

Abstract

The performance requirements for contemporary micro-

processors are increasing as rapidly as their number of
applications grows. By accelerating the clock, performance
can be gained easily but only with high additional power
consumption. The electrical potential between logic ‘0’ and
‘1’ is decreased as integration and clock rates grow, lead-
ing to a higher susceptibility for transient faults, caused e.g.
by power fluctuations or Single Event Upsets (SEUs). We
introduce a technique which is based on the well-known
cyclic redundancy check codes (CRCs) to secure the pipe-
lined execution of common microprocessors against tran-
sient faults. This is done by computing signatures over the
control signals of each pipeline stage including dynamic
out-of-order scheduling. To correctly compute the check-
sums, we resolve the time-dependency of instructions in the
pipeline.

We will first discuss important physical properties of Sin-
gle Event Upsets (SEUs). Then we present a model of a
simple processor with the applied scheme as an example.
The scheme is extended to support n-way simultaneous mul-
tithreaded systems, resulting in two basic schemes. A cost
analysis of the proposed SEU-detection schemes leads to
the conclusion that both schemes are applicable at reason-
able costs for pipelines with 5 to 10 stages and maximal 4
hardware threads. A worst-case simulation using software
fault-injection of transient faults in the processor model
showed that errors can be detected with an average of 83%
even at a fault rate of 10-2. Furthermore, the scheme is able
to detect an error within an average of only 5.05 cycles.

1. Introduction and motivation

The growing number of applications for computing systems
led to rapidly growing performance requirements. Perform-
ance is easily gained by accelerating the clock frequency F.
It is inevitable to decrease the main current at high clock
rates, because the power consumption E~F3 [16]. To de-
crease the energy consumption, the current potential be-
tween logic ‚0‘ and ‚1‘ is reduced. By increasing the
integration density, new algorithms and paradigms can be
implemented in hardware and energy consumption can be
reduced again. Examples are dual-core systems or Simulta-
neous Multithreading (SMT) [1]. The Semiconductor In-
dustry Association (SIA) roadmap shows an increase of
integration density to 22 nm until 2016
(http://public.itrs.net/Files/ITRS_Overview.pdf). At 90 nm
and below [11] a problem occurs at sea-level, which was
only known from aerospace applications: The collision with
high-energetic neutrons from deep-space with silicon. At
larger heights, the fault rates in SRAMs increase by a factor
of 3-10, approximately by 1.3 per 1000 ft [12].
These so-called total ionizing dose effects are caused by the
influence of electromagnetic waves or particle radiation,
being able to ionize atoms or molecules so that electrons are
removed. The loose ions are very reactive and can cause
severe circuit damage. Electromagnetic radiation can cause
ionization if the wave-length is below 100 nm, since the
photon has enough energy to separate one electron. Single
Event Effects (SEEs) [6][7] are caused by interaction of a
single particle with silicon. They have been investigated
since the late seventies, leading to the discovery of memory
faults in terrestrial [5] and extra-terrestrial [4] environ-
ments. SEEs can be separated in non-destructive soft-errors
(or transient faults), causing a temporal malfunction or dis-
turbance of digital information and destructive effects caus-
ing permanent failures. With high integration, protons are

Bernhard Fechner

FernUniversität in Hagen, Department of Computer Science,
58084 Hagen, Germany

bernhard.fechner@fernuni-hagen.de

Analysis of Checksum-Based Execution Schemes for Pipelined Processors

able to induce Single Event Upsets (SEUs), leading to a
higher SEU susceptibility of the concerned circuits, espe-
cially for deep-space applications. R. Baumann showed that
the downtime costs caused by SEUs have increased dra-
matically [27]. It is forecast that the soft-error-rate (SER) in
combinatorial circuits will increase approximately by 105
from 1992 until 2011 [13]. Thus, we have to deal with a
total soft error rate of 104 FIT (Failure in Time=1 error in
109 hours of operation) -5fault rate 10 / h⇒ in combinato-
rial circuits for the next decade [13]. Therefore it is neces-
sary to secure the execution of future processors, making
them more reliable to face the increasing number of SEUs.

This paper makes the following contributions:
 It introduces an error detection scheme which computes

checksums out of the control path to detect transient er-
rors and proposes extensions to support SMT.

