
 

 
 

Abstract 
 
The performance requirements for contemporary micro-

processors are increasing as rapidly as their number of 
applications grows. By accelerating the clock, performance 
can be gained easily but only with high additional power 
consumption. The electrical potential between logic ‘0’ and 
‘1’ is decreased as integration and clock rates grow, lead-
ing to a higher susceptibility for transient faults, caused e.g. 
by power fluctuations or Single Event Upsets (SEUs). We 
introduce a technique which is based on the well-known 
cyclic redundancy check codes (CRCs) to secure the pipe-
lined execution of common microprocessors against tran-
sient faults. This is done by computing signatures over the 
control signals of each pipeline stage including dynamic 
out-of-order scheduling. To correctly compute the check-
sums, we resolve the time-dependency of instructions in the 
pipeline.  

We will first discuss important physical properties of Sin-
gle Event Upsets (SEUs). Then we present a model of a 
simple processor with the applied scheme as an example. 
The scheme is extended to support n-way simultaneous mul-
tithreaded systems, resulting in two basic schemes. A cost 
analysis of the proposed SEU-detection schemes leads to 
the conclusion that both schemes are applicable at reason-
able costs for pipelines with 5 to 10 stages and maximal 4 
hardware threads. A worst-case simulation using software 
fault-injection of transient faults in the processor model 
showed that errors can be detected with an average of 83% 
even at a fault rate of 10-2. Furthermore, the scheme is able 
to detect an error within an average of only 5.05 cycles.  
 
 
 
 
 

 

1. Introduction and motivation 
 
The growing number of applications for computing systems 
led to rapidly growing performance requirements. Perform-
ance is easily gained by accelerating the clock frequency F. 
It is inevitable to decrease the main current at high clock 
rates, because the power consumption E~F3 [16]. To de-
crease the energy consumption, the current potential be-
tween logic ‚0‘ and ‚1‘ is reduced. By increasing the 
integration density, new algorithms and paradigms can be 
implemented in hardware and energy consumption can be 
reduced again. Examples are dual-core systems or Simulta-
neous Multithreading (SMT) [1]. The Semiconductor In-
dustry Association (SIA) roadmap shows an increase of 
integration density to 22 nm until 2016 
(http://public.itrs.net/Files/ITRS_Overview.pdf). At 90 nm 
and below [11] a problem occurs at sea-level, which was 
only known from aerospace applications: The collision with 
high-energetic neutrons from deep-space with silicon. At 
larger heights, the fault rates in SRAMs increase by a factor 
of 3-10, approximately by 1.3 per 1000 ft [12].  
These so-called total ionizing dose effects are caused by the 
influence of electromagnetic waves or particle radiation, 
being able to ionize atoms or molecules so that electrons are 
removed. The loose ions are very reactive and can cause 
severe circuit damage. Electromagnetic radiation can cause 
ionization if the wave-length is below 100 nm, since the 
photon has enough energy to separate one electron. Single 
Event Effects (SEEs) [6][7] are caused by interaction of a 
single particle with silicon. They have been investigated 
since the late seventies, leading to the discovery of memory 
faults in terrestrial [5] and extra-terrestrial [4] environ-
ments. SEEs can be separated in non-destructive soft-errors 
(or transient faults), causing a temporal malfunction or dis-
turbance of digital information and destructive effects caus-
ing permanent failures. With high integration, protons are 
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able to induce Single Event Upsets (SEUs), leading to a 
higher SEU susceptibility of the concerned circuits, espe-
cially for deep-space applications. R. Baumann showed that 
the downtime costs caused by SEUs have increased dra-
matically [27]. It is forecast that the soft-error-rate (SER) in 
combinatorial circuits will increase approximately by 105 
from 1992 until 2011 [13]. Thus, we have to deal with a 
total soft error rate of 104 FIT (Failure in Time=1 error in 
109 hours of operation) -5fault rate 10 / h⇒  in combinato-
rial circuits for the next decade [13]. Therefore it is neces-
sary to secure the execution of future processors, making 
them more reliable to face the increasing number of SEUs.  
 
This paper makes the following contributions: 
 It introduces an error detection scheme which computes 

checksums out of the control path to detect transient er-
rors and proposes extensions to support SMT. 

 We will estimate the area for all proposed schemes and 
present the results of a fault-coverage analysis based on 
software-implemented fault-injection. 

 
The rest of the paper is organized as follows: We will have 
a look at related work in Section 2. Section 3 discusses the 
fault model and important SEU-properties. Section 4 pre-
sents two schemes to secure the pipelined execution and 
Section 5 an estimation of the costs. Section 6 discusses the 
simulation methology and presents the results of the fault-
coverage analysis. Section 7 concludes the paper. 

