FAULT-TOLERANCE MECHANISMSIN THE SB-PRAM MULTIPROCESSOR

MICHAEL BRAUN!

ANDREAS GRAVINGHOFF?

JORG KELLER?

LUniversitat des Saarlandes, Computer Science Dept., 66041 Saarbriicken, Germany
2FernUniversitat-GHS Hagen, Computer Science Dept., 58084 Hagen, Germany

ABSTRACT

The SB-PRAM is an experimental multiprocessor architec-
ture with a shared address space and synchronously run-
ning threads, i.e. giving the illusion to work on a PRAM.
A 4-processor prototype has been completed while a 64-
processor prototype is under construction. We investigate
the detection and handling of single bit errors occuring dur-
ing transmission of packets in the interconnection network.
We analyze the impact of an error on the different parts of a
packet and derive several strategies to recover from such an
error. The strategies range from single bit correction codes
to checkpointing the application and roll back in case of
error. We find that the changes necessary in hard- and sys-
tem software are small. In particular, none of the ASICs
designed for the SB-PRAM have to be changed. The run-
time overhead due to the fault-tolerance mechanisms can
be neglected. Finally, we sketch how these strategies can
be extended to cover component failures.

Keywords: Fault-Tolerance, Interconnection network,
Transient errors, Checkpointing, Recovery strategy.

1 INTRODUCTION

Many investigations on the fault-tolerance of multiproces-
sors focus on the detection and the handling of component
failures. Our case study investigates the consequences and
the handling of single bit errors occuring in the intercon-
nection network during transmission between routing chips.
The machine under construction confines a large number of
boards and cables into a small physical space (three 19-inch
racks). We consider the off-board network links to be most
susceptible to the resulting electromagnetic field. Therefore
we focus on single-bit errors (e.g. caused by crosstalk) on
off-board links. While one may argue that these transient
errors can be handled by applying an error-correcting code
on the transmitted information, we try to derive a cheaper
solution by a detailed analysis of the consequences of errors
on the different parts of that information.

The remainder of the paper is organized as follows. In
Section 2 we describe the SB-PRAM, an experimental mul-
tiprocessor. We will focus on the description of the inter-
connection network and routing protocol. In Section 3 we
analyze the effects of a single bit error depending in which
part of the transmitted information it occurs. We describe
several strategies to correct such an error, which include
applying an error-correcting code on part of the transmitted
information, and checkpointing. Section 4 derives the mod-

ifications of hardware and software necessary to implement
the strategies just developed. In Section 5 we summarize
our results and give an outlook how the proposed strategies
can be extended to cover component failures, thus amortiz-
ing the cost of the necessary modifications.

2 SB-PRAM ARCHITECTURE

The SB-PRAM [1] is an experimental multiprocessor de-
veloped and prototyped at Universitdt des Saarlandes in
Saarbriicken, Germany. It provides a shared address space
while memory is physically distributed. In contrast to
machines such as SGI Origin [2], all user threads syn-
chronously execute assembler instructions and access time
to the shared address space is uniform. Thus, the SB-
PRAM gives the user the illusion to work on a PRAM [3],
which is a popular model to design and analyze parallel al-
gorithms. One of the advantages of the PRAM model is
a simpler algorithm analysis leading to better performance
prediction and less time spent with algorithm tuning.

To implement the uniform memory access time, a ran-
domized mapping (more exactly, universal hashing) from
address space to memory modules is used. This ensures
(with high probability) an even distribution of all accesses
in one step. A processor P; wishing to access a shared ad-
dress sends a request via a request network to the appro-
priate memory module M , in case of a Load instruction
the content of the address is returned via a return network.
As both networks have some latency, the access time is uni-
form but long. The latency is hidden from the user by using
a multithreaded processor. So far, the SB-PRAM architec-
ture is similar to the Tera MTA [4]. However, in contrast
to that machine, context is switched after each instruction
of every thread to realize the synchronous execution men-
tioned above. For the same reason, accesses from different
steps of the machine are separated within the networks.

