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Abstract: Watchdogs are a well-known and widespread means to increase the 
safety of microprocessors. The programmer or the compiler must insert 
instructions to reset the watchdog. If the programmer or compiler chose the wrong 
timing values or forgot to insert instructions to reset the timer, the processor will 
never be able to fulfill its task, because it will be set back to an initial (known) 
state each time it encounters a timing violation. We eliminate the need to insert 
special instructions and dedicated external watchdog hardware. Our strategy is able 
to detect transient control-flow faults in state automata and faulty BUSY-signals of 
execution units in microcode-based microprocessors. The innovation is to 
introduce fixed timings for each microcode so explicit instruction sequences to 
reset the watchdog timer are not necessary any more. Each execution unit receives 
a timing value from the microcode ROM. A unit-specific cycle counter is set to the 
timing from the microcode (µcode) when the execution starts. Due to possible 
different execution runtimes (e.g. floating point division), we include the 
possibility to select the timing accuracy. If the timing is not accurate, the timing 
value is set to the maximal timing of the concerned operation. Then, a fault will 
only be signaled if the cycle-counter value is greater than the maximal timing. The 
scheme can be implemented very fast at small additional hardware cost. An FPGA-
based implementation of microcode timing as an extension of a multi-cycle 32 bit 
microprocessor with support for forwarding showed a hardware increase of less 
than 1.3% using normal place and route effort with a maximal execution time of 16 
cycles for each microcode. 

1 Introduction 

Watchdogs can detect crashes in microprocessors. They are cost-efficient and well-
suited to increase safety [5]. To detect a crash an autonomous timer unit (the watchdog) 
has to be set to a specified value. While executing, the timer counts down. If it reaches 
zero, an interrupt will be generated.  

 



The two main causes for such an interrupt are: 

1. The programmer/ compiler chose the wrong timing values or forgot to insert 
instructions to reset the timer.  

2. The processor crashed. 
 

The watchdog value is set well above the actual timing of the program e.g. because of 
the dynamic execution in superscalar processors. This coarse-grained timing relates to a 
late detection of the crash, leading to data loss or the loss of system-relevant 
functionality during mission-critical phases. We eliminate the need to insert instructions 
to reset the watchdog. This leads to less energy consumption and to a more reliable 
system. Less energy is consumed because the processor does not have to fetch the 
watchdog-related instructions over the bus. Reliability is increased, because the error-
prone insertion of watchdog instructions is not necessary. Each microcode-related 
execution will be monitored by a counter. Faults can be detected very early, because 
microcode timing works cycle-based.  

The fault model assumes one fault at a time for a component and transient faults in the 
form of Single Event Upsets (SEUs). Single Event Upsets (SEUs) are transient errors 
which are caused by high-energetic particles hitting the die. SEUs are modeled by bit-
flips of the corresponding latches or memory cells [4]. This modeling closely matches 
the real faulty behavior [3]. The rest if this paper is organized as follows: Section 2 
presents related work. Section 3 explains microcode timing in detail. In Section 4 an 
evaluation of the circuit costs is done. Section 5 concludes the paper. 

2 Related Work 

Watchdogs can be found in early fault-tolerant computing systems such as the SEL-88 or 
the HP Systemsate/1000 [2]. These systems used low-resolution timers for the detection 
of faults. Macroinstruction control-flow monitoring divides the application program into 
blocks. Blocks are checked instruction by instruction for control-flow faults [5][6]. In [7] 
signature instruction streams (SIS) were introduced. A checksum is computed over the 
instruction stream and inserted into the binary code after a branch. The monitor reads 
and compares this checksum with the computed checksum. An error is detected if the 
checksums do not match. With a probability of a branch occurring every forth to tenth 
instruction, the overhead to store the signatures is between 10% and 25% of the original 
program code. Because the monitor is much simpler than the processor it monitors, 
performance degrades (because of extra memory cycles). The effectiveness of SIS was 
verified by hardware fault-injection for a Motorola 68000 system [7][8]. SIS raised the 
error detection rate to 25% in comparison to the original system.  