 

2. Related work 
 
Pipeline signatures resemble control-flow monitoring tech-
niques, where incorrect branches are detected. The soft-
ware-implemented execution-checking of loop-free intervals 
by [18] could detect all sequence errors that resulted in a 
branch outside the interval. Macroinstruction control-flow 
monitoring divides the application program into several 
blocks. The blocks are checked instruction by instruction 
for control-flow faults [19][20]. In [21] signature instruction 
streams (SIS) were introduced. The CRC of the instruction 
stream is inserted into the binary code after a branch. The 
monitor reads the CRC and compares it with the computed 
CRC. An error is detected if the checksums do not match. 
With a probability of a branch occurring every forth to tenth 
instruction, the overhead to store the signatures was be-
tween 10% and 25% of the original program code. Because 
the monitor is much simpler than the processor it monitors, 
performance degrades (because of extra memory cycles). 
The effectiveness of SIS was verified by hardware fault-
injection for a Motorola 68000 system [21][23]. SIS raised 
the error detection rate to 25% in comparison to the original 
system. Smolens et al. [17] proposed an error detection 
scheme called fingerprinting. Fingerprinting summarizes the 

execution history of a processor. By using two processors, 
errors can be detected by comparing the fingerprints. In 
contrary to all schemes from above, we are able to detect 
errors in the pipelined execution and save hardware by us-
ing SMT. As a consequence, we do not have to replicate 
hardware to achieve structural redundancy or insert check-
sums in the instruction stream. Since the detection works 
very fast, counter measurements like error recovery will 
work more efficiently (time/ cost/ power consumption).  
 

3. Physical effects and the fault model 
 
Temporal errors are the main cause for errors in semicon-
ductors. They are difficult to locate in time, because they 
are not always in the state causing the error. The possibility 
for a temporal error is 5 to 100 times higher than for a per-
manent error [14]. Temporal errors must not be repaired, 
since the hardware is not physically damaged. Apart from 
radiation, they can be caused e.g. from power fluctuations, 
loosely coupled units, timing-faults, meta-stable states and 
environmental influences (temperature, humidity, force).  
Seldom discussed in computer science literature are impor-
tant properties of SEUs like creation, duration and energy 
level. These properties help to understand the effects caused 
by particles to find appropriate counter measurements. De-
fect-types in silicon lattice are - amongst others - character-
ized through different, discrete energy levels in the band 
gap, the entropy-change factors, and annealing temperatures 
at which the bonds break. Along its path through silicon 
latter, an ionizing particle creates electron-hole pairs 
through Coulomb-scattering. The energy of the incident 
particle can be measured through the energy loss on its path 
by dE/dx in units of keV/µm or linear energy transfer (LET 
= dE/ρdx) in units of eV cm2mg−1 (ρ is the density of the 
matter) or in charge per unit length (pC/µm). For silicon, 
3.6 eV are needed to create an electron-hole pair. The 
charge-collecting dynamic has a fast (O(100ps)) and a slow 
(O(ns)) component [8][9]. It is important to know the dura-
tion of a transient fault, when fault-detection/ correction 
schemes are working on a tight time-basis as in this work. 
The effects of a SEU could last longer than it takes to cor-
rect the error, misleading the correction in the direction that 
a permanent fault occurred or that no error is detected. To 
determine the duration of a particle-induced transient fault, 
we consider citing [23]:  

„The prompt charge is collected in much less than 1 
ns, which is shorter than the response time of most 
MOS transistor.“ 

In [24] it is shown by using a 0.6µm-CMOS process that the 
slow component of the charge-collecting dynamic of a SEU 
is active over 0.5 ns only in the substrate (at maximal 0.5 
mA). The quick component of this dynamic is active for 
≤0.2 ns (over 3 mA). Targeting an FPGA implementation, 



 

this will be of no concern for modern FPGAs, since their 
clock cycle is still well above this limit. For further details 
on fault types and rates in submicron technologies, see [10].  
The fault model assumes transient faults in the form of 
SEUs (Single Event Upsets). Furthermore, we assume one 
fault at a time in one component (pipeline stage). SEUs are 
modeled through bit-flips in latches or flip-flops. In [15] it 
has been shown that this modeling matches closely the real 
faulty behavior.  
 