On applications with irregular access patterns (see e.g.
[5]) the uniform memory access time gives the SB-PRAM
advantage over machines which try to avoid remote access
by using coherent caches. On the latter machines, i.e. SGI
Origin, much tuning time must be spent to achieve locality
in order to exploit the caches. The SB-PRAM alleviates the
programmer from doing these things, which often leads to
simpler algorithms for irregular applications.

Both the request network and the return network are
unidirectional butterfly networks. The paths from any input
to any output are unique in these networks. Path selection

in the request network can be done by the routing switches
based on one bit of the address. Each routing switch se-
lects the request/reply with the smaller address first. After
executing one step from each thread, a processor inserts an
end-of-round (EOR) message into the network. These EOR
messages are used to separate memory requests from dif-
ferent steps.

The above routing algorithm ensures that the order of
replies passing a switch in the return network is the same as
the order of the requests for these replies passing through a
switch of the request network. Therefore, no routing deci-
sion is needed in the return network. The routing decisions
of each switch in the request network are simply stored in
a FIFO queue called direction queue , and recalled in the
return network. Hence, corresponding switches of both net-
works are implemented in one chip.

There are 8 different access modes, which can be parti-
tioned into classes 1oad and store. Load requests carry
only the type (3 bits) and an address (32 bits), store re-
quests carry the type, an address and a 32 bit data word to
be stored. Requests of type store are transmitted in two
flits between routing switches. The first one carries type and
address, the second one carries the data word. Requests of
type 1oad are transmitted in one flit. In the return network,
only data words are transmitted in two flits of 16 bits each.
The flits are not marked “first” or “second”, they are recog-
nized in a switch by a simple finite state automaton based
on the rules above.

In both interconnection networks, the control flow is
realized via valid and busy signals. The sending routing
switch indicates transmission of a flit via the valid signal.
The receiving routing switch uses the busy signal to indi-
cate that no more flits can be handled (i.e. the input queue
is full). Upon receiving such a busy signal, the sender sus-
pends transmission of flits.

A 4-processor prototype has been completed [6] and
assembly of a 64-processor prototype is currently under
way. The routing switch used in the network is imple-
mented as a gate array. No fault-tolerance was consid-
ered during the design except parity generation/checking.
Therefore, our goal is to introduce fault-tolerance mecha-
nisms to the SB-PRAM without any changes to the gate
array and without compromising performance.

3 ERROR ANALYSIS

The fault model used to determine the effect of errors on the
routing network are single bit errors occuring during trans-
mission between routing switches. Since the SB-PRAM
prototype confines a large number of boards and cables
into a small physical space, such errors may be caused by
crosstalk.

The effect of such errors depends on the affected part
of a request or return message: If the data word of a re-
quest is affected, a wrong value will be written. Likewise, a
wrong value will be returned, if the data word of a return is
affected. A faulty address part will cause the wrong cell to
be accessed. Since routing information is derived from the

address, the request may even be routed to the wrong mem-
ory module depending on the affected address bit. These
errors can compromise the application, but not the routing
algorithm.

Due to erroneous mode information, a 1oad request
can be transformed into a store request, or vice versa. In
these cases, the direction queue will not be filled or will be
filled erroneously, respectively. In addition, if the number
of flits per request differs between old and new modes, the
next flit(s) will be treated wrongly. This stems from the fact
that the flit type is not derived from the flit itself, but from
the finite state automaton mentioned in the previous para-
graph. By this second set of errors, the routing algorithm
will be compromised. For example, an erroneously intro-
duced 1oad request leads to a reply that cannot be handled
by those switches where the request was still intact, i.e. of
type store.

Errors on the control signals can be fatal as well: A lost
busy signal will lead to lost flit(s), if more requests are sent
than the receiving switch can handle. If a flit that belongs to
amultiple-flit (i.e. store) message is lost, the next flit will
be treated wrongly. An extra busy signal causes the sending
routing switch to suspend transmission, which only causes
a delay and can thus be tolerated. If a valid signal is lost,
the corresponding flit is not recognized at all and thus lost.
Again, if the flit belongs to a multiple-flit request, the fol-
lowing flit(s) will be treated wrongly. An extra valid signal
introduces a “trash flit”. This flit will cause a false access.
Depending on the mode, the direction queue may be filled
erroneously and the next flit(s) may be treated wrongly.

