Fine-Grained Multithreading on the Cray T3E

Andreas Gravinghoff and Jorg Keller

FernUniversitat-GHS Hagen, FB Informatik, D-58084 Hagen, Germany

Andreas.Graevinghoff|Joerg.Keller@FernUni-Hagen.de

Abstract. Fine-grained multithreading can be used to hide long-latency
operations encountered in parallel computers during remote memory ac-
cess. Instead of using special processor hardware, the emulation of fine-
grained multithreading on standard processor hardware is investigated.
While emulation of coarse-grained multithreading is common in modern
operating systems, in the fine-grained case research on emulation has
been limited and design of multithreaded processors has been favored.
A set of tools was developed to support emulation of multithreading on
the Cray T3E parallel computer. Several experiments based on parallel
matrix multiplication were performed.

1 Introduction

An important problem faced by parallel computers is the latency of accessing
remote memory. As this latency usually increases with the number of proces-
sors, massively parallel computers are especially affected. While the latency of
remote stores can be ignored since they return no result, remote loads have to
be completed before computation can proceed (at least beyond a certain point).

A popular approach to attack this problem is to avoid latency by the use of
coherent caches. However, this approach causes widely varying memory access
times, therefore these machines are called ccNUMA (cache coherent non-uniform
memory access) architectures. The non-uniform access time complicates appli-
cation development, especially for irregular applications. Instead of avoiding la-
tency, one can try to hide latency by multithreading, which is explained in the
next paragraph.

A multithreaded processor switches context between different threads in order
to perform useful computations while other threads are waiting for completion
of outstanding operations, thus hiding the latency of those operations from the
user. This is only possible if several threads per processor are available, hence
the application must possess more parallelism than in a ccNUMA machine of
comparable size. However, many applications possess this amount of parallelism
if the number of threads per processor is moderate.

We distinguish between fine-grained (switches context after one or a few in-
structions) and coarse-grained (switches context after a block of instructions)
multithreading. In the context of parallel computers, fine-grained multithread-
ing is more interesting (e.g. to achieve higher degrees of parallelization). Mul-
tithreading can be implemented by special processor hardware or by emulation



in software on off-the-shelf hardware. Special processor hardware is expensive,
time-consuming to design, error-prone and often slower than commercial proces-
sors. Examples for multithreaded processors are Sparcle [AKK*93], Anaconda
[Mo096], SB-PRAM [KPS94] and the Tera MTA [BH95]. Emulation in software
is state-of-the-art in coarse-grained multithreading: it is called multitasking and
is used by almost every modern operating system. Several new operating systems
(e.g. Solaris) support threads in the form of lightweight processes. The purpose of
these lightweight processes is not latency hiding but reduced overhead compared
to normal processes and abstraction from the number of processors available.
However, the overhead is still too high for our purposes, hence these lightweight
processes are not considered further.

We will describe the basic concept in the following section. The third section
covers the implementation on a Cray T3E in detail, along with a description of
the developed tools. Experimental results based on a parallel matrix multipli-
cation algorithm are presented in the fourth section. An outlook with special
emphasis of ongoing and future work concludes the paper.

2 Basic Concept

Emulating fine-grained multithreading on off-the-shelf processors can be done as
follows: For each thread, the executed program as well as the context (proces-
sor state of the thread) are stored in memory. The data structure that contains
the context of a thread (and some management information for the emulation
program), is called frame. To execute an instruction from a given thread, the
emulation program restores the processor state, fetches and executes the instruc-
tion and updates the processor state in memory. Afterwards, the next thread is
executed. To decrease the time to switch contexts, only the part of the context
used or modified by the fetched instruction is restored or saved. Note that we
assume the emulating and emulated instruction sets to be identical. If this is
not the case, then the emulated instructions have to be replaced by one or more
instructions of the emulating instruction set.

ldg rl, #rsl(frame)
ldg r2, #rs2(frame)

<op> rsl, rs2, rs3 —_— <op> rl, r2, r3
stqg r3, #rd(frame)
ret

Fig. 1. Example for Subroutine Generation

To implement emulation of mutlithreading, we modify the program code to
replace every instruction block I by a subroutine. These subroutines restore
every register that will be read or modified by the instructions in I, execute
the instructions in I, save every register that has been written or modified,
and return. An example of the modification process for an instruction block



containing a single instruction op is shown in Fig. 1. The left side contains
the original instruction op, which uses two registers rs1, rs2 as operands and
stores the result in register rs3. The corresponding subroutine is shown on the
right side: First, the registers r1, r2 are loaded with the values of rs1, rs2
from the current frame. Afterwards the instruction op is executed, storing the
result in a third register r3. This register is stored to the current frame before
the subroutine returns. Note that the registers r1, r2, r3 are not necessarily
identical to registers rsi, rs2, rs3, but can be any of the architected registers.

