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Abstract

In-situ permutation algorithms permute an array of � items without using a second array.

Little space is needed when one proceeds permuting along a cycle. Thus, those algorithms first

search for one element called the leader on each cycle of the permutation. Then they move the

items cycle by cycle. A great fraction of the runtime is spent with testing whether elements are

leaders. We present a simple-to-implement heuristic to accelerate the search for leaders and

present performance gains for randomly chosen permutations on three algorithms.
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1 Introduction

We consider the task of permuting an array of � items according to a permutation � which is given

as an oracle. This means, when we specify �, we get back ���� from the oracle, but have no

further knowledge about the permutation’s structure. This task is trivial when we are allowed to

use a second array, a case that is rather seldom for large �. Instead, we consider in-situ permutation

of an array, that is, permutation without a second array. This problem has first been investigated

by Knuth [2] and has been further studied by Fich et al. [1].

All known algorithms that solve this problem are cycle leader algorithms, that is, they try to

find, for each cycle of the permutation, a unique element called the leader. Normally, the leader

is the smallest element on the cycle. Then the algorithms permute each cycle separately, starting
�Address: FernUniversität, LG Technische Informatik II, 58084 Hagen, Germany. Phone/Fax +49–2331–987–

376/308, Email joerg.keller@fernuni-hagen.de
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void *array[n]; /* the array to be permuted */

extern int pi(int x); /* permutation as oracle */

extern int IsLeader(int i);

void PermuteCycle(int i)

{ int j=i; /* loop variable */

do{ j=pi(j); /* follow cycle */

exchange(i,j); /* exchange a[i] and a[j] */

} while (j!=i);

}

void main(void)

{ int i; /* loop variable */

for(i=0;i<n;i++) if(IsLeader(i)) PermuteCycle(i);

}

Figure 1: The structure of cycle leader permutation algorithms

from the leader. The structure of the algorithms is given in Figure 1. The leaders are found by

checking with a procedure IsLeader() all elements from � to �� � whether they are leaders.

As the complete array must be permuted, the runtime of all calls to PermuteCycle adds up

to ����. However, all known algorithms needing only polylogarithmic space besides storing the

array need time ��� ��	�� [1], even in the average case. Hence, the majority of time is spent in

the calls to IsLeader.

In Section 2, we sketch how the IsLeader check typically works and present a simple-

to-implement heuristic to speed up this search. In Section 3, we present experimental results

for randomly chosen permutations on three algorithms. The results indicate that the heuristic

accelerates three algorithms considered in [1] by a constant factor which is between 30 and 50

percent on the average. In Section 4, we conclude.
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extern int pi(int x); /* permutation as oracle */

int TestHypo(int j,int i)

{ return i<=j; }

int IsLeader(int i)

{ int j=i; /* loop variable */

int flag=1; /* assume i is leader */

do{ j=pi(j); /* follow cycle */

if(flag=TestHypo(j,i)) break;

/* until assumption turns out false */

} while (j!=i); /* or cycle is completely traversed */

return flag;

}

Figure 2: The structure of cycle leader checks in the algorithms used

2 Checking for Leaders

A check whether � is a leader normally proceeds along the cycle starting in �, testing � against

� 
 ����� for � 
 �� �� � � � with procedure TestHypo(), until � is reached again or until the

assumption that � is a leader turns out to be false, see Figure 2. The algorithms known from

literature differ in their implementations of TestHypo(j,i), which give different runtime and

space requirements.

The simplest test is of the form � � �. If � is smaller than �, then � cannot be the smallest

element on the cycle, i.e. � is not a leader. This test leads to a worst case runtime of 	����, and to

an average runtime of 	�� ��	��, if each permutation is equally likely. This algorithm, which we

will call A1, was presented and analyzed by Knuth [2], but is also mentioned by Fich et. al. [1] as

a motivation for the next algorithm.

