Beyond External Computing: Analysis of the
Cycle Structure of Permutations

Jorg Keller! and Jop F. Sibeyn?

! FernUniversitit, LG Technische Informatik IT, 58084 Hagen, Germany
Joerg.Keller@fernuni-hagen.de
2 Computing Science Department, Umea University, Sweden
http://www.cs.umu.se/"jopsi/

Abstract. A parallel algorithm with super-linear speed-up for deter-
mining the structure of permutations of n elements for extremely large n
is presented and analyzed. The algorithm uses sublinear space. If evalu-
ating a randomly chosen successor oracle 7 costs ¢ time, then a complete
analysis can be performed in expected time ¢ - (Inn — In(P - N)) - n/P,
where P is the number of available processors, and N gives the size of
the secondary memory of each of the processors. A simple refinement
reduces this time by a factor 1 — 1/e. The theoretical analyses are com-
pared with experiments. At the current state of the technology values of
n up to about 2*® might be handled. We also describe how to perform
a screening of 7 in much less time. If 7V"™*/ (2" P) can be constructed,
then such a screening can be performed in O(c- 4/Inn - n/P) time.

1 Introduction

Consider a permutation given by an oracle, that is, when we specify z, 0 < z < n,
we get back m(z) from the oracle, but we have no further knowledge about the
permutation’s structure. How to compute the cycle structure of 7 for extremely
large n? Here “computing the cycle structure of m#,” means generating a list
that gives one element of each cycle of 7 together with its length. The memory
consumption should be much smaller than n. For large values of n, we think of
n > 2% an efficient parallel algorithm is necessary to obtain acceptable runtime.

We present a parallel algorithm to compute the cycle structure of a permu-
tation m which is chosen from the set of all permutations on n numbers with
uniform probability. If ¢ is the time for evaluating 7 once, and N is the size of
the secondary memory of a processor, then the expected runtime on a parallel
computer with P processors is just over ¢- (1 —1/e) - (Inn —In(P - N))-n/P. In
comparison to earlier — sequential — algorithms we reduce the amount of work
by about a factor of two. Most important, however, is the almost perfect paral-
lelization. If, as is the case for a cluster of workstations, the PUs all come with
their own hard disk of size N, then we even obtain super-linear speed-up. For
example, for n = 28, N = 232 and P = 28, the speed-up lies close to 2 - P. The
algorithms borrow ideas from some recent parallel list ranking algorithms [7, 10,
8,11]. Any parallel algorithm that works by gradual reduction of the problem

size, such as independent-set removal techniques [1], are ruled out because the
structure of 7 is available only implicitly.

The considered problem is relevant in the domains of pseudo-random num-
ber generators (PRNGs) and cryptography. In a PRNG, the transitions from one
state to the next can be considered as a permutation on the set of states. For
a simple PRNG based on linear congruences, its period can be derived analyti-
cally. However, analysis of a complex PRNG is often not feasible; the period is
estimated from a simplified model. Computing the cycles would reveal the real
period and identify the set of unwanted start states if there are additional small
cycles besides the main cycle.

In the second place, symmetric encryption with a fixed key can be viewed
as a permutation on the set of codewords. A good encryption algorithm should
behave like a randomly chosen permutation. One of the criteria that should be
satisfied (and that cannot be tested by some simple random probing strategy)
is that the cycle structure should not deviate too much from what is expected.
The challenge, the size of the permutation, lies in these areas of application: for
algorithms like DES and IDEA we have n = 264,

The following notation is used throughout the paper. For the parameters we
also indicate some typical values. The algorithms are general.

P=number of proc., 28 n=no. of elements in structure, 248

M =size of main memory per proc.,22¢6 w=successor function
N =size of secondary mem. per proc.,23? c=time for evaluating 7 once

Here M and N are given in words (of size logn). The processing units, PUs, are
indexed from 0 through P — 1. The index of element z, 0 < z < n, will also be
written as a pair (7,j), with j = |z/P| and i = £ mod P. Two such pairs are
compared in a reversed lexicographical way. That is, (z,7) < (i',5') when j < j'
or when j = j' and i < i'. PU k, 0 < k < P, is taking care of the indices (%, j),
for all0 < j <n/P.

