
ABSTRACT

Filtering unsolicited commercial email has proved its
untrustworthiness by not keeping spam out of the inbox
and marking solicited mails as unsolicited. As filters only
cure a symptom of the spam-epidemic, it seems more
promising to resolve the problem at its roots. According to
different studies, spammers rely on email addresses pub-
lished in a machine readable format on the world wide
web.

We have tested different approaches to obfuscate email
addresses in the www and present experimental results
that indicate their usefulness. However, modifying exist-
ing webpages only to obfuscate mail addresses on them
means a lot of work and forces web designers to under-
stand the techniques and concepts used to conceal
addresses.

Instead we provide an output filter for the common
Apache webserver, which allows to leave even dynami-
cally generated web pages unchanged.

KEYWORDS:

– Unsolicited Commercial Email
– Prevention
– Dynamic Obfuscation
– Webserver

SPAM FILTERS

The large amounts of unsolicited commercial email
(UCE), also known as spam, can have mail servers col-
lapse [1]. It keeps mailboxes overflowing, blocking thus
important mails by an over-quota-condition. Even if a
ham-mail, the opposite of spam, finds its way into user's
mail client, chances are, it is moved to a spam folder or is
failed to be noticed among hundred of spam mails. Doing
this, UCE turns email into an unusable, unreliable means
of communication.

Most users and providers have implemented filtering tech-
nologies [2] to reduce the amount of spam received.

Although there are many concepts in filtering spam, none
of them is reliable: Content-filtering tries to determine the
spam-status by looking for “bad” words. It might work on
some recipients, but not on all: A bank official cannot put
“mortgage”, a word often found in spam, on a blacklist.
Relay-Black-Lists (RBL) will not work either, as more
and more people provide their own mail server connected
to the internet by a DSL-line using a dynamic IP address.
In Germany this often happens to circumvent German leg-
islation (Telekommunikationsüberwachungsverordnung,
TKÜV) that forces providers with more than 1000 cus-
tomers to give law enforcement agencies access to email
communication at mail server level at any time. Most
dynamic IP-blocks are listed in RBLs to prevent internet
worms from spreading as they usually originate from
infected home computers. Any other filtering solution has
its own, specific limitations. So most filters, including
those combining several technologies and building an
overall spam-score, have spam recognition rates of less
than 99%. Even worse, their false positives rates, i.e. ham
considered to be spam, are up to some percent [3], [4].

Considering this, spam filtering is only a symptomatic
cure with heavy side-effects. To really get rid of spam, the
root of the evil needs to be eradicated.

HOW SPAMMERS COLLECT MAIL ADDRESSES

According to different studies [5], [6], spammers still use
the world wide web to find mail addresses to spam to. To
achieve this, they use so called harvesters; programmes
working generally the same as friendly spiders used by
search engines: They follow each link shown on a web
page they visit and extract email addresses from each page
found.

In [6] a two-line unix shell code harvester is shown to
demonstrate how primitive those programmes are. More
elaborated harvesters are found on the world wide web
[6]. Most of them run on windows systems and have
graphical user interfaces. Some were even advertised in T-
Online's download area1, one of Germany's biggest ISPs.

1 See: http://groups.google.de/groups?selm=42343BF3.1040005%
40schloachdi.de

PREVENTING SPAM BY DYNAMICALLY OBFUSCATING EMAIL-
ADDRESSES

Tobias Eggendorfer Jörg Keller
Fernuniversität in Hagen Fernuniversität in Hagen
LG Parallelität und VLSI LG Parallelität und VLSI

Informatikzentrum Informatikzentrum
D-58097 Hagen D-58097 Hagen

Germany Germany
tobias.eggendorfer@fernuni-hagen.de joerg.keller@fernuni-hagen.de

If spammers' only source for mail addresses is harvesting
them on webpages, the obvious solution is to conceal mail
addresses on the web. The above studies confirm this
hypothesis, so the solution to conceal email addresses on
web pages should work.