 We will estimate the area for all proposed schemes and
present the results of a fault-coverage analysis based on
software-implemented fault-injection.

The rest of the paper is organized as follows: We will have
a look at related work in Section 2. Section 3 discusses the
fault model and important SEU-properties. Section 4 pre-
sents two schemes to secure the pipelined execution and
Section 5 an estimation of the costs. Section 6 discusses the
simulation methology and presents the results of the fault-
coverage analysis. Section 7 concludes the paper.

2. Related work

Pipeline signatures resemble control-flow monitoring tech-
niques, where incorrect branches are detected. The soft-
ware-implemented execution-checking of loop-free intervals
by [18] could detect all sequence errors that resulted in a
branch outside the interval. Macroinstruction control-flow
monitoring divides the application program into several
blocks. The blocks are checked instruction by instruction
for control-flow faults [19][20]. In [21] signature instruction
streams (SIS) were introduced. The CRC of the instruction
stream is inserted into the binary code after a branch. The
monitor reads the CRC and compares it with the computed
CRC. An error is detected if the checksums do not match.
With a probability of a branch occurring every forth to tenth
instruction, the overhead to store the signatures was be-
tween 10% and 25% of the original program code. Because
the monitor is much simpler than the processor it monitors,
performance degrades (because of extra memory cycles).
The effectiveness of SIS was verified by hardware fault-
injection for a Motorola 68000 system [21][23]. SIS raised
the error detection rate to 25% in comparison to the original
system. Smolens et al. [17] proposed an error detection
scheme called fingerprinting. Fingerprinting summarizes the

execution history of a processor. By using two processors,
errors can be detected by comparing the fingerprints. In
contrary to all schemes from above, we are able to detect
errors in the pipelined execution and save hardware by us-
ing SMT. As a consequence, we do not have to replicate
hardware to achieve structural redundancy or insert check-
sums in the instruction stream. Since the detection works
very fast, counter measurements like error recovery will
work more efficiently (time/ cost/ power consumption).

3. Physical effects and the fault model

Temporal errors are the main cause for errors in semicon-
ductors. They are difficult to locate in time, because they
are not always in the state causing the error. The possibility
for a temporal error is 5 to 100 times higher than for a per-
manent error [14]. Temporal errors must not be repaired,
since the hardware is not physically damaged. Apart from
radiation, they can be caused e.g. from power fluctuations,
loosely coupled units, timing-faults, meta-stable states and
environmental influences (temperature, humidity, force).
Seldom discussed in computer science literature are impor-
tant properties of SEUs like creation, duration and energy
level. These properties help to understand the effects caused
by particles to find appropriate counter measurements. De-
fect-types in silicon lattice are - amongst others - character-
ized through different, discrete energy levels in the band
gap, the entropy-change factors, and annealing temperatures
at which the bonds break. Along its path through silicon
latter, an ionizing particle creates electron-hole pairs
through Coulomb-scattering. The energy of the incident
particle can be measured through the energy loss on its path
by dE/dx in units of keV/µm or linear energy transfer (LET
= dE/ρdx) in units of eV cm2mg−1 (ρ is the density of the
matter) or in charge per unit length (pC/µm). For silicon,
3.6 eV are needed to create an electron-hole pair. The
charge-collecting dynamic has a fast (O(100ps)) and a slow
(O(ns)) component [8][9]. It is important to know the dura-
tion of a transient fault, when fault-detection/ correction
schemes are working on a tight time-basis as in this work.
The effects of a SEU could last longer than it takes to cor-
rect the error, misleading the correction in the direction that
a permanent fault occurred or that no error is detected. To
determine the duration of a particle-induced transient fault,
we consider citing [23]:

„The prompt charge is collected in much less than 1
ns, which is shorter than the response time of most
MOS transistor.“

In [24] it is shown by using a 0.6µm-CMOS process that the
slow component of the charge-collecting dynamic of a SEU
is active over 0.5 ns only in the substrate (at maximal 0.5
mA). The quick component of this dynamic is active for
≤0.2 ns (over 3 mA). Targeting an FPGA implementation,

this will be of no concern for modern FPGAs, since their
clock cycle is still well above this limit. For further details
on fault types and rates in submicron technologies, see [10].
The fault model assumes transient faults in the form of
SEUs (Single Event Upsets). Furthermore, we assume one
fault at a time in one component (pipeline stage). SEUs are
modeled through bit-flips in latches or flip-flops. In [15] it
has been shown that this modeling matches closely the real
faulty behavior.