2 The Importance of Permuting

Permuting the elements of an array is trivial when it is allowed to use a sec-
ond array. If space considerations make this undesirable, one should consider
in-situ algorithms, which require only o(n) additional memory. The known se-
quential in-situ permutation algorithms [2,4] are cycle leader algorithms: first
a unique leader element is found for every cycle of the permutation. Normally,
these leaders are the smallest elements on their cycles. Once the leaders are
found, performing the actual permutations takes only O(n) time. So the time
for the whole algorithm is determined by the time for finding the leaders.
Checking whether i is a leader normally proceeds by evaluating j = % (i), for
k =1,2,...,until j = ¢ or until additional tests indicate that 7 cannot be a leader.
The algorithms differ in their implementations of these tests. The simplest test
is j < i: if this happens, then i cannot be the smallest element on the cycle, so
it cannot be a leader. This test does not help to reduce the worst-case running

time below the O(n?) achieved by the trivial algorithm, but if each permutation
is equally likely then the average runtime is bounded by O(n - logn) [4]. The
algorithm requires O(logn) bits of storage. Storing b additional bits, Melville
[6] reduces the worst-case time to O(n?/b). For very large n, this worst-case
time becomes interesting only for excessive b. In the algorithm by Fich et. al.
[2] a hierarchy of local minima is constructed while proceeding along the cycle
until it finds that either ¢ is the global minimum on the cycle, or that 7 is
not a leader. This algorithm has O(n - logn) worst-case runtime. The algorithm
requires storage for O(logn) integers, that is for O(log® n) bits, which is a feasible
amount, even for large n.

All these algorithms can be easily parallelized: the n tests whether the ele-
ments are leaders are distributed over the available processors. However, because
the expected length of the longest cycle in a randomly chosen permutation is lin-
ear in n (approximately 0.624-n [9, p. 358]), such straight-forward parallelizations
lead to at most O(logn) speed-up for any P (taking into account the leading con-
stants of the algorithms, it can be estimated that even for n = 2% the speed-up
can never exceed 33). To our knowledge, there is no known way to parallelize the
check for a single leader, as methods like pointer doubling cannot be applied.
Hence, there is no hope for an efficient parallel algorithm based on the cycle
leader algorithms. Hagerup and Keller [3] give a PRAM algorithm for the in-
situ permutation problem with worst case runtime O(n/P +logn-loglog(n/P)),
but, as it needs n additional bits of storage, it is not applicable to our problem.

3 Complete Analysis of Structure

We first consider the parallel algorithm for completely evaluating the cycle struc-
ture of m. Clearly any such algorithm requires that 7 is evaluated at least n
times, which may take too long. In that case the structure can only be analyzed
partially. If n evaluations are acceptable, however, then our algorithm can be
performed, because in practice, applying several refinements, the total number
of evaluations is bounded by about 5-n, perfectly distributed over the processors.

3.1 Basic Algorithm

The basic algorithm minimizes the communication. It consists of four phases.
The first and the third are performed locally without communication, the second
is very similar to a parallel-external list-ranking problem, for which efficient
algorithms have been designed before, both in theory and in practice [5,8,11].
The fourth is a gather operation.

In Phase 1, every PU k, 0 < k < P, performs the following steps in parallel.
Next to some local variables, each PU has arrays nzt and dst for storing a remote
successor of a node and the distance thereto. These arrays have length N each
(assuming that secondary memory can hold 2 - N integers). The elements (k, j)
with 0 < k < P and j < N serve as a set of “starting points”. PU k£, 0 < k < P,
follows the cycle going through starting point (k,j), for all 0 < j < N, until it
reaches another starting point.

Algorithm PHASE 1

Set cury = 0.

Set (i,7) = (k, cury) and ent, = 0.

Repeat (i,7) = w(¢,5) and cnty, = cnty, + 1, until j < N.
Set naxty,(cury) = (i,7) and dsty (cury) = cnty.

cury = cury + 1. If cury, < N then goto Step 2.

Uk o=

The expected number of iterations in Step 3 is clearly n/(P - N) (because in
a random experiment with a probability of success equal to p, the expected
number of trials until the first success equals 1/p). So, the total expected time
consumption for this phase equals ¢ - n/P. For all but specially constructed
pathological 7 the actual value will be only slightly larger. The experimental
results in Section 5 confirm this.