The size of the instruction block can be as small as a single instruction, thus
enabling very fine-grained multithreading. The overhead associated with emula-
tion of multithreading decreases with increasing block size since fewer context
switches are required, but large block sizes may complicate latency hiding. Note
that the size of the instruction block is variable, i.e. it is not necessary to use
the same blocksize throughout the whole program. This fact makes further opti-
mizations possible, e.g. identifying sequences of instructions that operate on the
same registers and omitting unneccessary accesses to the frame.

The number and location of registers to be read, written or modified by
instructions in I can be determined from the instruction set architecture and the
instruction itself. This information is used during generation of the corresponding
subroutine. The emulation program basically consists of a single loop that calls
these subroutines from all threads in a round-robin manner:

1. Initialization

2. Load program counter (PC) from current frame into register threadPC.

3. Execute subroutine by jump to value stored in threadPC, saving old program
counter in register mainPC.

4. Return from subroutine to program counter stored in mainPC, saving old
program counter in register threadPC.

5. Store program counter from register threadPC to current frame.

6. Load pointer to next frame into register framePtr.

7. If the next thread is not the last one, go to step 2.

If synchronous operation of multiple processors is desired, a barrier synchroni-
sation can be performed after each round, i.e. after each subroutine from every
thread on a given processor has been executed. The main loop, which uses three
different registers (threadPC, mainPC, framePtr), should be compact and fast,
since execution is required for every subroutine. We will cover these details in
the following section.

We assume that the high-level language source code of the programs to be
emulated is available and that the program already uses threads. The thread-
related system calls (e.g. creation, deletion) are then replaced by our own routines
during recompilation. After modification of the assembler source the program is
linked with a small library containing our routines (e.g. main loop). We further
assume that all threads operate in user mode. Thus only the registers accessible
in user mode are shared between different threads and form the context of a
thread. By confining threads to user mode, the switching time between threads
is significantly reduced. Calls to the operating system are not emulated, but are



executed as usual by system calls and traps, i.e. there are no changes to the
operating system. Obviously, we can not handle self-modifying code, since we
perform all code modifications during compilation. However, this is not a serious
restriction since self-modifying code is generally considered as unfavorable.

3 Implementation

Emulation of Multithreading was first implemented on the Alpha architecture.
Alpha is a 64 bit architecture, i.e. all registers are 64 bits wide, instructions are
32bits wide. There are 32 integer as well as 32 floating-point registers, one regis-
ter in each class is a dedicated zero source/sink register. Apart from the floating-
point control register FPCR, which is only used for some rounding modes, there
are no special registers. Alpha is load/store architecture, i.e. all operations are
performed between registers. Supported data types include longword (32 bit)
and quadword (64 bit) integers as well as five different floating-point formats (2
VAX, 3 IEEE). Recently, support for byte (8 bit) and word (16 bit) integers as
well as motional video instructions were added to the Alpha architecture. Im-
plementations of the Alpha architecture, e.g. the 21064, 21164 and 21264 chips,
continue to score top ratings on the SPEC benchmarks since the introduction of
the architecture in 1992.

The Alpha architecture was chosen for several reasons: Since there are no
special registers or condition codes, the user moce context contains only data
registers, the program counter (PC) and the floating-point control register (FPCR).
The FPCR has to be saved /restored only for some floating-point instructions, oth-
erwise only the general-purpose registers specified in the instruction have to be
saved /restored, which eases the work of the assembler converter. Manipulation
of the program counter can be done easily with the supported jump-type in-
structions, which makes implementation of the main loop straight-forward. Last
but not least, massively parallel computers based on the Alpha architecture are
available, e.g. the Cray T3E, which is described in the next subsection.