The algorithm presented by Fich et. al. in Figure 4, called A2, uses 
 � � bits to store informa-

tion on whether certain elements have already been visited. It proceeds in ���
� rounds. In round

�, where � � � � ���
�, the bits store visit information on elements � � 
� � � � � �� � �� � 
� �. An

element outside this range always counts as unvisited. The test in procedure TestHypo() is

� � � and � is unvisited
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Algorithm A2 has a worst case runtime of 	����
�; the average runtime remains 	�� ��	�� for


 � �� ��	�.

The new algorithm by Fich et. al. [1, Fig. 7], called A3, constructs a hierarchy of local minima

while proceeding along the cycle until it finds that either � is the global minimum, that is, the

smallest element of the cycle, or that � is not a leader. It has a worst case runtime of 	�� ��	��.

None of the algorithms take into account the following observation. After a cycle has been

permuted, the length of the cycle is known. As soon as the lengths of the cycles permuted so far

sum up to �, the array is completely permuted and the program can terminate. This leads to a

modified algorithm given in Figure 3. We call this heuristic Fastbreak1.

The simple observation above can be extended to function IsLeader. If only  elements have

not been visited yet by function PermuteCycle, then proceeding along a cycle is only useful

for  steps. Otherwise, the cycle currently traversed must contain an element that has already been

visited by function PermuteCycle, the cycle hence has already been permuted, and � cannot be

a leader. The modified function IsLeader is shown in Figure 4. We call the extended heuristic

Fastbreak2.

The heuristic presented will surely not change the asymptotic behaviour of the permutation

algorithm used. Yet, there is a rationale behind it. If we assume that the permutation � is randomly

chosen, then the expected length of the longest cycle (which will very likely be found first) is

about ��� � �. Also, the expected number of cycles is small, i.e. ��� � 	���. For these and more

results on random permutations, see [3, Chap. 6]. As the cycle leaders are the smallest elements

on their cycles, the last leader will often be found early, and many iterations of the loop in function

main will be in vain. Also, after the first cycles have been found, the search length in function

IsLeader will be seriously restricted.

We try to motivate the average improvement by heuristic Fastbreak2 on algorithm A1. With-

out the heuristic, IsLeader(i) will perform ��� steps on the average, if encountering an ele-

ment with index less than � is modelled by a binomial trial with success probability ���.

From [3, Theorem 6.12] it follows that the �-th largest cycle, � � � � ����	�� has an average

length of �� 
 �������. The leader of the �-th largest cycle then has an expected index of �� 


���� .

When IsLeader(i) is called, all cycles � with leaders smaller than � have already been

found. This is the case for �� 
 ���� � �, i.e. for � � ��	 � on the average. The variable

remaining will then have the value

��
��� ��

���

�� 
 ������
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void *array[n]; /* the array to be permuted */

extern int pi(int x); /* permutation as oracle */

extern int IsLeader(int i,int remaining);

int PermuteCycle(int i)

{ int j=i; /* loop variable */

int length=0; /* cycle length */

do{ j=pi(j); length++; /* follow cycle */

exchange(i,j); /* exchange a[i] and a[j] */

} while (j!=i);

return length;

}

void main(void)

{ int i; /* loop variable */

int remaining=n; /* number of elements to be permuted */

for(i=0;i<n;i++)

if(IsLeader(i,remaining)){

remaining-=PermuteCycle(i);

if(!remaining) break;

}

}

Figure 3: The modified permutation algorithm in heuristics Fastbreak1 and Fastbreak2
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extern int pi(int x); /* permutation as oracle */

extern int TestHypo(int j,int i);

int IsLeader(int i,int remaining)

{ int j=i; /* loop variable */

int flag=1; /* assume i is leader */

int steps=0; /* number of steps along cycle */

do{ j=pi(j); steps++; /* follow cycle */

if(!TestHypo(j,i) || (steps>remaining)){ flag=0; break; }

/* until assumption turns out false or gone too far */

}while(j!=i); /* or cycle is completely traversed */

return flag;

}

Figure 4: The modified cycle leader check in heuristic Fastbreak2

Consequently, if the constant factor � in this term is less than 1, then the heuristic will reduce the

runtime by a factor �.