4. Pipeline signatures 
 
In this Section we present a scheme to compute signatures 
on a micro-architectural level for the control path of a sim-
ple microprocessor, exploiting the pipelined execution 
scheme. The scheme will be extended to support SMT. Let 
P be a p-stage pipelined, (superscalar) processor with a fi-
nite instruction set of B≠∅ instructions and t∈  sets of 
instruction streams 

{ } { } ( )1 1,1 ,1 1, ,,..., ... ,...,m t t m tI i i I i i B= = = = ⊆℘ , 

where ( )B℘  is the power set of B. We assume two redun-
dant RAMs with equal code and data contents. Thus, we set 
t=2 (although it is possible to have multiple threads reading 
from one RAM) and it is I1=I2 in the fault-free case. In-
struction streams do not have to be necessarily finite, be-
cause of program loops. Each stage includes a storage 
where the processor saves the thread-ID and the control part 
of the instruction being processed in that stage. For the 
fetch stage, the control part will be the fetched instruction. 
For the decode stage, it will be the part of a microprogram, 
driving the execution unit(s), etc. The signature computa-
tion involves the well-known cyclic redundancy check 
codes (CRCs) [2][3]. Cyclic binary codes are a subgroup of 
linear codes. They are codes with a fixed number of words 
2m and a fixed word length n where m≤n over the alphabet 

{0,1}ix ∈ . Code words are gained by polynomial division 
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polynomial g(x) is not a trivial task. It must be chosen in a 
way that enough code words are produced and the Ham-
ming [22] distance  
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is maximal. For example, if ( ) 1g x x= + , all single-bit er-
rors can be detected since g(x) is equivalent to the computa-
tion of the parity of v(x). The situation is different with 
pipeline checksums. Here, the message v(x) is composed 

out of the instruction stream and the contents of pipeline 
latches containing the control information for a stage. To 
clarify this, we start with the computation of a signature for 
a simple pipeline (Figure 1). 

 

Figure 1. Signature computation 

 
The checksums will be saved in a special memory with the 
corresponding PC and thread-ID. We call this storage the 
checksum memory. Table 1 shows one checksum memory 
entry with the according bit ranges.  
 

Table 1. A checksum memory entry 

Thread-ID Program counter Checksum 

37 36:5 4:0 

 
We can already apply multithreading at a coarse-grained 
level for this pipeline. We switch the processor context if 
latency-causing instructions (e.g. branches) are encoun-
tered. Branch instructions within instruction streams will 
lead to the storage of the checksum and to a selection of 
another instruction stream. If the second checksum entry is 
created with the same PC, the checksums are compared. If 
the entry is not found, it is assumed that a fault corrupted 
one of the PCs and an error is signaled. If the checksums 
are equal, no fault occurred or the checksums were changed 
by a transient fault in a way that both checksums are now 
equal. If the checksums are not equal an error will be sig-
naled. From the calculation of checksum parts concerning a 
single stage from Figure 1, we see that different generator 
polynomials g(x), h(x) can be applied to compute single 
checksum bits (Figure 2). For a cost-effective implementa-
tion we considered only one generator polynomial for all 
pipeline stages.  
 

 
Figure 2. Checksum calculation in a stage 

In fact, we have a two-level polynomial scheme applied if 
we regard different feedback stages. The implementation of 



 

error correcting codes checking each latch in a pipeline 
stage is possible, but was omitted due to the high additional 
power consumption and performance loss. Parity computa-
tion for each pipeline latch will also affect performance, 
since we have to build the parity for all signals from the 
latches of a pipeline stage. This number can be quite large 
(e.g. signals from the microcode) so we have to build fan-in 
trees to compensate fan-in effects, leading to a slowdown. 
We also consider the contents of out-of-order pipeline 
stages to be a part of the checksum. This complicates the 
situation from Figure 1, since the dynamic scheduling will 
lead to different parts of the control and data stream exiting 
the execution stage at different times. If the fetch and exe-
cution policy is done on a cycle-by-cycle basis, we can real-
ize this part easily, if we choose the generator polynomial in 
a way that no feedback affects the out-of-order stages. 
Since XOR is an associative operation, dynamic execution 
will not affect the checksum. For flexibility we want to use 
any fetch and execution policy. So we cannot use the 
scheme from Figure 1 without modification. The problem is 
to resolve the time dependency of instructions in the out-of-
order stage. The solution is based on a two-level scheme. 
Two checksums are calculated separately for the out-of-
order and other stages. Figure 3 shows the checksum calcu-
lation including the out-of-order stage. 
 

 
Figure 3. Out-of-order checksum calculation 

 
For clarity, the control paths are marked with dotted lines. 
Both checksums are stored in FIFO buffers. Results from 
the execution stages are XORed until checksum enable is 
set. Then both checksums will be XORed. So we shifted the 
time dependence to the last stage. The scheme will not in-
crease the costs except for the XORs in the last stage. Since 
this applies to all following schemes, we will not mention 
the costs for the final stage explicitly.  
 