As a result of the operations in Phase 1, we have constructed a set of links
spanning most of the cycles. The total number of these links is P- N. In Phase 2,
we compute the lengths of these cycles.

Algorithm PHASE 2

1. Perform the “peeling-off” algorithm from [11] to determine the minimum
element on every cycle and the distance thereof. If such a minimum element
is found, then the cycle statistics are updated.

2. The additional arrays are no longer needed and can be discarded.

All operations can be performed with O(N) work, paging and routing per PU.
Applying the indicated optimized implementation or one of the others, the con-
stants are small. For example, the total amount of data a PU is sending is about
8- N. In comparison to the cost of Phase 1, and the even higher cost of Phase 3,
this is negligible, even though integers cannot be pumped into the network at
clock rate.

After phase 2 we have found all cycles that contain at least one starting point.
Phase 3 serves to find the remaining cycles. It is similar to Phase 1, the main
difference being another stopping criterion. Each PU has its own local cycle
statistics which are set to zero at the beginning of Phase 3. For every PU k,
0 < k < P, the following steps are performed in parallel. PU k starts from all
elements (k, cury) which are not starting points, i.e. where cury > N, because
they might lie on a cycle without starting point. The cycle is followed until either
a starting point is reached, in which case the cycle is already detected, or until
(k, curg) is reached again, in which case (k, cury) is the cycle leader, or until
(1,7) < (k, curg) is reached in which case (k, cury) cannot be the cycle leader.

Algorithm PHASE 3

Set cury = N.

Set (i,7) = (k, cury) and ent, = 0.

Repeat (i,7) = 7 (7,7) and enty, = cnty, + 1, until (4,5) < (k, curg).

4. If (4,) = (k, cury), then we have found a new cycle. Update the local cycle
statistics, using cnty.

5. cury = curg + 1. If cury, < (n/P) then goto Step 2.

=

At the end we have local cycle statistics, in which the PUs recorded the cycles
they have discovered. In Phase 4, the PUs perform a logarithmic-depth reduction
with the effect that finally the union of everything that was discovered comes to
stand in PU 0, who can output the result. If 7w is indeed more or less random,
then the time for this Phase 4 is very small, because in that case the number of
cycles is bounded by O(logn).

3.2 Analysis

The following analysis is not new (a slightly simpler result was proven already
in [2]). We present it here for comparison purposes.

Lemma 1 For a random oracle 7, the expected number of evaluations of ™ per-
formed by each of the PUs in Phase 3 is bounded by (Inn —In(P - N)) -n/P.

Proof: Starting with an index (k,!), the probability to hit a node (7, 7) < (k,1)
equals P-I/n (actually, after ¢ hops on a path, this probability equals P-l/(n—1),
which is slightly larger). So, for given [, writing p = P -l/n and ¢ = 1 — p, the
expected number of evaluations is given by

tz—ZH‘l pq—Zqu—qu/l)= ¢ = =n/(P-1).

Jj=0 i=j

Hence, if cury is running from N to n/P, then the total expected number of
evaluations of 7 performed by PUj, is given by

n/P
Z n/(P-1)~ (ln(n/P)—1lnN)-n/P = (Inn —1n(P - N))-n/P.
=N

O

So, in order to minimize the total costs one should indeed test the maximum
possible number of indices during Phase 1. For the typical values of P, N and
n that were given in Section 1, the time consumption is about 6 - ¢ - n/P. This
is still a very long time, but it will become feasible with foreseeable increases in
N, P and processor speed. It also makes sense to look for further reductions of
the time consumption.

3.3 A Refinement

With a small modification, we can gain about 40%. The idea is to keep track of
the number r of indices that were not yet “found”. That is, at any given time r
equals n minus the sum of the lengths of all detected cycles. Clearly a new cycle
cannot be longer than r. Hence, if we are searching from some index (k, cury),
and we did not yet hit a node (7,j) with (¢,5) < (k, cury) after r applications
of m, we may nevertheless conclude that we are on a cycle that was discovered
before and stop. Thus, we should modify Step 3 of Phase 3 as follows:

3. Repeat (i,j) = m(i,j) and cnty = cnty + 1, until (4,5) < (k, cury) or
cnty = .

In a sequential algorithm it would be trivial to keep r up-to-date. In a parallel
algorithm this requires some extra effort. Because we expect to find only few
cycles, there is no need to wait: as soon as a cycle is detected by a PU, it can
immediately broadcast its length to all other PUs. Such a broadcast can be
performed in log P communication rounds. The involved packets have constant
size. Thus, this costs O(log P) time, which is negligible in comparison to c-n/P.
Thus, we may assume, as is done in the following analysis, that r is up-to-date.

