
A Simple Parallel Algorithm for the Stepwise Approximate
Computation of Voronoi Diagrams of Line Segments

Christof Meigen J̈org Keller

FernUniversiẗat in Hagen
FB Informatik — LG Paralleliẗat und VLSI

58084 Hagen, Germany
joerg.keller@fernuni-hagen.de

Abstract: We present a PRAM algorithm to approximate the Voronoi diagram of
line segments for a grid of points in the plane. The algorithm combines ideas from
computer graphics and from hierarchical approximation algorithms. We analyze the
complexity and report on experimental results of an implementation on a PRAM sim-
ulator. The algorithm can be extended to other types of objects and distance metrics.
We sketch how to extend the algorithm for message-passing machines.

1 Introduction

Voronoi diagrams are partitions of the plane according to a given set of objects, so that
the Voronoi region of a certain object consists of all the points of the plane that are closer
to this particular object than to the others. While the computation of the Voronoi diagram
of points in the plane is a well-understood problem, algorithms for the Voronoi diagram
of line segments in the plane suffered from numerical problems for a long time. Only
recently, a robust, sequential implementation based on incremental construction has been
announced as part of the Computational Geometry Algorithms Library (CGAL) [Pro04,
Kar04]. As for other problems, large instances call for the investigation of a parallel
solution.

Parallel Algorithms for the construction of Voronoi diagrams of points in the plane are
known since the eighties [ACG+88]. For line segments various approaches have been
published [DZ99, GOY93] but remained, as far as we know, unimplemented. From our
own experiences and remarks in the literature [ACG89, BMS94, MN99] we see numerical
problems and the sheer complexity of the involved data structures as the major drawback
for implementations. A main reason for the numerical difficulties is the fact that, in differ-
ence to Voronoi diagrams of point sets, bisectors between regions of line segments consist
of curved parts. Hence, this difficulty will also arise for other objects besides points.

Recently, focus has shifted to approximate solutions to the problem. On the one hand, one
can choose a regularly spaced grid of points, and compute for each point to which Voronoi
region it belongs. If Voronoi regions are assigned colors, this can be used to draw Voronoi

diagrams at different resolutions. If we consider 3D graphics, we place the plane with the
line segments in the view port, and add as the third dimension the distance from objects.
Then the distance function of all points from one object forms a curved surface in 3D.
If each surface is assigned the color of the Voronoi region of the respective object, then a
map of the Voronoi diagram can be drawn by rendering this scene with graphics processors
[KEHKL +99]. Also, cellular automata implemented in special-purpose hardware can be
used to construct discrete approximations by dividing the plane into a finite set of points
[Deh89]. While these algorithms are elegant and achieve impressive performance, they
rely heavily on the enormous throughput of the particular hardware and perform rather
poorly when executed on general purpose processors.

On the other hand, there are several sequential algorithms [BCS02, VO98] that approxi-
mate a Voronoi diagram by repeated hierarchical partioning of the plane, such as binary
space partitioning. We combine both ideas into a PRAM algorithm. The structure of the
PRAM algorithm is simple in contrast to the exact algorithms, and it is faster than se-
quential algorithms while it does not rely on special hardware like graphics processors.
We analyse the complexity of the algorithm and present experimental results with an im-
plementation in the FORK programming language, running on the SB-PRAM simulator
[KKT01]. While we focus on the Voronoi diagram of line segments with the euclidean
distance metric, the algorithm works for objects consisting of arbitrary point sets, and ar-
bitrary distance metric, as long as we can compute the distance between a point in the
plane and an object in constant time.

2 Algorithm

Our aim is, for a regularly-spaced grid of points in the plane, and for a set ofn objects
in the plane, to compute for each grid point to which Voronoi region it belongs. If the
grid consists ofk × k points, then this can be done in a trivial way in timeO(k2 · n),
by computing for each point the distances to all objects, and finding the minimum. This
algorithm can be easily and work-optimally parallelized for up tok2 processors.

Instead of using the simple algorithm, we start with a low resolution (smallks) and grad-
ually refine the resolution until we reach the final resolution (largeke). We regard the grid
points as centers of squares (pixels) with a side length identical to the distance between
points in this grid’s resolution. By the hierarchical refinement, we can save work if we
know that several points in a higher resolution, all being in the proximity of one pointv in
the lower resolution, all belong to the same Voronoi region asv. At first sight, the refine-
ment looks trivial: if all neighbours of a pixel belong to the same Voronoi region as itself,
then no refinement seems necessary. However, the decision is more difficult. Figure 1
depicts a Voronoi diagram of two orthogonal line segments, with a bisector shaped as a
parabola. All nine grid points (centers of the squares) belong to the Voronoi region of the
horizontal line segment. However, a part of the central square belongs to the Voronoi re-
gion of the small, vertical line segment. Hence, when increasing the resolution, one would
have to split the central square although all of its neigbouring squares belong to the same
Voronoi region!