METHODS TO HIDE MAIL ADDRESSES

In [6] different methods to conceal addresses were shown.
Some of them rely on JavaScript-enabled Browsers, a fea-
ture harvesters do not implement as of now. Anyway,
using Mozilla's publicly available JavaScript-engine, any-
one could build a new harvester able to execute JavaScript
and thus revealing carefully hidden addresses. Therefore
[6] introduces a human-machine-detection [7] in JavaS-
cript by asking someone to enter a key shown on the page.
A JavaScript enabled harvester will fail because it does
not understand the semantics. Spammers solve this by cre-
ating online games or sweepstakes and ask humans to
solve the puzzle. Their solution is then used by the har-
vester to crack the code. JavaScript has another disadvan-
tage: Most people disable it in their browser for security
reasons. Those are then kept from communicating with the
site's owner because they will not see his email address on
the web page.

Another approach is to display an image containing the
address. Most harvesters ignore pictures and even if they
would not, they needed an OCR-programme to find the
mail address. By slicing the image into parts, OCR-pro-
grammes will also fail. But the picture is also unreadable
to visually handicapped page visitors relying on a braille-
line to read.

As a consequence, to accomplish the typical requirement
“barrier free”, the email address needs to be concealed by
using only means of standard HTML. The solution most
frequently provided is to use HTML-entities: Each charac-
ter is replaced by an ampersand, followed by its ASCII-
Code and a semicolon. An “A” is represented by “&65;”.
This encoding is compatible to any platform as long as
email addresses are restricted to 7-bit-ASCII-standard.
Currently this is to be expected, internationalized domain
names (IDN) are converted in their puny-code representa-
tion for email and so brought back to 7 bit.

Although this solution seems very appealing, it only takes
one line of code to exchange HTML-entities with their
character representation. By using lynx, a command line
text browser, with the --dump option, there is no coding
required at all. At least one harvester is able to do the
transformation already, as both [5] and [6] report on hav-
ing received mails on addresses obfuscated that way.

Almost the same problem arises with the other common
solution: The address is URL-encoded, i.e. each letter is
replaced by a percent-sign and its hexadecimal ASCII-
value. An “A” would become “%41”. Most scripting-lan-
guages provide a ready-to-use function to do the retrans-
formation. But for some reasons, hiding an address by

URL-encoding is still efficient. In neither study was a
spam mail received that way.

A better solution is to obfuscate an email address up with
spaces: user@example.com becomes the human readable
u s e r @ e x a m p l e . c o m. Every visitor of a web page
should be able to capture the mail address, but a harvester
is confused: Removing whitespaces all over the page is
not a solution, as the mail address would unite with the
words left and right to the address. To increase the diffi-
culty level, spaces could be inserted only after a random
amount of letters. By doing this, computers should be
definitely unable to recognise the address.

To make the displayed address look nicer on the page, the
spaces could be hidden in a HTML-DIV-tag set to invisi-
bility by CSS. A human visitor using a CSS-capable
browser would not even see that hiding took place, current
harvesters ignore CSS, so they will see the spaces in
between. If evolving Harvesters understand CSS, the
space width within those DIV-tags could be reduced by
reducing the font size, which, in turn makes the space
again virtually invisible for a human visitor, but again
existing for the harvester.

TESTING THE METHODS

To confirm the results from [5] and test the proposals
from the preceding section, a test page has been set up
under a previously unused domain [6]. On it, in a DIV-tag
set to be invisible by CSS, different email addresses using
different methods of obfuscation were listed. To human
visitors using a CSS-capable browser, those methods and
addresses were invisible. But harvesters ignore CSS. To
them, the addresses were readable.

Harvesters were sent there by hidden links on thousands
of web pages, thanks to the support of many webmasters
world-wide. Both, using hidden links and not displaying
the addresses was done to exclude as many human visitors
as possible. The idea was: the fewer people know about
the page's existence and the fewer people see the
addresses listed there, the smaller the chance anyone
could give those addresses to a spammer, thereby reduc-
ing significance of the test's results.

The mailserver for the domain has been configured to
count incoming mails and their time of arrival in a data-
base. By doing so, mails did not see any spam filter and
the risk of overlooking a spam mail has been eliminated
that way, too.