3.1 Platform

The Cray T3E supports between 2 and 2048 processing nodes interconnected by
a bidirectional 3D torus. Each processing node contains a 21164 Alpha processor
running at 300, 450 or 600 MHz. The 21164 is a superscalar processor featuring
two integer as well as two floating-point function units and a sustained (in-
order) issue rate of four instructions per clock cycle. On-chip caches include two
8 KB direct-mapped data and instruction caches as well as a 96 KB, 3-way set-
associative unified second level cache. Support for an external third-level cache
with up to 64 MB is included. Virtual address space is 43 bit large, while only
40 bit are implemented physically. Apart from the processor, each node contains
up to 2 GB of local memory, a router and other supporting circuitry. Instead of
an external third-level cache, stream buffers are used to speed up access to local
memory via prefetching on previously detected access patterns.



Access to remote memory, which is non-cacheable, is performed via a large
number (512 user + 128 system) of E-registers. A remote load is performed by
specifying the target address and an E-register for the result. The result can
then be collected from the E-register by a load instruction, which will stall if
the result is not yet available. The E-registers significantly increase the number
of outstanding loads, since the processor alone can only sustain two outstanding
loads. The E-registers therefore provide the necessary support for hiding the la-
tency of remote memory. Unfortunately, the Cray shared memory programming
environment ShMem uses synchronous loads, which requires us to implement
our own set of communication routines in order to fully utilize the E-registers
capabilities.

For a 2048 processor system, the average and maximum network latency is
approximately 1500 and 2500 ns, respectively. At a processor speed of 600 MHz,
this translates to 900 and 1500 clock cycles, respectively [ST96]. These times
exclude memory access and processing at the processing nodes and are there-
fore quite optimistic. We performed our implementation on the T3E installed
at HLRS (Hochstleistungsrechenzentrum Stuttgart) in Germany. This machine
has 512 processors running at 450 MHZ and 64 GB of memory (128 MB per
processing node).

3.2 Tools

hllconv

{ assemblerJAAAQ{ listconv }4444447

alpha.conf

asmconv

assembler

EMUIib

Fig. 2. Design Flow

Several tools were developed to facilitate emulation of multithreading. The
design flow and interaction between these tools and the standard programming
environment (compilers, assembler, linker) is shown in Fig. 2. The program
source code is first modified by the high-level language converter hllconv, which



searches the source file for user-supplied function names and modifies only those
functions. This allows emulation of multithreading to be applied on a function-
by-function basis, i.e. only on those functions that benefit from the emulation.
The modification process works recursively through all of the given functions.
All modified functions are duplicated before the thread-related function calls are
substituted with the corresponding calls to the emulation library EMUlib. This
duplication is necessary since functions may be emulated or executed depending
on the caller. The modified source code is forwarded to the compiler, while the
list of all modified functions is forwarded to the assembler converter asmconv.

The modified source file is compiled using one of the aforementioned compil-
ers, the resulting assembler source is forwarded to the standard assembler cam.
If there are no functions to be modified, an object file is generated for later use
of the standard linker cld. Otherwise the assembler listing output is converted
to a valid assembler source by listconv before it is passed to the assembler con-
verter. The use of the assembler listing instead of the assembler source allows us
to ommit support for the advanced cam features (e.g. macros) in the assembler
converter.

The converted assembler source is processed by the assembler converter,
modifiying only those functions given by hliconv. If one of those functions is
found, the necessary instruction blocks are generated based on the assembler
source, the selected grainsize/optimization level as well as the configuration file.
This configuration file contains information about instruction styles, modifica-
tion rules for instructions as well as characteristics of external calls. Since these
largely machine-dependent informations are contained within the configuration
file, porting of the assembler converter to a different architecture is quite simple.

The assembler converter supports fixed and variable grain-sizes up to several
hundred instructions per block. Therefore the number of context switches can
be tailored to the application’s requirements. In addition, several optimizations
that improve instruction scheduling within blocks are available. Calls to external
functions are recognized and treated accordingly.

After the whole source file has been processed, the assembler generates an
object file from the modified assembler source. After all required object file are
generated, the standard linker cld combines these object files with the stan-
dard libraries as well as the emulation library EMUlib. This library contains
the thread-related functions for emulation of multithreading, i.e managment,
communication and synchronization of threads. The resulting executable can be
executed in the usual way.

