
Parallel Software Caches
�

Arno Formella� and J�org Keller�

� Universit�at des Saarlandes� FB �� Informatik� ����� Saarbr�ucken� Germany
� FernUniversit�at�GHS� FB Informatik� 	
�
� Hagen� Germany

Abstract� We investigate the construction and application of parallel
software caches in shared memory multiprocessors� To re�use interme�
diate results in time�consuming parallel applications� all threads store
them in� and try to retrieve them from� a common data structure called
parallel software cache� This is especially advantageous in irregular ap�
plications where re�use by scheduling at compile time is not possible�
A parallel software cache is based on a readers�writers lock� i� e�� multi�
ple threads may read simultaneously but only one thread can alter the
cache after a miss� To increase utilization� the cache has a number of slots
that can be updated separately� We analyze the potential performance
gains of parallel software caches and present results from two example
applications�

� Introduction

In time consuming computations� intermediate results are often needed more
than once� A convenient method to save these results for later use are software
caches� When switching to parallel computations� the easiest method is to give
each thread its own private cache� However� this is only useful if the computation
shows some regularity� Then� the computation can be scheduled in such a way
that a thread that wants to re�use an intermediate result knows which thread
computed this result� and that this thread in fact did compute the result already�
However� many challenging applications lack the required amount of regularity�
Another disadvantage of private software caches in massively parallel computers
is the fact that for n threads n times as much memory is needed for software
caching as in the sequential case�
Irregular applications� when run on shared memory multiprocessors �SMM��

can bene�t from a shared parallel software cache� By this term we mean one
software cache in the shared memory� where all threads place their intermediate
results and all threads try to re�use intermediate results� no matter by which
thread they were computed� To allow for concurrent read and ensure exclusive
write access of the threads to the cache� a readers	writers lock is used�
Control of multiple accesses of di
erent types to data structures� e�g� by us�

ing readers	writers locks� have been investigated in the areas �le systems and

� The rst author was supported by the German Science Foundation �DFG� under
contract SFB ���� TP D��

databases� see e�g� ��� �� While in the �rst area the focus was on providing
functionality such as �les being opened by several threads or processes� the fo�
cus in the latter area was on developing protocols so that these accesses can be
made deadlock free� We will show that in parallel software caches� no deadlock
can occur� Our goal is to investigate the potential performance bene�ts possible
from re�using intermediate results� and the tradeo
s that one encounters while
implementing such a parallel data structure� We use the SB�PRAM �� as plat�
form� but the concept should be portable to other shared memory architectures
�see Sect� ���
In Sect� �� we de�ne the notion of a cache and review the classical replacement

strategies and possible cache organizations� The modi�cations for a parallel cache
are explained in Sect� �� The SB�PRAM as execution platform is brie�y discussed
in Sect� �� Section � introduces the applications FViewpar and Rayo and presents
the performance results we obtained with the parallel data structure on these
applications� Section � concludes�

� Sequential Caches

��� De�nitions

The notion of a cache is primarily known in hardware design� There� the hard�
ware cache is a well known means to speedup memory accesses in a computer sys�
tem ���� We adapted the concept of such an �intermediate memory� to the design
of e�cient shared memory data structures� Software caches can also be regarded
as an implementation of the memorization concept in the �eld of programming
languages� where a result for a function is stored rather than recalculated�
Let us introduce �rst some notations� An entry e � �k� i� consists of a key

k and associated information i� A universe U is a set of entries� Given key k
the address function m returns the associated information i� i� e�� m�k� � i� if
�k� i� � U � Usually� m is a computationally expensive function� let us assume
a time tm�k� to compute m�k�� U can be large and is not necessarily given
explicitly� We say that a universe is ordered if the keys of its entries can be
ordered�
A cache C is a small �nite subset of U together with a hit function h and an