Figure 1: Voronoi diagram with all pixel centers in one Voronoi region

Our algorithm starts by dividing the square into just one pixel (ks = 1) with a side length
of ke and assigning all the objects as candidates for the true Voronoi region of that pixel,
with an object closest to the center of the pixelp being the so-calledfavoritelmin.

Pixel q

d’(s,l)

k /ke *

l mind’(p,l)min

d’(s,p)
d’(s,l)

d’(p,l)

s

center pl

min

Figure 2: Sieving of a pixel’s candidates

After determining the favorite, the candidates can be sieved whether they still have chances
to win at least part of the pixelq against the favorite. If not, they can be discarded. We
consider the situation in Figure 2. For each points in the pixel it follows from the triangle
inequality that its distance to the favoritelmin cannot be larger than its distance to the
centerp plus the distance between the centerp and the favoritelmin. The distance between
s and the centerp is less than or equal tor =

√
0.5 · ke/k∗, whenke/k∗ is the actual side

length of the pixel. It follows that

d′(s, lmin) ≤ d′(p, lmin) + r

whered′ is the distance function. With the same argument, the distance betweens and any
other candidatel can be bound from below:

d′(s, l) ≥ d′(p, l)− r .

A candidatel can be discarded if

d′(s, l) ≥ d′(s, lmin) .

for any points in the pixel. From the above it follows that a sufficient condition, i.e. a
criterion to discard candidates, is

d′(p, l) ≥ d′(p, lmin) + 2r .

If more than one candidate remains after the sieving of the candidates, the pixel is split
up into an appropriate number (four) of subpixels which inherit the list of the remaining
candidates from their parent. These new pixels can now be processed in parallel.

With l1 . . . ln being then objects,ke × ke being the desired resolution of the final picture
with a distance of1 between grid points, and dividing a pixel always into four parts, the
algorithm can be more formally stated as follows. Here,Q is the set of pixels, and each
pixel is represented as a tuple consisting of resolution, center point, list of candidates, and
favorite.

Algorithm 1 (Stepwise construction of a discrete Voronoi diagram)
Q ← {(k = 1; p = (ke

2 , ke

2); L = {l1 . . . ln}; lmin = ∅)}
k∗ ← 1
while k∗ ≤ ke do

for all q ∈ Q : q.k = k∗ do
Setq.lmin to al ∈ q.L satisfyingd′(q.p, l) = minl∗∈q.L d′(q.p, l∗)
q.L ← {l ∈ q.L|d′(q.p, l) < ke

k∗
√

2 + d′(q.p, q.lmin)}
if |q.L| > 1 ∧ k∗ 6= ke then

Q ← Q\q
Q ← Q ∪ {(k = 2k∗; p = q.p + (ke

4k∗ ,
ke

4k∗); L = q.L; lmin = ∅),
(k = 2k∗; p = q.p + (ke

4k∗ ,− ke

4k∗); L = q.L; lmin = ∅),
(k = 2k∗; p = q.p + (− ke

4k∗ ,
ke

4k∗); L = q.L; lmin = ∅),
(k = 2k∗; p = q.p + (− ke

4k∗ ,− ke

4k∗); L = q.L; lmin = ∅)}
end if

end for
k∗ ← 2k∗

end while

ke Total no. of tests Tests in different rounds
4 20 4/16

32 516 4/16/64/140/292
128 1 728 4/16/64/140/292/480/732

1 024 22 368 4/16/64/140/292/480/732/1 392/2 812/5 480/10 956

Table 1: Number of tests during step-wise computation of Voronoi diagram in Fig. 3

In the end, the setQ contains all the pixels, large or small, with the favoriteslmin being
the object they belong to, as far as the resolutionke is concerned.

While this algorithm still has work inO(k2
e · n) for the worst case, and therefore seems

no improvement over the trivial solution to test all the distances for every pixel in the final
picture, this happens only if the objects are clumped together beyond the resolution, which
suggests that the area of interest was not chosen appropriately. For the case of uniformly
distributed, non-intersecting line segments, the work seems to be sublinear with respect to
n, as the experiments in the next section reveal. The reason is that the list of candidates
is reduced to two for almost all pixels after a few steps, so that the algorithm is mainly
concerned with drawing the border between two Voronoi regions more smoothly.