Lemma 2 During pass | of the loop in step 3, the expected value of r is about
n/(P-1).

Proof: From [9] we use the fact that the expected number of cycles of length
m equals 1/m. The possible discovery of such a cycle is an independent event,
so the expected number of remaining cycles of length m equals (1 —m/n)?"/m.
Thus, substituting L = P - [, the expected sum 7; of the lengths of these cycles
can be estimated as follows:

F= Y (L-m/n)* ~ /On(l—m/n)Ldm - L_fl-(l—m/n)r; - LZ - ~n/L.

m=0

O

By an analysis similar to the proof of Lemma 1, we obtain

Theorem 1 For a random oracle w, the expected number of evaluations of m
performed by each of the PUs in the modified Phase 3 is bounded by (1 —1/e) -
(Inn —In(P-N))-n/P.

4 Other Results

Finding the Longest Cycle. For some applications it may be sufficient to
know the size L and some elements of the longest cycle. For example, it may
be possible to generate several oracles, with the purpose to pick the one that
maximizes L. L has expected value 0.624 - n, but the actual values fluctuate a
lot. It is easy to see that the probability that L > n —m is at least m/n. Thus,
trying r times will mostly give us an oracle with L > n —n/r.

In the previous section we have reduced the running time by a constant
factor, but even c-n/P may be beyond feasibility. In a special case a superficial
screening can be performed so fast, that it even becomes possible to test many
oracles. We assume that after some (maybe quite expensive) preprocessing a new
oracle p = n” can be constructed, that again can be evaluated in ¢ time!. In the

following we will use z = /n/(lnn - P).

! This assumption is e.g. valid for permutations like a - z 4+ b mod m, but not for DES.

The algorithm is simple: Each PU randomly chooses Inn starting points.
From each starting point the algorithm applies z times p. The indices of all
nodes that are visited during these jumps are stored, this information is called
a track. It is most convenient if at the end of such a batch of operations all new
information is gossiped, so that all PUs have access to it locally. Then for each
track, the algorithm z times applies m, while testing whether a track starting
from another starting point already covered this sector. Because such a track
has left traces every = nodes, this will certainly be detected. If this happens,
then this track is not further extended. These operations are repeated until all
tracks got stuck. The amount of double work is very small.

Theorem 2 The described algorithm has running time O(c - +/Inn-n/P). Af-

terwards, for any given seed it can be tested in c-/n/(Inn - P) time whether it
lies on a sufficiently long cycle or not.

Proof: Because the number of evaluations of 7 equals the number of evaluations
of p, we only need to estimate the latter. Because each PU essentially covers
only the gaps between its starting points and those that follow, the work can be
estimated on the sum of the sizes of these gaps multiplied by ¢/z, which gives
O(c-n/(P-z)). We must add O(c-z) for each starting point, thus the total time
consumption for each PU is given by

O(c-n/(P-z)+c-z-Inn) =0(c-y/Inn-n/P).

The length of the cycles can be found by knotting all tracks together. If this
should be used as a random generator, then for a seed s it can be tested by
performing /n/(Inn - P) times m whether s lies on a sufficiently long cycle. [

Very Short Cycles. Cycles with length up to [can trivially be detected with
- n/P evaluations of 7 per PU.

Tree Like Structures. More interesting are oracles that only guarantee out-
degree 1, but for which a node may be the successor of several nodes. In that
case, the given algorithm may not terminate, because there may be cycles of
nodes with high indices to which is attached a tail containing a node with low
index. The solution is to throw anchors every now and then, and stopping as
soon as an anchor is reached. A possibility is to throw anchors after a number
of evaluations that is doubled every time. In this way at most twice as many
evaluations are performed as necessary.

Testing on Randomness. For some applications there is no need to find all
cycles. In such cases a cheaper screening will suffice. Here, we consider omitting
Phase 3. Then, the algorithm runs in just over ¢-n/P time. In the following we
work under the assumption that 7 is random. If it is not, then it may either still
behave as assumed, or it does not, and in that case it will be detected.