update function u� Given key k the hit function h returns information i associated
with k if the entry e � �k� i� is located in C� i� e�� h�k� � i i
� �k� i� � C� The hit
function h is a relatively simple function� let us assume a time tc�k� to compute
h�k�� tc�k� should be much smaller than tm�k�� For an entry e � �k� i� the update
function u inserts e in the cache C possibly deleting another entry in C� u usually
implements some replacement strategy� Let us assume a time tu�k� to update C
with an entry which has key k�
The cache C can be used to speedup addressing of U � Given key k� �rst try

h�k� which delivers the information i if �k� i� � C� If an entry is found� we call
it a cache hit� otherwise it is called a cache miss� In the latter case� use function
m�k� to calculate i� Now� the update function u can be invoked to insert the

entry e � �k� i� into C� such that a following request with same key k succeeds
in calculating h�k��
For j subsequent accesses to the cache C� i� e�� computing h�k��� ���� h�kj�� the

ratio � � s�j where s is the number of misses is called miss rate� analogously
�� � �j � s��j is called hit rate� For a su�ciently large number of accesses� we

can assume an average access time tc � �j �
Pj

l�� tc�kl�� Similarly� we assume
an average access time tm to access the universe� and an average update time
tu after a cache miss� The run time for a sequence of j accesses to U without a
cache is Tno � j � tm and with a cache it is

Tc��� � j � �tc � � � �tm � tu�� �

Hence� in case of worst miss rate� i� e�� � � � the run time is increased by a
factor Tc���Tno � � �tc � tu��tm� and in best case� i� e�� � � �� the run time
is decreased by a factor Tc����Tno � tc�tm� Thus� the cache improves the run
time of j consecutive accesses to U if Tc��� � Tno� Clearly� the improvement of
the entire program depends on how large the portion of the overall run time is
which is spent in accessing U �

��� Replacement Strategies and Cache Organization

For the update function u one has to decide how to organize the cache C such
that subsequent accesses to the cache perform both fast and with a high hit rate�
For a sequential cache the following update strategies are commonly used�

LRU� least recently used� The cache entries are organized in a queue� Every
time a hit occurs the appropriate entry is moved to the head of the queue�
The last entry in the queue is replaced in case of an update� Hence� an entry
stays at least jCj access cycles in the cache� although it might be used only
once� For an unordered universe a linear search must be used by the hit
function to examine the cache� Starting at the head of the queue ensures
that the entry which was accessed last is found �rst�

FRQ� least frequently used� Here� the cache entries are equipped with coun�
ters� The counter is incremented with every access to the entry� The one with
the smallest counter value is replaced in case of an update� Entries often used
remain in the cache and the most frequently used are found �rst if a linear
search is employed�

CWC� jCj�way cache� For a cache of �xed size the cache is simply imple�
mented by a round robin procedure in an array� Thus� after jCj updates an
entry is deleted� independently of its usage count� The update of the cache
is very fast� because the location in the cache is predetermined�

RND� random replacement cache� The cache entries are organized in an
array as well� In case of an update� one entry is chosen randomly and re�
placed� For the �rst three strategies an adversary can always �nd some up�
date patterns which exhibit poor cache performance� The probability that
this happens to a random cache is usually low�

The organization of the cache partly depends on the structure of the universe�
If the universe is not ordered� then the cache consists for LRU and FRQ in a
linked list of entries� For a miss� the function hmust search through the complete
list� For CWC and RND the complete array must be searched� too� However�
if the universe is ordered� then we can organize the cache such that the entries
appear in sorted order� Given key k� function h must search until either �k� i�
or an entry �k�� i�� with k� � k is found� If the number of entries per cache gets
larger� an alternative to speed up the search is to use a tree instead of a list�

� Parallel Caches

We assume that our applications are formulated in a task oriented model� The
work to be done can be split in a large number of similar tasks which can be
executed in parallel� A number of concurrent threads p�� p�� � � � � pi is used in
the parallel program� Each thread computes a task and then picks up a new
one until all tasks have been done� Here we mean real parallel threads that
are running simultaneously on at least i processors� Hence� we assume that our
program can be optimally parallelized� with the possible exception of con�icts
in the case of concurrent accesses to a parallel software cache� Also� there will be
a sequential part before the spawning of parallel threads� The spawning incurs
some overhead�
We assume that the threads might access the universe U in parallel executing

function m without restrictions� and that the access time tm in the average does
not depend on a speci�c thread nor the access�

��� Concurrent Accesses

If the program spends a large amount of time in accessing U and if many threads
are accessing the cache� it happens more often that concurrent accesses to the
cache become necessary� In the worst case all reads and writes to the cache are
serialized� Often however� a more e�cient solution is possible� because many
SMMs e�ciently handle concurrent read accesses� i�e� CC�NUMA architectures�
Updating the cache introduces some di�culties� i� one thread wants to delete

an entry of the cache which is still or just in the same moment used by another
one or ii� two threads might want to change the cache structure at the same time�
To overcome the di�culties� a parallel data structure must be created which is
protected by a so called readers	writers lock� A thread which wants to perform
an update locks a semaphore� when all pending read accesses have �nished� the
writer gets exclusive access to the cache� During this time other readers and
writers are blocked� After the update has been terminated� the writer releases
the lock�
A thread pi inspects �rst the cache as a reader� After a miss� the thread leaves

the readers queue and calculates address functionm� This gives other writers the
chance to perform their updates� Once a new entry is found� pi enters the writers
queue� Because the writers are queued as well� pi must check again whether the

entry has been inserted already in the cache during its calculating and waiting
time� By moving the execution of address functionm outside the region protected
by the readers	writers lock� we can guarantee that our protocol is deadlock free�
while a thread is reader or writer� it only executes code that works on the cache�
It cannot execute other functions that might again try to access the lock� and
which could lead to a deadlock�
The readers	writers lock restricts the speedup to ��� because all misses

are serialized� For an architecture that does not allow for concurrent reads� the
speedup might be even less� To implement concurrent access to the lock data
structure and to the reader and writer queues in a constant number of steps �i� e��
without additional serialization�� parallel pre�x can be used� Thus� a machine
with atomic parallel pre�x and atomic concurrent access only serializes multiple
writers �an example is the SB�PRAM� see Sect� ���

��� Improvements

To overcome the speedup restrictions that the exclusive writer imposes� one can
use several caches C�� � � � � Cj��� if there is a reasonable mapping from the set of
keys to f�� � � � � j�g� An equivalent notation is that the cache consists of j slots�
each capable of holding the same number of entries� and each being locked inde�
pendently� While this realizes the same functionality� it hides the structure from
the user� with the exception of the mapping function� The distribution of the
accesses to the di
erent slots will have a signi�cant impact on the performance�
A di
erence between sequential and parallel software caches is the question

of how to provide the result� In a sequential software cache it is su�cient to
return a pointer to the cached entry� As long as no entry of the cache is deleted�
the pointer is valid� We assume that a thread will use the cached information�
continue and access the cache again only at some time later on� Hence� the above
condition is su�cient�
In a parallel cache� the cached entry a that one thread requested might be

deleted immediately afterwards because another thread added an entry b to
the cache and the replacement strategy chose to delete entry a to make room
for entry b� Here� we have two possibilities� Either we prevent the replacement
strategy from doing so by locking requested entries until they are not needed
anymore� Or� we copy such entries and return the copy instead of a pointer to
the original entry� If entries are locked while they are used� we have to think
about possible deadlocks� However� as long as the application ful�lls the above
condition �each thread uses only one cached entry at a time� the protocol is
deadlock free�
If all accesses to the cache use entries for about the same amount of time� then

one can decide by example runs whether to copy or to lock entries� It depends
on the application which one of the two methods lead to higher performance�
i� e�� how long a cache entry might be locked and how much overhead a copying
would produce�
For an explicitly given universe� neither locking nor copying is necessary�

because the cache contains only pointers to entries� In case of a hit� a pointer

to the entry in the universe is returned� The update function safely can replace
the pointer in the cache although another threads still makes use of the entry�
Additionally� the second check before the cache is updated can be reduced to a
simple pointer comparison�

��� Replacement Strategies

Another major di
erence between sequential and parallel software caches is the
replacement strategy� The interactions between threads make it more di�cult
to decide which entry to remove from a slot� We adapt the classic replacement
strategies from subsection ��� for parallel caches�
In the sequential version of LRU the entry found as a hit was moved to

the beginning of the list� This does not work in the parallel version� because
during a read no change of the data structure is possible� The reader would need
writer permissions and this would serialize all accesses� In our parallel version
of LRU� every reader updates the time stamp of the entry that was found as a
hit� Previously to the update� a writer sorts all entries in the cache according to
the time stamps� The least recently used is deleted� In order to improve the run
time of a write access� the sorting can be skipped� but this might increase the
subsequent search times for other threads�
Replacement strategy FRQ is implemented similarly� Instead of the time

stamp� the reading thread updates an access counter of the entry that was found
as a hit� A writer rearranges the list and deletes the entry e with lowest access
frequency f�e�� The frequency is de�ned as f�e� � a�n where a is the number
of accesses to entry e since insertion and n is the total number of accesses to the
cache� It appears a similar tradeo
 between the sorting time and search time as
for LRU�
Here arises the question whether the whole lifespan of a cached entry must

be considered� For example� if an entry is in the cache for a large number of
accesses and additionally it has a relatively high actual frequency� then the entry
will remain in the cache for a signi�cant amount of time� since its frequency
is reduced very slowly� A possible solution to this problem is to use only the
last x accesses to the cache to compute the actual frequency� Previous accesses
can be just ignored or one might use some weight function which considers
accumulatively blocks of x accesses while determining the frequency�
The replacement strategies CWC and RND can be implemented similarly to

the sequential version�

��	 Performance Prediction

We want to predict the performance of the parallel cache by pro�ling the perfor�
mance of the software cache in a sequential program� To do this� we assume that
the sequential program consists of a sequential part s and a part p that can be
parallelized� We assume that all accesses to the universe �and� if present� to the
software cache� occur within part p� We assume that the work in that part can
be completely parallelized �see task model in Sect� ��� Thus� the time to execute

the sequential program without a cache is Tno
seq � Ts � Tp� where Ts is the time

to execute the sequential part and Tp is the time to execute the parallelizable
part� The time Tno � j � tm to access the universe is a fraction � � of Tp� i�e�
Tno � ���� �Tp� This means that time � �Tp in part p is spent without accessing
the universe� Then the time to execute the sequential program when a cache is
present is Twith

seq � Ts � � � Tp � Tc���� where � is the miss rate of the cache as
described in Sect� �� By pro�ling both runs of the sequential program� we can
derive Ts�T

no
seq� Tp�T

no
seq � �� �� j� tu�tm� tc�tm� With Tno � j � tm � �� �� � Tp�

the value of tm�T
no
seq can be computed from the other parameters�

If we run our parallelized program without a cache on a parallel machine
with n processors� then the runtime will be Tno

par�n� � Ts � Tp�n � o� where
o is the overhead to create a set of parallel threads� It is assumed to be �xed
and independent of n� We derive o�Tno

seq by running the sequential program on
one processor� the parallel program on n processors of the parallel machine and
solving Tno

par�n��T
no
seq � Ts�T

no
seq � Tp��n � T

no
seq� � o�Tno

seq �which is the inverse of
the speedup� for the last term� Thus� we only need the runtimes of the programs
and need not be able to pro�le on the parallel machine�

The runtime of the parallelized program with a parallel software cache will
be Twith

par �n� � Ts�� �Tp�n�Tc����n� o�w�n�� The term w�n� represents the
additional time due to the serialization of writers� In the best case� w�n� � ��
Now� we can compute a bound on the possible speedup� Here� we assume that
the miss rate will be the same for the sequential program and each thread of the
parallel program� which will be supported by our experiments�

� Execution Platform

The results presented in Sect� ��� have been obtained on the SB�PRAM� a shared
memory multiprocessor simulating a priority concurrent read concurrent write
PRAM ��� n physical processors are connected via a butter�y network to n
memory modules� A physical processor simulates several virtual processors� thus
the latency of the network is hidden and a uniform access time is achieved� Each
virtual processor has its own register �le and the context between two virtual
processors is switched after every instruction in a pipelined manner� Thus� the
user sees all virtual processors run in parallel� Accesses to memory are distributed
with a universal hash function so memory congestion is avoided� The network is
able to combine accesses on the way from the processors to the memory location�
This avoids hot spots and is extended to employ parallel pre�x operations which
allow to implement very e�cient parallel data structures without serialization�
e�g� a readers	writers lock�

A �rst prototype with �� virtual processors is operational ���� Although
most of the results have been obtained through simulations of the SB�PRAM on
workstations� we have veri�ed the actual run times on the real machine� Each
virtual processor executes one thread� The predicted run times matched exactly
with the run times obtained by simulation� We did no simulations with more

virtual processors� because our workstations did not have enough memory to
run such simulations�
Several other multiprocessors provide hardware support for parallel pre�x

operations� NYU Ultracomputer ���� IBM RP� ���� Tera MTA ���� and Stanford
Dash ���� The presented concepts should be transferable to these machines� The
DASH machine provides a cache�coherent virtual shared memory �CC�NUMA��
Here� it would be useful for performance reasons to consider the mapping of the
software cache to the hardware caches when designing size and data structures
of the cache�

� Experiments

�� Applications

A software cache is part of an application� Hence� we did not test its performance
with standard cache benchmarks� but decided to use real applications�
Application FViewpar ��� realizes a �sh�eye lens on a layouted graph� the focus

is given by a polygon� Graph nodes inside and outside the polygon are treated
di
erently� To determine whether a node is inside the polygon� we intersect
the polygon with a horizontal scanline through the node� The parallelization is
performed with a parallel queue over all nodes of the graph� Universe U is the set
of all possible horizontal scanlines intersecting the polygon� thus it is not given
explicitly� A key k is a scanline s� information i is a list of intersection points�
and the address function m is the procedure which intersects a scanline with the
polygon� To implement a cache with multiple slots application FViewpar maps
a horizontal scanline s given as y � c to slot g�s� � c mod j� where j is the
number of slots�
Application Rayo ��� is a ray tracer� It is parallelizedwith a parallel queue over

all pixels� The cache is used to exploit image coherency� In the case presented
here� we reduce the number of shadow testing rays� Those rays are normally cast
from an intersection point towards the light sources� so that possibly blocking
objects are detected� An intersection point is only illuminated if no object is
found in direction towards the light source� We use a separate cache for each
light source which is a standard means to speedup ray tracing� If two light
sources are located closely together� one might unify their caches�
Universe U is the set of all pairs �v� o� where v is a shadow volume generated

by object o and the light source� Due to memory limitations U is not given
explicitly� A key k is a shadow volume� information i is the blocking object o�
and the address function m is simply the ray tracing procedure for ray r �nding
a possible shadow casting object� The hit function h examines for a new ray
r� whether its origin is located in a shadow volume of an object in the cache
associated with the light source� The cache makes use of the coherency typically
found in scenes� if two intersection points are su�ciently close to each other then
the same object casts a shadow on both points�
An alternative approach does not compute the shadow volume explicitly�

because it might not have a simple geometrical shape� One veri�es for a certain

object in the cache whether the object really casts a shadow on the origin of
the ray� Hence� an entry �k� i� can be replaced simply by the information �i��
coding a previously shadow casting object� A cache hit returns a pointer to the
object that casts the shadow� Now� the universe is explicitly given� because the
objects are always available� Note� that all objects in the cache must be checked
for an intersection with the ray� because no key is available to reduce the search
time� For application Rayo� the mapping function g takes advantage of the tree
structure while spawning re�ected and transmitted rays� For each node in the
tree a slot is created� Thus� the slots allow to exploit the coherency between ray
trees for adjacent pixels�

�� Results

We tested several aspects of the concept of software caches� its scalability� the
in�uence of the replacement strategies� whether copying or locking of the in�
formation is more e
ective� and the tradeo
s due to size of the cache and its
organization�
First� we ran the sequential version of FViewpar without cache and found that

the sequential part only comprises Ts�T
no
seq � ����� of the runtime� Thus with

Amdahl�s law the speedup can be ��� at most� The parallelizable part consumes
the remaining Tp�T

no
seq � ����� of the runtime� In part p� a fraction � � ���

is spent without accessing the universe� The function m was executed j � ���
times� When we used a software cache� we found that tu�tm � ���� and that
tc�tm � ����� tc is a bit larger than tu because of the copying� The miss rate was
� � ����� By running the parallel program and the sequential program without
a cache on the SB�PRAM� we found o�Tno

seq � ������� Now we ran the program
with a parallel software cache for n � �� �� �� � � � � ��� We computed w�n��Tno

seq

from the program runtimes� For increasing n� the value approaches ������ from
above�
Then� we simulated application FViewpar for n � �i processors� i � �� � � � � ��

with and without cache� For the cache� we used a �xed size of � slots� each
capable of holding � entries� Accessed entries were copied from the cache to
the memory space of the particular thread� Let T x

par�n� denote the runtime on
n processors with replacement strategy x� where no indicates that no cache
is used� Figure depicts the speedups sx�n�� where sx�n� � Tno

seq�T
x
par�n�� for

x � no� lru� frq� rnd� cwc� MAX denotes the maximum speedup which is possible
by assuming a hit rate of �� and w�n� � �� while all other parameters are as
before�
For n � � all replacement strategies give a runtime improvement by a factor

of about ��� As n increases� the curves fall into two categories� RND and CWC
strategies provide less improvement� until they make the application slower than
without cache for n � ��� LRU and FRQ remain better than without a cache�
with LRU being slightly faster than FRQ� Their curves slowly approach sno�n��
but this might be partly caused by saturation� as the input graph used has only
���� nodes to be moved� so with n � ��� each processor has to move just ��
nodes� Also� as sno�n� approaches the maximum possible speedup of ��� and

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128

S
pe

ed
up

Processors

MAX
LRU
Freq

Random
CWC

No cache

Fig� �� Scalability of the software cache

hence smax�n�� not much can be gained anymore from using a cache� Thus� at
some larger number of processors the overhead in using a cache will be larger
than the gain� This is supported by computing sno����� and sLRU ����� with the
formulas from Sect� ���� The program without a cache is predicted to be slightly
faster than with a cache�� The miss rate for LRU was � � ����� for n � �� and
sank to ����� for n � ���

As LRU turns out to be the best of the replacement strategies� we used it
to compare locking and copying of cached entries� Processor numbers and cache
sizes were chosen as before� The size of the cached entries is � words� Locking
is � to �� percent faster than copying� so it is a de�nite advantage in this
application�

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128 256 512 1024 inf.

S
pe

ed
up

Cache size

32 slots
16 slots

8 slots
4 slots
2 slots
1 slot

Fig� �� Comparison of Cache Sizes

� This behavior has also been observed in a simulation with �	� processors� done by
J� Tr�a�� Max�Planck�Institute for Computer Science� Saarbr�ucken� Germany�

Last� we compared di
erent cache sizes and organizations� Again� we used
LRU as replacement strategy� and we �xed n � ��� LetfTj�k� denote the runtime
with a cache of size k and j slots� so each slot is capable of holding k�j entries�

Figure � depicts the speedup curves sj�k� � Tno
par�����fTj�k� for k � �i� i �

�� � � � � �� and for k ��� i� e�� a cache of unrestricted size� Note that for a cache
with j slots� k � j� For a �xed cache size k� sj�k� grows with j� if we do not
consider the case k � j� where each cache slot can contain only one entry� This
means� that for a cache of size k� one should choose j � k�� slots� each capable
of holding two entries� The only exception is k � �� Here j � � is better than
j � ��

For �xed j� the performance improves up to a certain value of k� in our case
k � �j or k � �j� For larger cache sizes� the performance decreases again� Here�
the searches through longer lists need more time than caching of more entries
can save� If we give the cache an arbitrary size k ��� then the performance is
increased again� The reason seems to be that from some k on� each entry is only
computed once and never replaced� Note that the miss rate remains constantly
close to ���� percent for j � �� and k � ���

If the cache size is chosen too small� the speedup is less than � i� e�� the
program is slower than without cache for k � �� For k � �� the gain when
doubling the cache size gets smaller with growing k� In this spirit� the choice
k � �� and j � � for the comparison of speedups was not optimal but a good
choice�

For application Rayo we decided to implement only the cache with LRU re�
placement strategy� The decision is based on the fact� that usually the object
which was found last is a good candidate as blocking object for the next inter�
section point� As we will see in the sequel� the optimal cache size is quite small�
so one can infer that at least for the presented scenes the update strategy has
not a large impact on performance� The results are presented for a scene of ��
objects and four light sources� Image resolution was set to ��� ��� ���� pri�
mary rays and ���� secondary rays are traced� Four light sources make ������
shadow rays necessary� ����� of them hit a blocking object� We measured the
hit and miss rates in the cache respective to the actually hitting rays� because if
the shadow does not hit any object we cannot expect to �nd a matching cache
entry� The cache can only improve the run time for hitting shadow rays� thus
it can improve at most �� percent of the run time� We focus only on the inner
loop of the ray tracer� where more than �� percent of the run time is spent�

We simulated application Rayo for n � �i processors� i � �� � � � � �� Figure
� shows some relative speedups� where we varied the size and the number of
slots� Let us denote with Tx�n� the run of the inner loop running on n proces�
sors� x indicates the number of entries in the cache� s� is the relative speedup
T��p��T��p�� s� is the relative speedup T��p��T��p�� and s� is the relative speedup
T��p��T��p�� respectively� s�� the best one in Fig� �� is obtained if we use one
slot in the cache for every node in the ray tree� The size of the slot was set to
only one entry� Increasing the slot size to two entries already led to a small loss
of performance�

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 4 8 16 32 64 128

R
el

at
iv

e
S

pe
ed

up

Processors

s1
s2
s3
s4

Fig� �� Relative Speedups for Di
erent Cache Sizes and Numbers of Slots

For small numbers of processors� a larger cache has some advantages� but with
increasing number of processors the smaller cache becomes the better one� As
the curve for s� implies� this is due to the con�icts during updating the cache�
The processors are working at di
erent levels in the ray tree and one single
cache cannot provide the correct blocking object� As long as few processors are
competing� the larger the cache the better the performance is� The search time
in the larger cache together with the serialization during update has a negative
impact on performance for a large number of processors� However� adapting the
cache to the structure of the ray tree exhibits a large speedup s�� Even for ��
processors a speedup of � percent has been achieved� Note that only �� percent
of the run time can be improved� thus� �� percent of the run time during shadow
determination has been saved�

For the run time of one single processor a slightly better update strategy was
implemented� because we can a
ord an update of the cache during every access�
After a cache miss� the least recently used object is removed from the cache if the
update function u does not provide a blocking object� This performs better for
a single processor because after a shadow boundary has been passed� it is quite
unlikely that the previous object which cast the shadow will be useful again�
Nevertheless� the run times in Fig� � demonstrate that the parallel cache even
with the weaker replacement strategy outperforms the version with no cache�
Instead of sharing one data structure one might provide each processor with

its own cache� This leads to n times the memory size occupied by the cache
structure� such that for large numbers of processors memory limitations may
become problematic� Figure � shows that the hit rate for the parallel cache
is signi�cantly larger than the average hit rate for the individual caches� The
di
erence increases with larger numbers of processors� The di
erence for one
processor in the �gure is explained by the alternative implementation of the
replacement strategy� If the cache is owned by a single processor we always
deleted the least recently used object�
The large di
erence in the hit rates does not imply necessarily a large gain