The test setup and the results are described in detail in [6].
The most important results can be summarized as follows:
Addresses shown in plain text received lots of spam,
whether they were linked with an A HREF-tag or not. All
but one obfuscated addresses were ignored by harvesters.
Only the “mailto:”-linked address hidden using HTML-
entities got a few spam mails. All other addresses, includ-
ing a not linked HTML-entities hidden address, did not

receive even one spam-mail.

Table 1 gives an overview on the amount of spam
received on each address between 2004-12-19 and 2005-
08-25. It has been normalised to the spam-counter on a
linked, plain text address as 100%, i.e. the amount of
spam received by an email address published the usual
way.

Those results were verified using several harvesters freely
available on the internet pointed to the test page. They did
not find any address other than those spammed – although
most of them are advertised with the promise to find even
obfuscated addresses.

The harvesters we tested did not understand the encoding
of the HTML-entity masked addresses, but listed them in
the hidden format as found mail addresses. They also only
found linked ones.

This is in concordance to the tests using the website: The
amount of spam received on a not linked, but obfuscated
address is a bare minimum.

As some harvesters seem to recognise mail-addresses in
HTML pages only if they linked, we recommend to
replace “mailto:”-Links with HTTP-links to contact-forms
and to obfuscate unlinked email addresses in a way they
do not match typical regular expressions.

HAVE THE SERVER OBFUSCATE THE
ADDRESSES

Although the above methods are efficient and easy to
implement on an new webpage, it means a lot of work to
modify existing pages and, if more than one person is in
charge of keeping a website up to date, there is a risk that
someone forgets to hide an address.

To mask an address manually also requires to understand
both: the methods and the goals. It is very likely that home
users and small businesses will not have the necessary
knowledge. So their webpages would still offer email
addresses to spammers.

Therefore we strived for a solution providing website-pro-
viders with an easy configurable, one-click-to-the-cus-
tomer solution enabling or disabling concealed mail
addresses on any page delivered by a server to enable a
major step in fighting spam. If the big players in the pro-
vider market would implement the described method to
dynamically obfuscate email-addresses, most harvesters
will start starving.

A programme doing the obfuscation should work on any
delivered text file – be its MIME-Type text/plain or
text/html. To really hide all addresses displayed on a web-
page in plain text, the programme needs to work on
dynamically generated pages as well, whether they have
been made up by JSP, PHP, Perl, Shell or even a com-
piled programme on the server.

CONCEPT

To achieve this, the programme would need to catch the
output stream of the webserver right before data is deliv-
ered over the network. The modern Apache 2.0 webserver
offers the possibility to do so without the need to modify
its source code and recompile the whole server [8]. It is
sufficient to write a programme in Perl and call it via
Apache's configfile with the following directives:

SetHandler modperl
PerlModule MyApache::ObMail

<Directory /var/www/html>
 PerlOutputFilterHandler MyApache::ObMail
</Directory>

Apache will then send any output through this filter. The
Perl-Code for this filter is shown in the appendix.

The filter script needs to be installed in a subdirectory
named “MyApache” in a file ObMail.pm in any Perl-
Module directory.

HOW THE FILTER WORKS

The Filter uses an input buffer to store data received from
the webserver. Doing so is necessary: The amount of
bytes transmitted might exceed any provided buffer – no
matter how big it is. By using this buffer however, data is
divided into buffer-sized fragments.

An email address now might be distributed among two
fragments, so a regular expression would not match it. To
resolve this, the script first divides data found in the buffer
into two parts: The last part contains any characters found
behind the last white spaces in the buffer and is then pre-
pended to the next buffer-fragment. This is sufficient,

Obfuscation Method Normalised Amount of Spam

HTML-Entities 0,35%

URL-Encoding 0,35%

HTML comments 0,35%

Linked HTML-Entites 36,68%

JavaScript plain text 130,45%

plain text 98,62%

linked plain text 100,00%

Table 1 Amount of spam received on addresses
obfuscated different ways

because email addresses do not contain white spaces.