5. Cost analysis  
 
The number of XOR gates per stage is equal to smax. Typi-
cally it is { }max 1max ,..., ps s s= , where si is the number of 
(control) wires from stage i to stage i+1. Let p be the num-
ber of pipeline-stages, t the number of threads, b the width 
of instructions and d the depth of the FIFO buffer from 

stage to stage for each instruction stream. To get an upper 
estimation for the costs, we assume 

1
. 1. ( )

p
i

i
i

i g g x x
=

∀ ∈ = = ∑  for the generator polynomial. 

This means that the last stage is connected to all previous 
stages. For simplicity, we set the instruction width to 
b=2*32 bit, the average control path width of pipeline 
stages to si=64 bit and the FIFO-depth to d=4. The gate 
costs for the scheme in Figure 1 are relatively low. Using 
Table 2 they compute to ( . 64ii s∀ = ):  
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Since the n-to-m switch will be used in the following esti-
mations, we explicitly calculate the costs. A n-to-m switch 
will direct the input x[n-1:0] (width n) to one of m outputs 
y[n-1:0]. All other m-1 outputs will be set to zero. The out-
put is selected by s[ld(m)-1:0]. For the number of NOT-
gates, we need the number of zeroes within a binary number 
of length s. This can be easily calculated recursively, if we 
consider the following: Let s be the number of digits of a 
binary number. Then 2s binary numbers are possible, 2s/2 
beginning with zero. The remaining zeroes are two times 
the number of zeroes of the binary number with s-1 digits.  
This is:  

# # #

# #

(0) 0; (1) 1; (2) 4;

2( ) 2 ( 1).
2

s

Zero Zero Zero

Zero s Zero s

= = =

= + −
 

 
The solution of this recurrence is:  

1 1
# #( ) : 2 (0) 2 2s s sZero s Zero s s− −= + = . 

Thus, the cost for an n-to-m switch is (m is a power of two): 
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Analogously the cost for an m-to-n switch, selecting one 
signal group x[n-1:0] of width n out of m groups y[n-1:0] 
is: 
 

( )1 1

( ( , )) ( ( , ) ( )

2 2 2 .m m

C mplex n m C dec m n nC OR

n m − +

= +

= + +
 

 
Figure 4 shows the signature calculation for a two-way 
SMT-system. It can be seen, that hardware costs double (at 
least) for each hardware thread. Activation and propagation 
signals for the checksums are not shown for clarity. The 
checksum will be calculated depending on which thread is 



 

active. Each part of the checksum is activated by the thread-
ID, indicating which thread is active in a stage. 
Since the processor is working on the same data and code, 
the checksums will not be different in the fault-free case. 
The additional gate cost for a t-way multithreaded pipeline 
execution scheme in reference to Table 2 calculates to  

( ) ( )

2 1

1

t
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=
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Table 2. Gate cost and delay (from [26]) 

Gate Cost Delay 
NOT 1 1 
NAND/NOR 2 1 
AND/ OR 2 1 
XOR/ XNOR 4 2 
Flip-Flop (FF) 8 4 

 

 
Figure 4. Checksum calculation for two threads 

 
To compare the calculated checksums in a multithreaded 
system, t context switches have to occur (t is equal to the 
number of hardware threads). If the execution was fault-
free, the same number of instructions has been executed. 
Then all FIFOs will have the same contents. Transient 
faults in the checksum mechanism will lead to different 
checksums and to a detection of the error. If instructions are 
pre-decoded, a branch - the criteria for a context change - 
can easily be recognized. At this point, instructions of other 
threads may be in the pipeline. We will have to wait for 
these instructions to exit the pipeline to compute the check-
sum. To do this, we use a change in the thread IDs in the 
last stage to initiate a checksum comparison (checksum en-
able). Additionally to the scheme presented in Figure 4, the 
scheme in Figure 5 tries to save XOR-gates, since this num-
ber can be quite large. 
The thread IDs in Figure 4 and Figure 5 will assign a part of 
an instruction in a stage to a signature. Therefore faulty 
thread IDs will be detected, because the wrong signature 

will be selected. Then instruction streams will have differ-
ent contents and lengths. 