3.3 Portability

Emulation of Multithreading currently only supports the Alpha architecture. As
we already mentioned, this architecture provides a good match for our approach.
However, emulation of multithreading is not restricted to the Alpha architecture
and can be ported to other architectures. These architectures should meet the fol-
lowing requirements: First of all, it should be possible to load/store the program
counter from/to the general-purpose registers. A jalr (jump and link register)



type of instruction is sufficient, i.e. is is not required that the program counter
is one of the general-purpose registers. For performance reasons, the architec-
ture should support hints to branch prediction logic for this type of instruction,
i.e. allow the program counter to be pushed/popped to/from the return-address
stack depending on the opcode. The Alpha architecture solves this problem by
providing 4 different jalr-type instructions that differ only in the hints to the
branch-prediction logic.

Second, the architecture has to provide a minimum number of 6 registers. As
we already mentioned above, the main loop uses 3 different registers (framePC,
threadPC, returnPC). These registers should be callee-save, otherwise they must
be saved/restored upon entry/return to/from external calls, e.g. calls to the oper-
ating system. Up to 3 additional registers are required for instruction execution,
i.e. to store the operands and results of a single instruction. A larger number of
available registers is beneficial for grain-sizes larger than one, since the number
of register load/stores from/to the frame can be reduced.

Last but not least, the execution of instructions should depend only on the
general-purpose register values, i.e. not on special registers or condition codes. If
the architecture has special registers, the load store of these registers from/to the
general-purpose registers must be supported. The number of special registers in
connection with the number of instructions that depend on these registers affect
the size of the frame as well as the average length of the generated subroutines.

In the case of parallel architectures, the hardware must support asynchronous
communication between different nodes as well as multiple outstanding commu-
nications per node. Since massively parallel computers tend to have large com-
munication latencies, some form of these features is likely to be supported. For
performance reasons, the time required to initialize a communication should be
small compared to the communication latency.

4 Measurements

The functionality of the assembler converter and the emulation library was tested
via several small programs. These programs cover important milestones in the
design process, e.g. recursion, external calls and parallelism. After these pro-
grams could be successfully modified and executed, we started implementation
of a parallel matrix multiplication algorithm.

The program first checks the command-line parameters ¢ (number of threads)
and n (matrix size), which must be a multiple of ¢ times p (numer of proces-
sors), before shared memory for the three matrices A, B and C is allocated via
shmalloc(). Matrices A and C are stored in row-order, while matrix B is stored
in column-order. The rows and columns are mapped in blocks of ¢ rows resp.
columns to the processors in a round-robin manner. Each processor stores ran-
dom integer values to the corresponding elements of matrices A, B after the
random number generator was initialized with the processor’s id. After the ma-
trices have been allocated and initialized, a barrier synchronization is performed
among all processors before the matrix multiplication begins.



Matrix Multiplication
matrix size 2048 x 2048

let+13

0 threads|
1 threadg
L 2 threads|
B 4threads|
r 8 threads| 7
16 threads
r 32 threads b

let+12

|

execution time (cycles)

letll

32 64

number of processors

Fig. 3. Experimental Results

The matrix multiplication uses emulation of multithreading, therefore some
initialization is required before the multiplication routine can be called. This
routine uses the standard matrix multiplication algorithm and operates on all
elements mapped to the given thread/processor combination. The elements are
read from matrices A, B via shmem_get(), while the result is written to matrix
C via shmem_put(). As we mentioned before, shmem_get() works synchronously,
i.e. the routine returns only after the desired data has been placed in the target
location. Therefore no latency hiding is possible between different invocations
of shmem_get, i.e. there is no benefit to the emulation of multithreading in this
case.

In order to maximize the overhead associated with emulation of multithread-
ing, a fixed grain-size of 1 was used, i.e. context was switched after every in-
struction. The values reported below therefore provide an upper bound on the
overhead associated with emulation of overhead on this application. The execu-
tion time of the conventional (unmodified) program was measured as well and
provides the baseline for the comparison below. In both cases, the execution
time of the matrix multiplication was measured and averaged among all proces-
sors. In the case of emulation, this time includes the overhead associated with
initialization of threads as well as the matrix multiplication itself.