SECURITY CONSIDERATIONS

In theory, any text-file, be it HTML or plain text, will con-
tain white spaces. From cryptanalysis it is known that
white spaces are the most frequently used character in
almost any language. Source code also contain lots of
white spaces.

Binary data should however not be transmitted with any
text-MIME-type. But in reality, the script works on
untrusted input data. An attacker might put a HTML-file
on the server containing more characters without white
spaces in between than the buffer will store. Due to the
while-loop prepending the leftover buffer from the previ-
ous loop-run to the current buffer, a buffer overflow con-
dition might be abused to execute arbitrary code on the
server [9], [10].

The attacker might also do this by abusing any web form,
where data he entered is shown on the next dynamically
generated page.

To avoid this danger, the filter will output the buffer with-
out caring for word boundaries if the buffer size exceeds
twice the given maximum buffer size (variable
BUFF_LEN in the script). This solution works fine with
Perl, as memory is allocated dynamically. If the filter is
written in any other language, one should allocate three
times BUFF_LEN of memory for the buffer.

PERFORMANCE

The choice of the buffer size is not only important for
security reasons, but it is also the parameter determining
the performance of the script. Tests with Apache Bench, a
benchmark for web servers included in Apache 2.0 simu-
lating heavy load and concurrent requests, showed, that if
the buffer is too small, performance might go down sev-
erly. In tests, after reducing the buffer from 10 KBytes to
1 KByte, delivery of the pages was five times slower.

But a too big buffer is also a performance killer: Doubling
BUFF_LEN to 20 KBytes brought also performance
down again by a factor of ten, because of a lack of mem-
ory and the resulting need for swapping. This is due to the
parallel HTTP-requests: Each instance of the script needs
to allocate memory.

So the buffer should be carefully adjusted to its optimum
depending on the available free memory on the system.

With a view to performance, at first glance Perl is not
optimal: It needs an interpreter to run, which makes it usu-
ally slower than a compiled language like C. But by using
mod_perl, this problem is also solved: mod_perl compiles
this Perl-module at Apache's startup.

Overall, for small files, performance decrease compared

to a system without the filter, is minimal: The delivery
time for files approximately 250 Bytes increased only by a
factor of 1.2 – under heavy load with 1000 concurrent
requests . The bigger files get, the slower the perform-
ance: For 5 KBytes, it took already 1.7 times longer than
without the filter. With a 2 MByte HTML-file, it took 30
times longer to download than without the filter. How-
ever, such a size is quite unusal for a HTML-file.

This is expected behaviour: The while-loop for the input
fragments means a performance at least within O(n)
(n = length of document) without taking into consideration
the implementation of the regular expression parser in
Perl.

SUMMARY

The Perl module introduced herein offers on the fly email
obfuscation for web pages to prevent spammers' harvest-
ers to find addresses. It has been designed with perform-
ance and security in mind and might easily be setup on
any web server running Apache 2.0 and mod_perl; both
are often available out-of-the box.

The concept of concealing mail addresses on web pages
has been proven to be effective by tests on the web. [5]
even claims a long term decrease of spam if addresses are
removed from the web.

REFERENCES

[1] S. Frei, I. Silvestri. G. Ollmann, Mail Non-Delivery
Notice Attacks, http://www.techzoom.net/paper-
mailbomb.asp, 2004

[2] A. Schwartz, S. Garfinkel, Stopping Spam, (Sebastopol,
O'Reilly, 2002)

[3] J. Bager, AOLs Spamfilter übertreibt (in German: AOLS's
Spam Filter overacts),
http://www.heise.de/newsticker/data/jo-21.10.03-000/,
2003

[4] U. Mansmann, Spamcop sperrt GMX (in German:
Spamcop blocks GMX),
http://www.heise.de/newsticker/data/uma-10.09.03-000/,
2003

[5] Center for Democracy and Technology, Why am I getting
all this spam?,
http://www.cdt.org/speech/spam/030319spamreport.pdf,
2003

[6] T. Eggendorfer, Methoden der präventiven
Spambekämpfung im Internet (in German: Methods of
Preventive Spam Abatement), (Munich / Hagen, Master
thesis, Fernuniversität in Hagen, 2005)