4. Pipeline signatures

In this Section we present a scheme to compute signatures
on a micro-architectural level for the control path of a sim-
ple microprocessor, exploiting the pipelined execution
scheme. The scheme will be extended to support SMT. Let
P be a p-stage pipelined, (superscalar) processor with a fi-
nite instruction set of B≠∅ instructions and t∈ sets of
instruction streams

{ } { } ()1 1,1 ,1 1, ,,..., ... ,...,m t t m tI i i I i i B= = = = ⊆℘ ,

where ()B℘ is the power set of B. We assume two redun-
dant RAMs with equal code and data contents. Thus, we set
t=2 (although it is possible to have multiple threads reading
from one RAM) and it is I1=I2 in the fault-free case. In-
struction streams do not have to be necessarily finite, be-
cause of program loops. Each stage includes a storage
where the processor saves the thread-ID and the control part
of the instruction being processed in that stage. For the
fetch stage, the control part will be the fetched instruction.
For the decode stage, it will be the part of a microprogram,
driving the execution unit(s), etc. The signature computa-
tion involves the well-known cyclic redundancy check
codes (CRCs) [2][3]. Cyclic binary codes are a subgroup of
linear codes. They are codes with a fixed number of words
2m and a fixed word length n where m≤n over the alphabet

{0,1}ix ∈ . Code words are gained by polynomial division

of the message polynomial
1

()
n

i
i

i
v x v x

=

= ∑ by the generator

polynomial
1

()
n

i
i

i
g x g x

=

= ∑ . The selection of a generator

polynomial g(x) is not a trivial task. It must be chosen in a
way that enough code words are produced and the Ham-
ming [22] distance

{ }
1

, 0,1 ; (,) :
n

n
H i i

i
a b d a b a b

=

∈ = ↔/∑

is maximal. For example, if () 1g x x= + , all single-bit er-
rors can be detected since g(x) is equivalent to the computa-
tion of the parity of v(x). The situation is different with
pipeline checksums. Here, the message v(x) is composed

out of the instruction stream and the contents of pipeline
latches containing the control information for a stage. To
clarify this, we start with the computation of a signature for
a simple pipeline (Figure 1).

Figure 1. Signature computation

The checksums will be saved in a special memory with the
corresponding PC and thread-ID. We call this storage the
checksum memory. Table 1 shows one checksum memory
entry with the according bit ranges.

Table 1. A checksum memory entry

Thread-ID Program counter Checksum

37 36:5 4:0

We can already apply multithreading at a coarse-grained
level for this pipeline. We switch the processor context if
latency-causing instructions (e.g. branches) are encoun-
tered. Branch instructions within instruction streams will
lead to the storage of the checksum and to a selection of
another instruction stream. If the second checksum entry is
created with the same PC, the checksums are compared. If
the entry is not found, it is assumed that a fault corrupted
one of the PCs and an error is signaled. If the checksums
are equal, no fault occurred or the checksums were changed
by a transient fault in a way that both checksums are now
equal. If the checksums are not equal an error will be sig-
naled. From the calculation of checksum parts concerning a
single stage from Figure 1, we see that different generator
polynomials g(x), h(x) can be applied to compute single
checksum bits (Figure 2). For a cost-effective implementa-
tion we considered only one generator polynomial for all
pipeline stages.

