomial x2 absorbs the second, x2�x3, i.e. r� � 010. Hence,

x1�ϕ�x1 � 1� � F�v�
�
�v���r�� � x1� �x2� x3� x4� �

To obtain r��, we first remove all monomials which included x j in t, i.e.

r��i �

�
1 if ri � 0 and red�si�v�� v�� j � 1
ri otherwise.

Then, we check whether additional variables can be factored out. Hence,

t �� � �v����v����r��� � factor�v��v����r��� �

In our example, v� � v� � 0, therefore red�si�v� � v�� j � si� j. Consequently, for j � 1, the first monomial must
be removed, and r�� � 100. We already know that v��� � 1000. As both remaining monomials contain x3, operation
factor will deliver v��

�
� 0010. Hence,

x̄1F�t��x1 � 0� � F�v��
�
�v����r��� � x̄1� x3 � �x2� x4� �

Note that if v�� j � 1 then F�t ��� � 0 as expected, and if v�� j � 1 then F�t �� � 0. Note also that if v�� j � v�� j � 0
and si� j � 0 for all i with ri � 0, i.e. if F�t� is independent of x j, then r� � r�� � r, i.e. both new functions have
identical inner polynomials. In all these cases, the result of the step should be t and t � and t �� deleted.
We will now describe how to perform the operations factor and absorb on our data structure.



3.3 Factoring out

Given a function F�t�, we can factor a variable x j out of the inner polynomial if it appears in all monomials. This
is the case if and only if

f j :�
�

1�i�l�ri�0

red�si�v�� v�� j � 1 �

Hence, with

fac�t� :� � f1� � � � � fk� �
�

1�i�l�ri�0

red�si�v�� v��

� red

�
�

1�i�l�ri�0

si�v�� v�

�
� (3)

we can form a representation t � � �v�
�
�v���r��, denoted by factor�t�, with F�t �� � F�t� and all possible variables

factored out:

v�� � v�� fac�t�

v�� � v�

r� �

�
1 if 	i : ri � 0 and red�si�v��� v��� � 0
r otherwise.

In our example, we execute factor�0�1000�100�. We compute

fac�t� � red

�
�

2�i�3

si�v�� v�

�

� �0010�0111�� �0000�1000�

� 0010�0111

� 0010

and thus see that x3 can be factored out.
Note that the definition of r� ensures that if the inner polynomial in F�t �� contains a monomial 1, then the repre-
sentation can be simplified (see also remarks 3 and 4 above).

3.4 Checking for absorption

A monomial mi� is absorbed by a monomial mi, where i �� i�, when each variable occuring in mi also occurs in mi� .
Then mi� need not be considered further. This is the case if and only if

red�si�si�� � si � s̄i� � 0 �

Then, a monomial i� in the inner polynomial of F�t� is absorbed if and only if there exists an i �� i�, 1 � i � l, with
ri � 0 such that

red�red�si�v�� v��� red�si� �v�� v��� � 0 �

Hence, we can form a representation t � � �v���v���r��, denoted by absorb�t�, with F�t �� � F�t� and all possible
monomials absorbed:

v�� � v�

v�� � v�

r�i� �

�
1 if ri� � 0 and 	i : ri � 0 and red�red�si�v�� v��� red�si� �v�� v��� � 0
ri� otherwise.

In our example, we compute absorb�1000�0000�000�. We first calculate

s̃i � red�si�v�� v�� for i � 1�2�3



and obtain

s̃1 � 0100 � s1 �1000 �

s̃2 � 0110 � s2 �

s̃3 � 0011 � s3 �

We find
red�s̃2� s̃1� � 0110�0100� 0010 and red�s̃3� s̃1� � 0011�0100� 0011 �

thus, monomial 1 is not absorbed. We find

red�s̃1� s̃2� � 0100�0110� 0000 �

thus, monomial 2 is absorbed by monomial 1. The test whether monomial 3 absorbs monomial 2 is not necessary.
We finally find

red�s̃1� s̃3� � 0100�0011� 0100 and red�s̃2� s̃3� � 0110�0011� 0100 �

thus, monomial 3 is not absorbed.
Note that if red�si�v� � v�� � red�si� �v� � v��, i.e. if two monomials in the inner polynomial are identical, then
both are removed. However, this cannot happen in our algorithm as this would need the prerequisite that t was the
result of a decomposition step of a representation where absorption had not been applied.
Note also that factoring and absorption are independent operations, because any variable in mi also was present in
mi� . Thus, by absorbing mi� , the decision whether this variable can be factored out is not influenced.