The Dynamic Implementation Verification Architecture (DIVA) [9][10] adds fault-
tolerance to fight permanent (design) errors and single-event upsets (SEUs) to any 
processor design by adding the DIVA core, consisting of two pipelines and a checker 
unit to the commit phase of the processor. Additionally, a watchdog is run with a 
maximum value gained from the latency of each instruction. Unfortunately a slowdown 
of execution (maximal ~14%, without any extra cache ports or register files, average 
3%) and a space increase occurs. With contemporary microprocessors (like the Intel 
Pentium 4), it is possible to use performance counters [11] to trigger an interrupt upon 
overflow for sampling. Performance counters are normally used to monitor hardware 
events. It is possible to save external watchdog hardware by using performance counters 
as watchdogs. The resolution of a performance counter is very high and errors can be 
detected very early at program level. But one problem still persists: to detect the error 
very early, we have to know the exact execution time. Additionally, we have to choose 
the right hardware events to monitor. 

3 Microcode Timing 

To implement timing constraints in the microcode, we have to enhance every microcode 
by a timing entry. The additional entry represents the timing requirements for the 
microcode originating from the specification. The exact timing values can be won by 
using cycle-accurate simulators. Let mlen be the number of microcode entries. We define 
the length (operator) of a binary string as  
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A microcode entry { },  1,...,ie i mlen∈  is defined as (where | |{0,1} icontrol  is the microcode 
entry without timing extensions): 
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There can be two types of microcode timings, signaled by the flag accurate. If the flag is 
set, the microcode i exactly executes in timingi cycles. If not, we set timingi=cmaxi, 
because the execution time for some microcodes might differ. This can happen if e.g. the 
design of a multiplier is hybrid, applying different algorithms at different input 
combinations so that different runtimes result. Cmaxi is the maximal number of cycles 
the execution of µcode i needs. Figure 1 shows the microcode-timing scheme. Before the 
execution starts a cycle counter C is initialized with zero. The counter is incremented 
every cycle. If it reaches the beforehand loaded timing constraint T from the microcode, 
but the execution has not finished (signaled through the BUSY-signal of the unit), a fault 
will be signaled. If both values are equal and the unit is not busy any more, no fault 
occurred. If a particle changed the value of C this will be detected, because the counter 
will certainly reach value T earlier (later) than expected while the BUSY flag of the 
concerned unit is enabled (disabled).  



 

Figure 1: Microcode-based timing 

 

We can identify three states for the checked execution of a microcode: 

 S1 (LOAD): At the start of execution the cycle counter C is set to zero 
(ccountval=0). The BUSY-flag is set and the compare units are loaded 
with the timing value T from the microcode (mcodeval). Then we go into 
state S2. 

 S2 (RUN): The cycle counter is incremented. Here we have two options: 
− SAFE-MODE: We assume that the BUSY-signal from unit FUi can be 

faulty. In this mode we compare the counter each cycle with the loaded 
values to detect timing violations (see algorithmic description below). 

− N-MODE: On (N)ormal mode operation, we wait for BUSY to get low 
again. If this happens, we go to state S3. 

 S3 (STOP): As in SAFE-MODE, we compare ccountval and mcodeval. If 
we have accurate timing enabled, we signal a timing violation if the values 
are not equal. If we have inaccurate timing, we signal a fault if 
ccountval>mcodeval. 

 

In the states S2 (SAFE-MODE) and S3, we need to compare ccountval and mcodeval 
and signal a fault if applicable. Since we can have multiple causes for a fault, we assign 
a higher priority to a fault, if it has a higher probability. State automata have more flip-
flops than a single flag. Thus, there is a higher probability for a SEU in a state machine 
than for a single flag. Since the clock tree usually spans the whole chip, there is a higher 
probability for a fault than for a single flag. For clarity, we show the algorithmic 
description for the signaling of faults in pseudo-code in Figure 2.  

 

 



##################################################################
#               # 
#           Microcode with Embedded Timing Constraints           # 
#               # 
#                      - Signaling of faults -                   # 
#               # 
################################################################## 
 

ccountval:=0; 
 
while (BUSY) {      
 
  if (SAFE-MODE) { 
    if (ccountval=mcodeval): signal ”Flag fault.” 
    if (ccountval>mcodeval): 
 signal ”Timing violation. Unit run slower than expected 
   State automata fault. 
   Clock line fault. 
   Flag fault.” 
 