Figure 2. Checksum calculation in a stage

In fact, we have a two-level polynomial scheme applied if
we regard different feedback stages. The implementation of

error correcting codes checking each latch in a pipeline
stage is possible, but was omitted due to the high additional
power consumption and performance loss. Parity computa-
tion for each pipeline latch will also affect performance,
since we have to build the parity for all signals from the
latches of a pipeline stage. This number can be quite large
(e.g. signals from the microcode) so we have to build fan-in
trees to compensate fan-in effects, leading to a slowdown.
We also consider the contents of out-of-order pipeline
stages to be a part of the checksum. This complicates the
situation from Figure 1, since the dynamic scheduling will
lead to different parts of the control and data stream exiting
the execution stage at different times. If the fetch and exe-
cution policy is done on a cycle-by-cycle basis, we can real-
ize this part easily, if we choose the generator polynomial in
a way that no feedback affects the out-of-order stages.
Since XOR is an associative operation, dynamic execution
will not affect the checksum. For flexibility we want to use
any fetch and execution policy. So we cannot use the
scheme from Figure 1 without modification. The problem is
to resolve the time dependency of instructions in the out-of-
order stage. The solution is based on a two-level scheme.
Two checksums are calculated separately for the out-of-
order and other stages. Figure 3 shows the checksum calcu-
lation including the out-of-order stage.

Figure 3. Out-of-order checksum calculation

For clarity, the control paths are marked with dotted lines.
Both checksums are stored in FIFO buffers. Results from
the execution stages are XORed until checksum enable is
set. Then both checksums will be XORed. So we shifted the
time dependence to the last stage. The scheme will not in-
crease the costs except for the XORs in the last stage. Since
this applies to all following schemes, we will not mention
the costs for the final stage explicitly.

5. Cost analysis

The number of XOR gates per stage is equal to smax. Typi-
cally it is { }max 1max ,..., ps s s= , where si is the number of
(control) wires from stage i to stage i+1. Let p be the num-
ber of pipeline-stages, t the number of threads, b the width
of instructions and d the depth of the FIFO buffer from

stage to stage for each instruction stream. To get an upper
estimation for the costs, we assume

1
. 1. ()

p
i

i
i

i g g x x
=

∀ ∈ = = ∑ for the generator polynomial.

This means that the last stage is connected to all previous
stages. For simplicity, we set the instruction width to
b=2*32 bit, the average control path width of pipeline
stages to si=64 bit and the FIFO-depth to d=4. The gate
costs for the scheme in Figure 1 are relatively low. Using
Table 2 they compute to (. 64ii s∀ =):

1

1
1 1

1

1 1

((,)) () ()

4 32 2304 2048.

p p

i i
i i

p p

i i
i i

C PIPECRC p d s C XOR s C FF d

s s p

+

= =

+

= =

= +

= + = +

∑ ∑

∑ ∑

Since the n-to-m switch will be used in the following esti-
mations, we explicitly calculate the costs. A n-to-m switch
will direct the input x[n-1:0] (width n) to one of m outputs
y[n-1:0]. All other m-1 outputs will be set to zero. The out-
put is selected by s[ld(m)-1:0]. For the number of NOT-
gates, we need the number of zeroes within a binary number
of length s. This can be easily calculated recursively, if we
consider the following: Let s be the number of digits of a
binary number. Then 2s binary numbers are possible, 2s/2
beginning with zero. The remaining zeroes are two times
the number of zeroes of the binary number with s-1 digits.
This is:

#

#

(0) 0; (1) 1; (2) 4;

2() 2 (1).
2

s

Zero Zero Zero

Zero s Zero s

= = =

= + −

The solution of this recurrence is:

1 1
#() : 2 (0) 2 2s s sZero s Zero s s− −= + = .

Thus, the cost for an n-to-m switch is (m is a power of two):

()
()

1

1 1

((,)) 2 () 2 ()

2 2 .

m m

m m

C dec n m n m C NOT C AND

n m

−

− +

= +

= +

Analogously the cost for an m-to-n switch, selecting one
signal group x[n-1:0] of width n out of m groups y[n-1:0]
is:

()1 1

((,)) ((,) ()

2 2 2 .m m

C mplex n m C dec m n nC OR

n m − +

= +

= + +

Figure 4 shows the signature calculation for a two-way
SMT-system. It can be seen, that hardware costs double (at
least) for each hardware thread. Activation and propagation
signals for the checksums are not shown for clarity. The
checksum will be calculated depending on which thread is

active. Each part of the checksum is activated by the thread-
ID, indicating which thread is active in a stage.
Since the processor is working on the same data and code,
the checksums will not be different in the fault-free case.
The additional gate cost for a t-way multithreaded pipeline
execution scheme in reference to Table 2 calculates to