3.5 Complete Shannon Decomposition

As our application is the analysis of fault-trees, we start with a DNF given by t � �0�0�0�, and first apply our absorb
and factor operations. Then we perform a decomposition step of F�t� with respect to a variable x j not marked in
v� or v�, i.e. which is (possibly) used in the inner polynomial. We continue with the resulting representations t �

and t ��. Thus, we get a pool of representations upon which we perform one decomposition step each. We also get a
second pool of representations t1� t2� � � � where a decomposition step cannot be successfully applied anymore. We
have finished as soon as our first pool is empty. Our resulting function is

F�t1��F�t2�� � � � �

Note that the choice of the variable x j in any step is not depending on the particular data structure we use and
thus any heuristic can be used. Some heuristics might even be simplified by our data structure. E.g. a popular
heuristic to find the next variable used to decompose is to search for monomials containing few variables, because
they have the potential to absorb many others. Among the variables in the shortest monomials, we choose one by
an arbitration rule.
As our monomials are represented by bit vectors, the above heuristic requires to count the number of ones in a
bit vector. Some processors, such as the Alpha, provide an assembler instruction that gives the number of ones
in a data word. However, as not all processors have this, a portable solution relies on a software formulation. A
straightforward approach is to have a function cntones that shifts the vector bit after bit and counts the ones in
position zero.
A much faster solution relies on tables that contain the number of ones for bit vectors of a fixed length. Let
onecnt be an array such that for x being an integer, onecnt�x� contains the number of ones of the binary
representation of x. The array can be initialized using the function above. Note that for array sizes up to 2255, the
binary representation of x will contain at most 255 ones, and thus each element of onecnt can be an unsigned
char. If the size of the array is 216, and we use at most 32 variables, then function cntones can be rewritten as

unsigned int cntonesfast(w)
unsigned long int w; /* the word of which the ones are counted */
{ return (int)onecnt[w & 0xffff] + (int)onecnt[(w >> 16) & 0xffff]; }

This function only needs one shift, two bitwise AND operations, two array indexings, and one addition. In contrast,
the function cntones would have needed 32 bitwise AND operations, shifts and additions, plus the overhead for
the loop.



3.6 Efficiency

Our data structure t consists of three bit vectors. Two of them have length k, the number of variables, on has length
l, the number of monomials in the polynomial to be decomposed. Modern microprocessors operate on 32-bit
words. Hence, if k � 32, then vectors v� and v� fit into one word. The same holds for each si. For larger numbers
of variables, we use a small but fixed number of words per vector. The row vector is stored in an appropriate
number of words. The matrix S needs l words, but is stored only once, while the data structure t occurs for each
intermediate function.
Hence, our data structure is much more compact than a list based representation which needs at least one word to
store a literal plus one word to store a pointer to the next literal. Also, linking the monomials requires one word
per monomial. The next section will give more details about the memory consumption in our implementation.
Monomials that are stored in a single word allow the exploitation of word-level parallelism. This is obvious when
considering the operation red. It is most striking in equation (3) where one can see that by a single loop over all
monomials, where each iteration only needs one bit-oriented operation, all variables to be factored out have been
determined. The check for absorption needs a nested loop, however the inner loops have an exit condition: as soon
as an absorbing monomial is found, the inner loop can be quit. The check whether one monomial absorbs another
only needs a few bit-oriented operations.
We have to take care with the loops. Their number of iterations is oriented towards the length of the row vector,
which is the number l of monomials in the polynomial ϕ to be decomposed. In the intermediate functions fewer
and fewer monomials will be used. Thus, many of the iterations will simply check that ri � 1, but they are still lost
time. Hence we extend the row vector by a so-called row index vector:
We consider r as z � dl�be blocks of b bits each, i.e. r � b1� � � � �bz with bi � Bb for 1 � i� z. If l is not a multiple
of b, we artificially pad r by appending an appropriate number of ones. The row index vector ri � Bz of r is defined
by

rii �

�
1 if bi � 1
0 otherwise.