   } # end if 
   ccountval++; 
 
}   # end while 

################################################################## 
# Now we are not BUSY any more. Do this for N-MODE and SAFE-MODE # 
################################################################## 
 
if (ccountval<mcodeval && (accurate)):   
 signal ”Timing violation.  
   Unit ran faster than expected.   
   State automata fault. 
   Flag fault.” 
 
if (ccountval=mcodeval)  
 signal ”Unit has terminated execution correctly.” 
 
if (ccountval>mcodeval) 
 signal ”Timing violation. Unit ran slower than expected.  
   Counter/State automata fault.  
   Clock line fault.” 

Figure 2: Algorithmic description for the signaling of faults 

 

Remember that a cycle counter has to be implemented for each functional unit of a 
superscalar processor.  



4 Cost Analysis 

To measure the space requirements, we discuss the synthesis results from the proposed 
microcode scheme for FPGAs (Field Programmable Gate Array) with normal place and 
route effort. The circuit was implemented in VHDL as an integrated part of a multi-cycle 
processor with support for forwarding. As a target we used the Xilinx Virtex-E 
XCV1000, bg560, speed grade -8 FPGA [1]. Table 1 shows the resource usage. The 
column ‘before’ holds the number of slices before the implementation of microcode 
timing. We included the number of external IOBs (IO blocks) because logic was mainly 
routed to external IOBs.  

Table 1: Resource usage for microcode timing 

 Before After Increase Total 

Number of External IOBs 294 299 ~1.23% 404 

Number of Slices 151 152 ~8.14‰ 12288 

 

In relation to the total number of FPGA slices (12288), the overall space increase was 
lower than 1.23814%. For the synthesis we assumed a maximal execution time of 16 
cycles for a microcode. Larger values can be implemented at a linear cost increase, since 
only one column of the microcode must be changed. Contemporary ALUs only take a 
few cycles to execute. Thus, only small values must be stored in the timing entries of the 
microcode ROM. For all estimations, we took into account that timing values coming 
from the microcode must be stored in every structure dealing with microcodes until the 
designated execution unit is reached. For superscalar processors, e.g. the microcode and 
the timing values must be stored in the dispatch queue.   

5 Conclusion 

In this paper we proposed a novel and innovative scheme to enhance the reliability of 
microcode-based microprocessors by adding timing constraints to the microcode ROM. 
The scheme is very simple and can be implemented easily with minor changes to the 
existing micro-architecture if cycle-accurate information about microcode execution 
times is available. To prove this, we synthesized the proposed circuit in VHDL as an 
integral part of a multi-cycle processor with support for forwarding. As a target we 
selected a Xilinx Virtex-E XCV1000bg560 speed grade -8 FPGA [1].  



The hardware cost increased by less than 1.3% in comparison with the original design 
(normal place and route effort). Microcode timing has no effect on performance, because 
cycle counters are incremented each clock cycle in parallel to the execution. The scheme 
can be used to detect transient control-flow faults in state automata (e.g. floating point, 
integer, processor control), because a transient fault will have an impact on the timing of 
the concerned unit by changing its state. Furthermore, it is able to detect faulty BUSY-
signals by comparing the state of the BUSY-signal, the cycle counter and the value from 
the microcode. It is also possible to detect a transient fault in one of the clock lines 
because a transient fault will lead to a longer unit execution time if the units and the 
designated counter are clocked synchronously from different sources. Faults covered by 
watchdogs are transient control-flow faults on program-level and permanent processor 
faults. Faults covered by microcode timing are mainly transient control-flow faults in 
programs and transient faults on micro-architectural level such as faults in state 
automata. As shown in Figure 1, faults can be assigned to a functional unit and thus be 
located. Furthermore, the detection speed is different. Microcode timing enables to 
detect faults within a very short period – one cycle after the actual occurrence of the 
fault. This fast detection enables a precise localization of the fault in time, whereas other 
watchdog schemes will take several hundred or even thousand cycles. This enables fast 
and simple chip-based recovery schemes. 
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