() ()

2 1

1

t

((,)) ((, 4))

((64,)) ((64,))

2304 p+2048 +2 128 p+32 pt+128+32 t +128.

p

i

C PIPECRC p t t C PIPECRC p

C dec t C mplex t

t
=

= ⋅

+ +

= ⋅ ⋅ ⋅ ⋅

∑

Table 2. Gate cost and delay (from [26])

Gate Cost Delay
NOT 1 1
NAND/NOR 2 1
AND/ OR 2 1
XOR/ XNOR 4 2
Flip-Flop (FF) 8 4

Figure 4. Checksum calculation for two threads

To compare the calculated checksums in a multithreaded
system, t context switches have to occur (t is equal to the
number of hardware threads). If the execution was fault-
free, the same number of instructions has been executed.
Then all FIFOs will have the same contents. Transient
faults in the checksum mechanism will lead to different
checksums and to a detection of the error. If instructions are
pre-decoded, a branch - the criteria for a context change -
can easily be recognized. At this point, instructions of other
threads may be in the pipeline. We will have to wait for
these instructions to exit the pipeline to compute the check-
sum. To do this, we use a change in the thread IDs in the
last stage to initiate a checksum comparison (checksum en-
able). Additionally to the scheme presented in Figure 4, the
scheme in Figure 5 tries to save XOR-gates, since this num-
ber can be quite large.
The thread IDs in Figure 4 and Figure 5 will assign a part of
an instruction in a stage to a signature. Therefore faulty
thread IDs will be detected, because the wrong signature

will be selected. Then instruction streams will have differ-
ent contents and lengths.

Figure 5. Extended checksum calculation

The costs for this kind of checksum calculation compute to:

()

1

3
1

1
-1

-1

((,)) ((64,)) 64 ()4

((64,)) 2 ((64,)) 64 ()

128 2 64 2 128 2048 (1)
(384 2 192 2 272).

p

i
p

i
t t

t t

C PIPECRC p t C mplex t t C FF

C dec t C mplex t C XOR

t t p
p t

+

=

=

= +

+ + ⋅ +

= ⋅ + ⋅ + + ⋅ +

+ ⋅ + ⋅ ⋅ +

∑

∑

The contour plot in Figure 6 shows the difference ∆ of the
cost functions 3((,))C PIPECRC p t and

2((,))C PIPECRC p t for the checksum schemes in Figure 4
and Figure 5. The x-axis shows the number of hardware
threads t, the y-axis the number of pipeline stages p and the
z-axis the costs. We see that the costs for the scheme from
Figure 4 are always lower than those from Figure 5. Both
schemes are applicable at reasonable costs for pipelines
with 5 to 10 stages and a maximal number of 4 threads.

Figure 6. Contour plot of cost function ∆

6. Fault-coverage analysis

For the software simulation, we generated a random stream
of 1000 32 bit instructions, which was used as an input for
the modeled processor. In the first experiment we wanted to
determine the best polynomial to detect an error. Branches
were created with probability branchp , assessing the number
of instructions between checksum comparisons. The prob-
abilities for a branch in Table 3 were gained from SPEC95
benchmark simulations by using SimpleScalar [25].

Table 3. Values for pbranch (%)

Benchmark Go Ijpeg Compress

pbranch (%) 19.355 15.349 9.463

Benchmark Cc1 Apsi Vortex

pbranch (%) 24.251 22.546 22.931

We computed the checksum for a 32 bit instruction stream
without fault. Then we simulated transient faults in the sec-
ond instruction stream by flipping single, randomly chosen
bits at random stages with a fault rate of 10-2. We chose
such a high error rate to speed up fault-injection experi-
ments. This was done for 1000 fault injection runs. In each
fault-injection run transient errors were injected. As model
we selected a multithreaded 5-stage pipeline with an inter-
nal control-path width of 32 bit from stage to stage. For a
worst case study, we assumed that the pipeline will be
flushed each time a fault is detected or a branch is encoun-
tered. On a branch in the second instruction stream both
checksums were compared. Due to its simple design, we
chose to simulate the checksum scheme from Figure 4.
Figure 7 shows the results for the fault coverage analysis to
find the polynomial with the best fault coverage.