Then, instead of looping over the row vector, one can use the row index vector to skip b iterations if the corre-
sponding index vector entry is 1, i.e. if all these b iterations would only have tested that the corresponding rows
are not used anymore. A satisfactory choice for b is 32, i.e. one word of the row vector is skipped.
Our method can be easily extended to decompose polynomials in which negated variables appear. Each monomial
then mi is represented by two bit vectors s�i and s�i . Bit vector s�i is defined similar to si, bit vector s�i is defined
such that s�i� j � 1 if and only if mi contains x̄ j. Then mi � mon�s�i �mon�s�i �. The definition of F�t� is extended
accordingly. Hence, the memory consumption of S is doubled, but the representations t remain as they are. The
checks for absorption and extraction now work on s�i and s�i , hence their runtime doubles. In a decomposition
step, we now have to check for absorption and extraction when generating t � and t ��. Hence, the total runtime is
increased by a factor of four.

4 Experiments

We implemented a tool for Shannon decomposition based on our proposed data structure. It was programmed
using MS Visual C++. The tool is embedded in a system for reliability modeling, SyRePa [3]. The system runs on
a PC with a Pentium II MMX / 300 MHz microprocessor, 512 kB Cache Memory and 64 MB main memory. We
compare our implementation with the previous implementation of Shannon decomposition in SyRePa with respect
to runtime and memory consumption. As the resulting function is identical for both implementations (see remark
in subsection 3.5), we do not compare formula sizes. As benchmarks, we used 7 formulae which are described in
Table 2. The complete formulae can be found at
http://ti2server.fernuni-hagen.de/˜jkeller/formula.html.
For the 5 small benchmarks, runtime was well below one second. For the last two benchmarks, runtime was 3 and
1.5 seconds, respectively. Hence, even for larger systems, interactive modeling and refining should be possible.
For benchmark 6, which the largest and hence the most significant, we also ran the old version which needed 9
seconds. Interestingly, the runtime of the new implementation without use of the row index vector had a runtime
of 15 seconds. The reason is that the average number of monomials in intermediate functions was 4�90, i.e. the



benchmark # variables # literals # monomials
1 3 6 3
2 5 10 4
3 7 32 10
4 7 105 35
5 12 131 24
6 26 2475 272
7 26 927 130

Table 2 Characteristics of Benchmark formulae

program spent most of its time looping over row vectors while only a few rows were still used. Hence, use of the
row index vector is indeed necessary.
The comparison of the old and the new data structure in terms of memory requirements showed that it was com-
parable for the small benchmarks 1 to 5, with differences of up to 20% in either direction, depending on the
benchmark. For the larger benchmarks 6 and 7 however, the amount of memory needed to store intermediate
functions was halved by the new data structure. This enabled the functions’ representations to be kept in the cache,
which contributed to the runtime improvements.
We compared our implementation with the CAOS algorithm [4]. There, the largest benchmarks contain 74 mono-
mials in 16 variables and 81 monomials in 14 variables, respectively. For both, the reported runtime on a PC 486
DX2-66 is 3.1 seconds. As our machine is about 4.5 times faster, this should translate to about 0.7 seconds. We
need about twice that time for benchmark 7 with almost twice as many monomials, thus we conclude that our
algorithm is at least as efficient as the CAOS algorithm. Unfortunately, memory consumption was not reported so
that a comparison is not possible in that respect.

5 Conclusion

We have shown how to efficiently represent boolean polynomials that occur in the course of a Shannon decomposi-
tion. Our representation allows the decomposition to be performed fast enough to approach interactive design and
redundancy minimization of a dependable computing system which is to guarantee certain reliability parameters.

References

[1] Abraham, J. A.: An improved algorithm for network reliability. IEEE Transactions on Reliability, Vol. R–28
No. 1, 1979, pp. 58–61

[2] Schneeweiss, W. G.: Boolean Functions with Engineering Applications and Computer Programs. Berlin:
Springer, 1989

[3] Schneeweiss, W. G.: SyRePa ’89 – a package of programs for systems reliability evaluations. Informatik–
Bericht 91, FernUniversität-GH Hagen, 1990

[4] Vahl, A.: Interaktive Zuverlässigkeitsanalyse von Flugzeug–Systemarchitekturen. Dissertation, Technische
Universität Hamburg–Harburg, 1998