3 Experiments

We implemented the algorithm with the PRAM programming language FORK and ran it
on the SB-PRAM simulator, see [KKT01]. The main data structure is the setQ. It is main-
tained as a parallel FIFO queue, which can be efficiently implemented on a PRAM with
the help of parallel prefix commands, see [KKT01, Chap. 7]. Figure 3 depicts the Voronoi
diagram of five line segments in different resolutions. Pixels that get split up are colored
with a darker shade. Table 1 reports the number of tests (distance computations between
points and objects) in the different steps of the computation of that Voronoi diagram. We
clearly see that for higher resolutions, the number of tests does not increase with factor
4 (which would be the case if all pixels would be split up), but with a factor of about 2.
Figure 4 depicts the number of tests for a fixed target resolutionke = 512, and sets with an
increasing numbern of line segments. The line segments were chosen randomly, equally
distributed in the plane, and without intersections. We see here that the number of tests
increases less than linear withn, which supports our hypothesis from the previous chapter.

4 Conclusions and Extensions

We have presented a PRAM algorithm to compute an approximation of a Voronoi diagram
of line segments in the plane. The algorithm works for any distance measure obeying the
triangle inequality, and for any type of object, as long as the distance between a point and

Figure 3: Step-wise computation of a Voronoi diagram of 5 line segments, with resolutions of4, 32,
128 and1024 pixels

n Tests
4 10 979
8 18 119

16 26 503
32 44 599
64 66 181
96 82 559

 0

 20000

 40000

 60000

 80000

 100000

 0 20 40 60 80 100

Figure 4: Number of distance computations (tests) for resolutionke = 512 depending onn , for n
randomly chosen line segments without intersections

an object can be computed in constant time. From the point of view of implementation, this
algorithm can be directly formulated in any language providing a generalforall-facility,
such as PMLS; it is not restricted to Fork.

Even an implementation of the algorithm on message-passing systems seems possible, if
the setQ can be maintained in a distributed way. One possibility would be to execute the
algorithm sequentially up to a certain resolution, and then distribute the pixel set over all
processors. Each processor can then work on its local part of the set, and only when some
processors get idle, a load balancing has to be performed, which provides idle processors
with pixels from busy processors. The object data would have to be replicated on each
processor in this case.

References

[ACG+88] A. Aggarwal, B. Chazelle, L. Guibas, C.Ó’Dúnlaing, and C. Yap. Parallel Compu-
tational Geometry.Algorithmica, 3:293–327, 1988.

[ACG89] M. J. Atallah, R. Cole, and Michael T. Goodrich. Cascading divide and conquer: A
Technique for Designing Parallel Algorithms.SIAM Journal on Computing, 18:499–
532, 1989.

[BCS02] I. Boada, N. Coll, and J. A. Sellarès. Hierarchical Planar Voronoi Diagram Ap-
proximations. InProceedings of the 14th Canadian Conference on Computational
Geometry, pages 40–44, 2002.

[BMS94] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. How to Compute the
Voronoi Diagram of Line Segments: Theoretical and Experimental Results. InPro-
ceedings of the Second Annual European Symposium on Algorithms, pages 227–239,
1994.

[Deh89] Frank Dehne. Computing digitized Voronoi diagrams on a systolic screen and ap-
plications to clustering. InProceedings of the International Symposium on Optimal
Algorithms, pages 14–24, 1989.

[DZ99] Xiaotie Deng and Binhai Zhu. A Randomized Algorithm for the Voronoi Diagram
of Lines Segments on coarse-grained Multiprocessors.Algorithmica, 24:270–286,
1999.

[GOY93] Michael T. Goodrich, Colm O’Dunlaing, and Chee K. Yap. Constructing the Voronoi
Diagram of a Set of Line Segments in Parallel.Algorithmica, 9:128–141, 1993.

[Kar04] Menelaos I. Karavelas. A Robust and Efficient Implementation for the Segment
Voronoi Diagram. InProc. Internat. Symp. on Voronoi diagrams in Science and
Engineering (VD2004), 2004.

[KEHKL +99] III Kenneth E. Hoff, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver. Fast
computation of generalized Voronoi diagrams using graphics hardware. InSIG-
GRAPH ’99: Proceedings of the 26th annual conference on Computer graphics
and interactive techniques, pages 277–286, New York, 1999. ACM Press/Addison-
Wesley Publishing Co.

[KKT01] Jörg Keller, Christoph W. Keßler, and Jesper Larsson Träff. Practical PRAM Pro-
gramming. John Wiley and Sons, Inc., New York, 2001.

[MN99] Kurt Mehlhorn and Stefan N̈aher. The LEDA Platform of Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

[Pro04] The CGAL Project. CGAL User and Reference Manual Release 3.1, Chapter 43,
December 2004. http://www.cgal.org/Manual.

[VO98] Jules Vleugels and Mark Overmars. Approximating Voronoi Diagrams of Convex
Sites in Any Dimension.Int. Journal on Computational Geometry and Applications,
8(2):201–221, April 1998.