0
10
20
30
40
50
60
70
80
90

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Polynomial

Fa
ul

t c
ov

er
ag

e
(%

)

Figure 7. Fault coverage in %

Polynomials are given as numbers in the x-axis, where e.g.
‘28’ represents the polynomial 4 3 2()g x x x x= + + . The y-
axis shows the fault coverage in %. We conclude from
Figure 7 that the best fault coverage is achieved by applying
the polynomial 4 3()g x x x= + (83%). Figure 8 shows the
fault coverage in relation to the probability of a branch in %
for g(x). We see that the fault coverage is strongly depend-
ent from the number of branches. The probability for a
branch was chosen to range from 0.2 to 0.0032.

0,000

10,000

20,000

30,000

40,000

50,000

60,000

0,2000,0330,0180,0130,0100,0080,0060,0060,0050,0040,0040,0040,003

Branch probability

Fa
ul

t c
ov

er
ag

e
(%

)

Figure 8. Fault coverage-branch relation

But how fast are errors detected? To find an answer, the
gained polynomial was used to compute the checksums in
the second step of the analysis. pbranch was set to the upper
average of the values from Table 3 (20%). As the number
of branches substantially determines the number of checks,

errors will be detected after
branch

2 2
p

n≥ executed instruc-

tions (two instruction streams generating checksums).
Figure 9 shows the experimental results - the latency in
cycles to detect an error. Note that ‘Time’ on the x-axis is a
non-linear factor, since errors occur randomly. The high
latency at the beginning results from the initialization phase
of the scheme. Since the pipeline is cleared on every
branch, this affects the fault coverage and latency, since a
feedback with zero does not result in a checksum with high
fault coverage.

0

5

10

15

20

25

Time

La
te

nc
y

in
 C

yc
le

s

Figure 9. Latency in cycles to detect an error

The average number of cycles to detect an error was com-
puted to 5.05.

7. Summary and Conclusion

In this paper we presented a scheme to detect transient er-
rors in pipeline stages of a microprocessor by fetching from
two RAMs with identical code and data contents and calcu-
lating a checksum using a generator polynomial. Check-
sums are compared on every second branch. Since branches
occur with an average probability of approximately 20% in
the instruction stream, checksums are compared often
enough. The worst-case analysis by using generated 32 bit
instruction streams for a multithreaded 5-stage pipelined
processor with an internal control-path width of 32 bit
showed that an average of 83 of all injected faults can be
detected – even at a fault rate of 10-2. We chose such a high
fault rate to speed up fault injection experiments. Overall
the presented scheme is simple and efficient enough to be
integrated in most contemporary microprocessors. It can
detect an error very fast - within an average of 5 cycles. The
redundant RAMs can be omitted if the memory is secured
against transient faults by using Error Correcting Codes and
the fetch bandwidth is large enough. Future work will com-
prise a Field Programmable Gate Array implementation and
an analysis of the power consumption, size and perform-
ance.

References

[1] D. Tullsen, S. Eggers, and H. Levy, Simultaneous Mul-

tithreading: Maximizing On-chip Parallelism, 22nd An-
nual International Symposium on Computer
Architecture, June 1995.

[2] S. Lin, D. Costello, Error Control Coding, Prentice-
Hall, 1983.

[3] Peterson, W. & E. Weldon. Error-Correcting Codes,
MIT Press, Second Edition, 1972.

[4] G. Kane, J. Heinrich, MIPS RISC Architecture, Pren-
tice Hall, Englewood Cliffs, 1992.

[5] T.C. May, M. H. Wodds, Alpha-Particle-Induced Soft
Errors in Dynamic Memories, In Proc. of the 1978
IEEE International Reliability Physics Symposium
(1978).

[6] T. Weatherford, IEEE Nuclear and Space Radiation
Effects Conference (NSREC) 2002, Short Course, From
Carriers to Contacts, A Review of SEE Charge Collec-
tion Processes in Devices, 2002.

[7] S. E. Kerns with contributions from B. D. Shafer, Tran-
sient-Ionization and Single-Event Phenomena, In: P.V.
Dressendorfer, T. P. Ma (Editors), Ionizing Radiation
Effects in MOS Devices and Circuits, Wiley, 1989.