We performed several experiments with a matrix size of 2048 x 2048 ele-
ments and configurations of 16, 32 and 64 processors. For each configuration,



the conventional program as well as the multithreaded version using 1, 2, 4, 8,
16 or 32 threads was executed. The results are depicted in Fig. 3. The black bar
labeled 70 threads” represents the conventional program and has the smallest
execution time. As we explained earlier, this comes as no surprise, since there
are no benefits by the emulation of multithreading without latency hiding.

The execution times of the multithreaded programs are quite similar, but in-
crease slightly with the number of threads. Overall, the multithreaded programs
run about 1.4 times slower than the conventional version. This is an encouraging
result, since the overhead of emulation is smaller than expected. After the emu-
lation library has been extended with asynchronous communication in order to
support latency hiding, we are going to repeat these experiments using latency
hiding. As the latency to remote memory increases with machine size, we will
extend our investigations to larger (128 < 512 PEs) configurations, since the
benfits of emulation increase with latency and number of threads [GK98].

5 Conclusions

Commercial off-the-shelf microprocessors support neither fine- nor coarse-grain
multithreading in hardware. As corresponding features (e.g. multiple contexts)
have not been announced for any of the mainstream microprocessor families, this
situation will not change in the near future. Therefore implementations of mul-
tithreading traditionally favored the design of custom microprocessors, but the
results were seldom comparable to commercial products. The concept described
in this paper utilizes the capabilities of modern microprocessors to enable fine-
grained multithreading without hardware support. After development of the
basic concept, we exemplified an implementation on the Cray T3E platform.
This paper-and-pencil implementation provided the basis for a first analysis of
emulating multithreading [GK98]. A grant of computing time from the HLRS
allowed us to develop a real implementation.

We successfully implemented the critical tools, i.e. the assembler converter
and the emulation library. In both cases development is complicated by the low-
level nature of these programs. The assembler converter is quite mature and
lacks only instruction scheduling optimizations in the case of larger grainsizes.
The converter has been ported to the SimpleScalar architecture [BA97] to facil-
itate microarchitectural investigations, while the emulation library is currently
complemented with asynchronous shared-memory communication and synchro-
nisation primitives. The extended library will allow the porting of whole appli-
cations like fview, a graph distortion program and rayo, a ray tracing program.
Afterwards we plan to port some of the SPLASH2 [WOT*95] applications and
kernels. A detailed investigation using the aforementioned programs will provide
a better view about the capabilities of emulation of multithreading. These up-
coming developments will require significantly more resources, since our main
focus are large-scale (512 processing elements) configurations.



References

[AKK'93] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Don-

[BA9T]

[BHO5]

[GKO8]

[KPS94]

[Moo096]

[ST96]

ald Yeung, Godfrey D’Souza, and Mike Parkin. Sparcle: An evolutionary
processor design for large-scale multiprocessors. I[EEE Micro, 13(3):48-61,
June 1993.

Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version
2.0. Technical report, University of Wisconsin-Madison, Computer Sciences
Department Technical Report no. 1342, June 1997.

Gregory T. Byrd and Mark A. Holliday. Multithreaded processor architec-
tures. IEEE Spectrum, 32(8):38-46, August 1995.

Andreas Gravinghoff and Jorg Keller. How to Emulate Fine-Grained Mul-
tithreading. In Proceedings of the 2nd IASTED Conference on Parallel and
Distributed Computing and Networks, pages 584-589. ACTA press, 1998.
J. Keller, W.J. Paul, and D Scheerer. Realization of PRAMs: Processor
design. In Proceedings of the 8th International Workshop on Distributed
Algorithms (LNCS 857), pages 1727, September 1994.

Simon W. Moore. Multithreaded Processor Design. Kluwer Academic Pub-
lishers, Norwell, MA, 1996.

Steven L. Scott and Gregory M. Thorson. The Cray T3E network: Adaptive
routing in a high performance 3D torus. In Proceedings of HOT Intercon-
nects IV, August 1996.

[WOT™'95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal

Singh, and Anoop Gupta. The SPLASH-2 Programs: Characterization and
Methodological Consideration. In Proceedings of the 22nd International
Symposium on Computer Architecture, pages 24-36. ACM, 1995.