[7] L. von Ahn, M. Blum, N. Hopper, J. Langford, The
Captcha-Project. Telling Humans and Computer apart
(Automatically), http://www.captcha.net, 2004

[8] L. D. Stein, D. MacEachern, Writing Apache Module with
Perl and C, (Sebastopol, O'Reilly, 1999)

[9] G. Hoglund, G. McGraw, Exploiting Software. How to
break code, (Boston, Addison Wesley, 2004)

[10] C. Peikari, A. Chuvakin, Security Warrior. Know Your
Enemy, (Sebastopol, O'Reilly, 2004)

APPENDIX: PERL OUTPUT FILTER (SOURCE
CODE)

Perl-Output-Filter for Apache 2.0

Automatically conceals email addresses to
prevent harvesters from fetching them.
#

package MyApache::ObMail;

use strict;
use warnings;

use Apache::Filter ();
use Apache::RequestRec ();
use APR::Table ();

use Apache::Const -compile =>
 qw(OK DECLINED);

use constant BUFF_LEN => 10240;
 # The buffer stores output data from
 # Apache. Its size is the key to
 # performance: If it is to small, it
 # slows the system down. If it is to
 # big swapping becomes necessary – and
 # again, the system slows down. An
 # optimal setting might be found using
 # ApacheBench (included in Apache 2.0).

sub obfuscate
 {
 # Invocation: obfuscate(data)
 # Here, mail addresses within in the
 # data block given as only parameter
 # are obfuscated

 my $line = shift;

 my $mail_regexp = '[A-Za-z_0-9.-]+@'.
 '([A-Za-z_0-9-]+\'.
 '.)+[A-Za-z]{2,6}';
 my $adr = undef;

 while ($line =~ /($mail_regexp)/g)
 {
 # Split each address found in its
 # characters and put it together
 # again with spaces in between.
 # The address is given in $1 – so
 # another hiding method might be
 # implemented without trouble.

 $adr = join(' ',split(//,$1));

 # Now, replace any upcoming
 # occurences of this address.
 # If the hiding method has been
 # changed, take care: $1 might have
 # been reset by another regular
 # expression.

 $line =~ s/(.*)$1(.*)/1adr$2/gi;

 } # end while mail_regexp
 return $line;
 }

sub handler
 {
 # This function is called by Apache. It
 # takes care of working on the blocks
 # of data delivered by the httpd.

 my $f = shift;

 unless ($f->ctx)
 {
 # Test the content-type only on
 # first invocation
 unless ($f->r->content_type =~
 m!text/(html|plain)!i)
 {
 # Works only on text/html or
 # text/plain
 return Apache::DECLINED;
 }
 # Reset Content-Length calculated
 # by the server. We'll obviously
 # change the amount of data sent.

 $f->r->headers_out->unset(
 'Content-Length');
 }

 my $leftover = $f->ctx;

 while ($f->read(my $buffer, BUFF_LEN))
 {
 $buffer = $leftover . $buffer
 if defined $leftover;
 if (length($buffer) > (2*BUFF_LEN))
 {
 # Did not found any whitespaces
 # for too long. To prevent a
 # buffer overflow, data is
 # sent. Note: Mail-addresses
 # half on this block and half
 # on the next might not be
 # fully obfuscated!

 $f->print(obfuscate($buffer));
 $buffer = $leftover = "";
 }
 else
 {
 # Keep the last beginning of a
 # word in leftover to work only
 # on full addresses and not on
 # fragments.

 $buffer =~ /(.*)(\s\S*)\z/gs;
 $leftover = $2;
 $f->print(obfuscate($1));
 } # end if bufferoverflow
 } # end while read

 if ($f->seen_eos)
 {
 # End of data-stream in sight.
 if (defined $leftover)
 {
 $leftover=obfuscate($leftover);
 $f->print(scalar $leftover);
 }
 }
 else
 {

 # There is more data to be
 # processed. Pass them to the next
 # invocation.

 $f->ctx($leftover) if defined
 $leftover;
 } # end if

 return Apache::OK;
}
1;