Lemma 3 After Phase 1 and Phase 2, the expected fraction of the cycles of
length m that has been found equals 1 — (1 — m/n)P'N ~ 1 — e™PN/n_ For
m >n/(P-N)-lnn all cycles have been found, with high probability.

Proof: For any given cycle of length m, the probability that none of its elements
is among the lowest P- N, equals (1—m/n)F"N. Substituting m = n/(P-N)-Inn
gives 1/n. As, for random 7 there are only O(Inn) cycles in total, the probability
that any of them is not detected is hardly larger. O

5 Experimental Results

We have implemented a sequential simulation of the basic algorithm together
with the simple improvement from Section 3.3 in C. We have run this program
on a computer with sufficient internal memory for the size of the experiments that
we wanted to perform. So, the random permutations could be generated easily
and were stored in arrays. We were not interested in time, but in the number
of evaluations made by each PU. Other points of interest are the occurring
fluctuations in the numbers of cycles and the load balancing among the PUs.

logn log(P-N) tests)Cm Ca CM Ta T™ ta tM
16 4 10000f 211.66 26 309647 535040 463808 913248
16 8 10000f 211.67 26 223927 395357 257792 452864
16 12 100000 111.67 28 134846 240286 142400 252576
20 4 2000| 5 14.49 27 6451451 10409239 8947232 14887648
20 8 2000| 3 14.41 27 5023912 8647220 5561552 9275280
20 12 10000{ 3 14.41 30 3587918 6467906 3714624 6593576
20 16 10000{ 4 14.47 30 2157791 3855698 2187328 3884932
24 8 1000{ 6 17.27 32| 103595973 170821183 112231808 183887984
24 12 1000f 5 17.39 31| 90363923 135110679 82525232 137614384
24 16 1000f 6 17.12 30| 57065471 98106800 57659024 98444288
24 20 1000{ 417.21 34| 34271603 58610751 34389440 58816288

28 12 100| 11 19.31 31{1579220642 2371955835 1608459888 2413276912
28 16 100| 10 20.35 29{1270724358 1978054028 1278394896 1985230560
28 20 100{ 9 19.84 30| 880985077 1468056382 882947248 1470623392
28 24 5001 7 19.50 32| 542089349 971220637 542567680 972277488

Table 1. Results of experiments. The columns give log, n, log,(P - N), the number of
tests, the minimum number of cycles that was found, the average number and the max-
imum number. Ta is the average value of the total number of evaluations divided by P.
TM gives the corresponding maximum number. ta is the average of the maximum num-
ber of evaluations performed by any of the (virtual) PUs. tM gives the corresponding
maximum.

We have tested for n = 26,220 224 228 For larger n the main problem
is that the time consumption does not allow to run sufficiently many tests
to draw reliable conclusions. All these n have been investigated for P - N =
n/2% n/28,n/2'2 n/2'. We have set P = 16, this has no implications for the

number of evaluations. All results are given in Table 1. We have performed a
least square adaptation for determining the values of § and < in the number T
of evaluations per PU:

T=(B+v-(lan—1n(P-N))-n/P.

The best fit is obtained with 8 = 0.710 and y = 0.486. These values are smaller
than expected, which might be due to the positive effect of stopping when r = 0.
For all instances with n < 224, the deviation is less than 1%. For n = 228, the
deviation is slightly larger, due to an insufficient number of experiments.

For each n, the average number of cycles lies close to the value it should have:
the harmonic numbers H,, = " ; 1/i. The deviation is at most a few percent
and due to an insufficient number of tests.

The maximum number of cycles is bounded by about twice the expected
number, though the deviation appears to decrease for larger n. The minimum
number of cycles may be very small. For larger n it increases. This is due to
two effects: for larger n the probability on very few cycles decreases considerably
(the probability that a permutation consists of exactly one cycle equals 1/n); for
large n we could not perform many tests. The experiments do not allow to draw
any final conclusion, but it appears that the distribution around the expected
value is more or less symmetrical. For example, for n = 228, the expected value is
close to 20, and permutations with less than 10 cycles are about equally frequent
as permutations with more than 30 cycles (1 or 2 on every 100 permutations).