 

Figure 5. Extended checksum calculation 

 
The costs for this kind of checksum calculation compute to: 
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The contour plot in Figure 6 shows the difference ∆ of the 
cost functions 3( ( , ))C PIPECRC p t  and 

2( ( , ))C PIPECRC p t  for the checksum schemes in Figure 4 
and Figure 5. The x-axis shows the number of hardware 
threads t, the y-axis the number of pipeline stages p and the 
z-axis the costs. We see that the costs for the scheme from 
Figure 4 are always lower than those from Figure 5. Both 
schemes are applicable at reasonable costs for pipelines 
with 5 to 10 stages and a maximal number of 4 threads.  

 
Figure 6. Contour plot of cost function ∆ 



 

6. Fault-coverage analysis 
 
For the software simulation, we generated a random stream 
of 1000 32 bit instructions, which was used as an input for 
the modeled processor. In the first experiment we wanted to 
determine the best polynomial to detect an error. Branches 
were created with probability branchp , assessing the number 
of instructions between checksum comparisons. The prob-
abilities for a branch in Table 3 were gained from SPEC95 
benchmark simulations by using SimpleScalar [25].  
 

Table 3. Values for pbranch (%) 

Benchmark Go Ijpeg Compress 

pbranch (%)  19.355 15.349 9.463 

Benchmark Cc1 Apsi Vortex 

pbranch (%) 24.251 22.546 22.931 

 
We computed the checksum for a 32 bit instruction stream 
without fault. Then we simulated transient faults in the sec-
ond instruction stream by flipping single, randomly chosen 
bits at random stages with a fault rate of 10-2. We chose 
such a high error rate to speed up fault-injection experi-
ments. This was done for 1000 fault injection runs. In each 
fault-injection run transient errors were injected. As model 
we selected a multithreaded 5-stage pipeline with an inter-
nal control-path width of 32 bit from stage to stage. For a 
worst case study, we assumed that the pipeline will be 
flushed each time a fault is detected or a branch is encoun-
tered. On a branch in the second instruction stream both 
checksums were compared. Due to its simple design, we 
chose to simulate the checksum scheme from Figure 4. 
Figure 7 shows the results for the fault coverage analysis to 
find the polynomial with the best fault coverage.  
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Figure 7. Fault coverage in % 

 

Polynomials are given as numbers in the x-axis, where e.g. 
‘28’ represents the polynomial 4 3 2( )g x x x x= + + . The y-
axis shows the fault coverage in %. We conclude from 
Figure 7 that the best fault coverage is achieved by applying 
the polynomial 4 3( )g x x x= +  (83%). Figure 8 shows the 
fault coverage in relation to the probability of a branch in % 
for g(x). We see that the fault coverage is strongly depend-
ent from the number of branches. The probability for a 
branch was chosen to range from 0.2 to 0.0032.  
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Figure 8. Fault coverage-branch relation 

 
But how fast are errors detected? To find an answer, the 
gained polynomial was used to compute the checksums in 
the second step of the analysis. pbranch was set to the upper 
average of the values from Table 3 (20%). As the number 
of branches substantially determines the number of checks, 

errors will be detected after 
branch

2 2
p

n≥  executed instruc-

tions (two instruction streams generating checksums). 
Figure 9 shows the experimental results - the latency in 
cycles to detect an error. Note that ‘Time’ on the x-axis is a 
non-linear factor, since errors occur randomly. The high 
latency at the beginning results from the initialization phase 
of the scheme. Since the pipeline is cleared on every 
branch, this affects the fault coverage and latency, since a 
feedback with zero does not result in a checksum with high 
fault coverage. 
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Figure 9. Latency in cycles to detect an error 

 
The average number of cycles to detect an error was com-
puted to 5.05. 
 

7. Summary and Conclusion 
 
In this paper we presented a scheme to detect transient er-
rors in pipeline stages of a microprocessor by fetching from 
two RAMs with identical code and data contents and calcu-
lating a checksum using a generator polynomial. Check-
sums are compared on every second branch. Since branches 
occur with an average probability of approximately 20% in 
the instruction stream, checksums are compared often 
enough. The worst-case analysis by using generated 32 bit 
instruction streams for a multithreaded 5-stage pipelined 
processor with an internal control-path width of 32 bit 
showed that an average of 83 of all injected faults can be 
detected – even at a fault rate of 10-2. We chose such a high 
fault rate to speed up fault injection experiments. Overall 
the presented scheme is simple and efficient enough to be 
integrated in most contemporary microprocessors. It can 
detect an error very fast - within an average of 5 cycles. The 
redundant RAMs can be omitted if the memory is secured 
against transient faults by using Error Correcting Codes and 
the fetch bandwidth is large enough. Future work will com-
prise a Field Programmable Gate Array implementation and 
an analysis of the power consumption, size and perform-
ance. 
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