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128

H
it

R
at

e
Processors

shared
own

Fig� 	� Hit Rates for Individual and Parallel Cache

in run time� as it is illustrated in Fig� �� The relative speedup between a version
with individual caches and a version with a parallel cache is always close to one�
but tends to be larger for � and �� processors� Remembering that the cache
improves at most the run time of �� percent of the overall run time� in this
portion of the program almost � percent are gained� The e
ect is due to the
cache overhead and the serialization while updating� Nevertheless� the parallel
cache saves memory and slightly improves the run time�

0.9

0.95

1

1.05

1.1

1 2 4 8 16 32 64 128

R
el

at
iv

e
S

pe
ed

up

Processors

Fig�
� Relative Speedup for Individual and Parallel Cache

� Conclusion

We introduced the concept of a parallel cache and implemented the data struc�
ture on the SB�PRAM multiprocessor� In our applications� the software cache

leads to performance improvements� but investigations on more diverse work�
loads are necessary� Providing several slots in the cache which can be updated
independently reduces serialization after cache misses� The modi�ed LRU strat�
egy together with locking of requested entries was found to be best in the pre�
sented applications� The other parameters have to be chosen carefully� too�
The concept of a parallel cache as a data structure might be useful for sequen�

tial programs consisting of several interacting threads as well� Here� there might
exist data exchange between the threads which is not predictable statically in
advance�
The SB�PRAM as simulation platform allows for a quantitative analysis� be�

cause as a UMA�architecture its performance is predictable and explainable�
Once crucial parameters have been detected� the promising implementation
should be portable to other shared memory architectures�

References

�� Abolhassan� F�� Drefenstedt� R�� Keller� J�� Paul� W� J�� Scheerer� D�� On the
physical design of PRAMs� Comput� J� �� ������ �	�����

�� Alverson� R�� Callahan� D�� Cummings� D�� Koblenz� B�� Portereld� A�� Smith� B��
The Tera computer system� In Proc� Int�l Conf� on Supercomputing ������ ���

�� Bach� P�� Braun� M�� Formella� A�� Friedrich� J�� Gr�un� T�� Lichtenau� C�� Building
the � Processor SB�PRAM Prototype� In Proc� Hawaii Int�l Symp� on System
Sciences ������ �����

�� Formella� A�� Gill� C�� Ray Tracing� A Quantitative Analysis and a New Practical
Algorithm� Visual Comput� �� ����	� ��	����

	� Formella� A�� Keller� J�� Generalized Fisheye Views of Graphs� Proc� Graph Draw�
ing ��	 ����	� �����	�

�� Fussell� D�S�� Kedem� Z�� Silberschatz� A�� A Theory of Correct Locking Protocols
for Database Systems� Proc� Int�l Conf� on Very Large Database Systems ���
��
�������

�� Gottlieb� A�� Grishman� R�� Kruskal� C� P�� McAuli�e� K� P�� Rudolph� L�� Snir� M��
The NYU ultracomputer � designing an MIMD shared memory parallel computer�
IEEE Trans� Comput� C��� ���
�� ��	��
��

� Handy� J�� The Cache Memory Book� Academic Press� San Diego� CA ������
�� Lenoski� D�� Laudon� J�� Gharachorloo� K�� Weber� W��D�� Gupta� A�� Hennessy�

J�� Horowitz� M�� Lam� M� S� The Stanford DASH multiprocessor� Comput� ��
������ �����

��� Pster� G�F�� Brantley� W�C�� George� D�A�� Harvey� S�L�� Kleinfelder� W�J��
McAuli�e� K�P�� Melton� E�A�� Norton� V�A�� Weiss� J� The IBM research parallel
processor prototype �RP��� Introduction and architecture� In Proc� Int�l Conf� on
Parallel Processing ���
	� �������

��� Silberschatz� A�� Peterson� J� L�� Galvin� P� B�� Operating System Concepts� �rd
Edition� Addison�Wesley� Reading� MA ������

This article was processed using the LATEX macro package with LLNCS style