From the difference between the average and maximum number of evaluations
we see that the actual running times may fluctuate a lot (the maximum is up to
70% higher than the average, and exceeds the minimum even by a factor three).
There is some correlation with the number of cycles (if there are many cycles,
then probably r will be large during the experiment and the last cycle will be
found late), but we have seen many exceptions.

Comparing the total number of evaluations divided by P and the maximum
number of evaluations performed by any PU, we see that there may be a consid-
erable difference for the smallest n, which are not relevant in real applications.
For the larger n, this difference decreases to 1% and less. This is so little, that
there is no need for additional load balancing.

In order to estimate ¢, we have tested the pseudo-random number generator
function 1rand48. On a workstation with a Pentium II processor running at 333
MHz, FreeBSD operating system and GNU C compiler, we found that about 22°
evaluations were performed per minute. Hence, for n = 2*8, n evaluations would
take about 2'° minutes or 364 days of processing time. This means, that with
sufficiently many processors (which by now are several times faster), a problem
of this size may be tackled in a few days.

6 Open Problems and Further Work

Future work will focus on a message-passing implementation for a workstation
cluster or multiprocessor to validate our preliminary results. Another permuta-
tion to be tested will be the DES encryption algorithm with a fixed key. The

number of elements in this permutation is larger than in the 1rand48 case by
a factor of 2!6. Also, evaluation of the DES permutation will take much longer
than evaluating the 1lrand48 permutation. It appears that with the sketched
improvements we have fully exploited the available information and memory.
Only by storing data more compactly some further gains are possible, but this
will not change things dramatically. Hence, there is a need for faster evalua-
tion. A very interesting possibility is to use programmable hardware such as
field-programmable gate arrays (FPGAs). In the simplest case, these devices are
added to the processors as boards in the cluster scenario. In the case of DES, this
could lead to a performance improvement by more than a magnitude. Also, the
control flow in our algorithm is quite regular. Thus in a single FPGA, several
processing instances to solve the problem could be implemented and multiple
FPGAs could be used. It could thus be possible to construct a dedicated FPGA-
based machine to solve the cycle-structure problem.

References

1. Cole, R., U. Vishkin, ‘Approximate Parallel Scheduling, Part I: the Basic Technique
with Applications to Optimal Parallel List Ranking in Logarithmic Time,” STAM
Journal on Computing, 17(1), pp. 128-142, 1988.

2. Fich, F.E., J.I. Munro, P.V. Poblete, ‘Permuting in Place,” STAM Journal on Com-
puting, 24(2), pp. 266-278, 1995.

3. Hagerup, T., J. Keller, ‘Fast Parallel Permutation Algorithms,” Parallel Processing
Letters, 5(2), pp. 139-148, 1995.

4. Knuth, D.E., ‘Mathematical Analysis of Algorithms,” Proc. of IFIP Congress 1971,
Information Processing 71, pp. 19-27, North-Holland Publ. Co., 1972.

5. Lambert, O., J.F. Sibeyn, ‘Parallel and External List Ranking and Connected
Components on a Cluster of Workstations,” Proc. 11th International Conference
Parallel and Distributed Computing and Systems, pp. 454-460, IASTED, 1999.

6. Melville, R.C., ‘A Time-Space Tradeoff for In-Place Array Permutation,” Journal
of Algorithms, 2(2), pp. 139-143, 1981.

7. Reid-Miller, M., ‘List Ranking and List Scan on the Cray C-90,” Journal of Com-
puter and System Sciences, 53(3), pp. 344-356, 1996.

8. Ranade, A., ‘A Simple Optimal List Ranking Algorithm,” Proc. of 5th High Per-
formance Computing, Tata McGraw-Hill Publishing Company, 1998.

9. Sedgewick, R., Ph. Flajolet, An Introduction to the Analysis of Algorithms. Addison
Wesley, Reading, Mass., 1996.

10. Sibeyn, J.F., ‘One-by-One Cleaning for Practical Parallel List Ranking,” to appear
in Algorithmica. Preliminary version in Proc. 9th Symposium on Parallel Algo-
rithms and Architectures, pp. 221-230, ACM, 1997.

11. Sibeyn, J.F., ‘Ultimate Parallel List Ranking,” Techn. Rep. MPI-1-99-1005, Max-
Planck-Institut fiir Informatik, Saarbriicken, Germany, 1999.