[8] F. Faccio et al., SEU effects in registers and in a Dual-
Ported Static RAM designed in a 0.25 µm CMOS tech-
nology for applications in the LHC, CERN/LHCC/99-
33 (1999) 571.

[9] E. L. Peterson, IEEE Nuclear and Space Radiation Ef-
fects Conference (NSREC), Short Course, Single-Event
Analysis and Prediction, 1997.

[10] T. Juhnke: Die Soft-Error-Rate von Submikrometer-
CMOS-Logikschaltungen Fakultät Elektrotechnik und
Informatik, Technischen Universität Berlin, Disserta-
tion, 2003.

[11] E. Normand, “Single Event Upset at Ground Level,”
IEEE Transactions on Nuclear Science, Vol. 43, No. 6,
December 1996.

[12] H. Kobayashi, et. al., “Soft Errors in SRAM Devices
Induced by High Energy Neutrons, Thermal Neutrons
and Alpha Particles,” IEDM Tech. Digest, Dec. 2002,
pp. 337-340.

[13] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, L.
Alvisi. Modeling the effect of technology trends on
soft-error rate of combinational logic. In International
Conference of Dependable Systems and Networks,
June 2002.

[14] S.R. McConnel, D.P. Siewiorek, M.M. Tsao: The
Measurement and Analysis of Transient Errors in Digi-
tal Systems, Digest of Papers, FTCS-9, pp.67-70, 1979.

[15] R.W. Wieler, Z. Zhang, R.D. McLeod, Simulating
static and dynamic faults in BIST structures with a
FPGA based emulator. In Proc. of IEEE International
Workshop of Field-Programmable Logic and Applica-
tion, pp. 240-250, 1994.

[16] U. Brinkschulte, T. Ungerer, Mikrocontroller und Mik-
roprozessoren, Springer-Verlag, 2002.

[17] J.C. Smolens, B.T. Gold, J. Kim, B. Falsafi, J.C. Hoe,
A. Nowatzyk: “Fingerprinting: bounding soft-error de-

tection latency and bandwidth”. ASPLOS 2004: 224-
234.

[18] S.S. Yau, F.C. Chen. “An Approach to Concurrent
Control Flow Checking”. In IEEE Trans. Soft. Eng.
SE-6(2) (March 1980): 126-137.

[19] M. Namjoo. “Techniques for Concurrent Testing of
VLSI Processor Operation”. In Proc. of the 12th Int’l.
Symp. On Fault-Tolerant-Computing, IEEE Computer
Society, Santa Monica, CA, June 1982, pp. 461-468.

[20] T. Sridhar, S.M. Thatte. “Concurrent Checking of Pro-
gram Flow in VLSI Processors.” In Digest of the 1982
Int’l. Test Conference, IEEE 1982, paper 9.2, pp. 191-
199.

[21] J.P. Shen, M.A. Schuette. “On-Line Monitoring Using
Signatured Instruction Streams”, IEEE Proc. 13th Int’l.
Test Conference, Oct. 1983, pp. 275-282.

[22] Richard W. Hamming. Error-detecting and error-
correcting codes, Bell System Technical Journal
29(2):147-160, 1950.

[23] M.A. Schuette et al. “Experimental Evaluation of Two
Concurrent Error Detection Schemes”, In Proc. Of the
16th Int’l. Symp. On Fault-Tolerant Computing, Vienna,
July 1986, pp. 138-143

[24] Karnik et al.: Characterization of Soft Errors Caused by
Single Event Upsets in CMOS Processes, IEEE Trans-
actions on Dependable and Secure Computing, Vol. 1,
No. 2, April-June 2004.

[25] D.C. Burger and T.M. Austin. "The SimpleScalar Tool
Set, Version 2.0", Computer Architecture News, 25 (3),
pp. 13-25, June, 1997.

[26] S.M. Müller, W.J. Paul. Computer Architecture. Com-
plexity and Correctness, Springer-Verlag, 2000.

[27] R. Baumann, Silicon Amnesia: A Tutorial on Radiation
Induced Soft Errors. International Reliability Physics
Symposium (IRPS), 2001.