Note, that this is not a rigorous proof. As no element can be chosen twice, the success proba-

bility after � steps of IsLeader(i) is ���� � ��. However, the value of variable remaining

will have an influence only when it has become sufficiently small compared to �, i.e. when the

large cycles have been found. In this case, � � � and the average number of steps performed by

IsLeader(i) will not differ much from ���.

3 Experiments

We implemented the three algorithms in C on a SUN Sparc Ultra 60 with 2 processors at 300 MHz,

2 GByte of main memory, running the Solaris 8 operating system. We compiled the programs with

the GNU C compiler using option -O3.

We started the algorithms with randomly chosen permutations for � 
 ��� � � � � ���, with 50

permutations for each �. On our platform, we achieve about ��� � ��� evaluations of � per second

per processor. Hence, the runtimes for larger values of � and the available time on the platform

determined the number of permutations we could test for each �.

Figure 5a shows the influence of 
 on algorithm A2 for a permutation with � 
 ��� elements
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Figure 5: Influence of parameter 
 on algorithm A2

generated with seed 100. The number of evaluations linearly decreases with ��	� 
 from ��� �
� ��	� for 
 
 � to � for 
 
 �. Figure 5b shows 
’s influence on the heuristics. Over a wide

range, i.e. 
 
 �� � � � � ���, the savings due to heuristic Fastbreak1 were 7 to 35% increasing

with 
. The savings due to heuristic Fastbreak2 vary between 45 and 58%. We are not aware of

recommendations and thus set 
 to 
 

�
�. This choice is somehow arbitrarily, but at least avoids

having 
 fixed over a wide range of values for �, while keeping 
 small compared to �, which might

be necessary for very large values of � such as � � �	
.

The permutations to be tested were stored as an array. Hence, the available main memory gave

an upper bound on �. We created the permutations with the procedure given in [3, Program 6.1] for

randomly permuting an array. Here, the array was initialized with pi[i]=i. We used lrand48

as pseudo random number generator and used multiples of ��� as seeds.

To compare execution time, we used the number of calls to pi from IsLeader1 instead

of wall-clock time in order to abstract from unwanted influences on execution time such as cache

behaviour, which might have significant impact depending on the permutation. We also felt that the

overhead incurred by implementing the heuristic can be neglected, especially under the assumption

that the evaluation of permutation � will often dominate the time spent in one iteration of the loops

in main and IsLeader.

First, we found that the algorithms A1 to A3 without the heuristic perform on the average about

��� � � ��	�, ��� � � ��	�, and � � � ��	� evaluations of �, respectively.
1Thus, we only compare the times needed to find the leaders and do not count the time to permute cycles.
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We recorded the savings due to both heuristics as the percentage of the runtime of the un-

modified algorithm for each �, each algorithm and each permutation chosen. Figure 6 depicts the

savings as scatter plots; the average savings are marked by a line.

We see from Figure 6 that the savings vary considerably, but that 10 to 15 percent of the runtime

can be saved on the average by Fastbreak1 over all values of � on each algorithm. We also see

that the savings slowly decrease with growing �. We also see that the variation gets even larger

for Fastbreak2. On the average, the savings by Fastbreak2 are in the range of 30 to 50 percent

and thus visibly larger than those by Fastbreak1. The average savings for algorithms A1 and A2

appear to be a constant percentage over all values of �. For algorithm A3 the savings decrease with

growing �.

4 Conclusions and Open Problems

The savings from heuristic Fastbreak2 appear to be a constant factor of the runtime of the unmod-

ified algorithms. The size of the constant factor depends on the algorithm, but not in an obvious

way. Astonishingly, algorithm A3, which is the slowest among the unmodified algorithms, also

has the least profit from the heuristics.

The overhead for heuristic Fastbreak2 clearly is larger than for Fastbreak1. Hence, whether

the additional overhead for Fastbreak2 is worthwhile must be decided depending on the particular

application. In any case, the savings due to Fastbreak1 are already large enough to include this

heuristic in implementations of in-situ permutation algorithms.

A formal average-case analysis of the algorithms’ runtime when using the heuristics remains

an open problem.
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Figure 6: Savings due to the heuristics Fastbreak1 and Fastbreak2
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