Since errors on mode, busy and valid are compromis-
ing the routing algorithm, such errors must be not only de-
tected, but corrected as well. Errors on the address and data
words of a message only need to be detected, if computa-
tion can be rewound to eliminate false accesses.

Based on these observations above, we derive the fol-
lowing strategy to handle single-bit errors: The routing
switch ASIC already supports error detection via parity de-
tection and generation on all incoming and outgoing links,
respectively. Error correction is applied by external hard-
ware on the critical parts (mode, busy, valid) of a message
only. Non-critical errors on requests or replies are detected
at a memory module or a processor, respectively. Upon
detection of an error, the corresponding processor/memory
module informs the host about this event via the host bus.
The host immediately freezes the machine by stopping all
processors simultaneously. The network may still contain
valid messages that need to be flushed. Rather than waiting
for the network to settle, a network reset is performed. This
reset initializes all routing switches and clears all queues
in the network. At this point, processor and memory states
are fixed, since there are no more requests/replies that may
change the states. Therefore, processor and memory states
can now be rolled back to the last checkpoint. Restoration
of memory state involves applying all writes to memory
since the last checkpoint (recorded in a queue) in reverse
order. This operation is done by special hardware. After
memory state has been restored, restoration of processor
state is done by loading the entire register set with values

stored in dedicated buffers at the last checkpoint. Restora-
tion as well as saving are performed by a combination of
hard- and software, which is described in detail in the next
section. In the cause of this operation, the host unfreezes all
processors. After the processors exit the global exception,
processor state is restored and computation continues from
the last checkpoint.

4 MODIFICATIONS

Implementation of the strategy derived above requires a
moderate amount of additional hardware at the processor,
network and memory nodes. For all of these components,
we will discuss this hardware as well as consequences on
performance in detail.

41 PROCESSOR MODULE

The state of each thread consists of 30 universal registers
and five special registers, namely the status register SR,
the program counter PC, the base and protection registers
BASE, PROT and the load request register LD. Saving the
processor state involves saving these 35 registers for each
thread. The universal registers are implemented in an exter-
nal memory due to the limited number of available gates on
the processor gate array. This external memory allows sav-
ing and restoring of processor state by hardware. However,
the special registers are implemented on-chip. Therefore,
we use a combination of hard- and software to save/restore
the processor state.

A global exception is generated by external hardware
using an already present instruction counter. Starting with
the first thread, all threads will enter the corresponding ex-
ception routine shown below: Instead of storing the five
special registers to the specified universal registers, ac-
cesses to the external register memory are redirected to a
backup memory during execution of the exception by spe-
cial hardware. After execution of the global exception has
been completed, the processor is halted. Now the content
of the external register memory is copied into the backup
memory.

The SB-PRAM processor accesses the external reg-
ister memory via several busses for adresses of odd (20)
and even (AE) threads and incoming (DIN) and outgoing
(DOUT) data. The external memory was split in two parts
in order to faciliate two simultaneous operations per clock
cycle. During normal operation the backup memory is iso-
lated and the additional control logic keeps track on the
number of completed rounds and initiates the global excep-
tion. During execution of the global exception the register
memory is isolated and all accesses are redirected to the
backup memory at adresses generated by the control logic.
Later, when the processor has been halted and the universal
registers are saved to backup memory, the processor address
and data busses are isolated. Register and backup memories
are accessed on control-logic generated addresses.

Processor state is saved every z instructions; the last
two states are kept in the backup memory. The value of z

Pi: error Pj

} } } instr

kx (k+1)x (k+2)x

FIG. 1: CHECKPOINTING INTERVAL

depends on the routing network: As is illustrated in Fig-
ure 1, processors may be in different rounds, which can be
explained as follows: A processor that performs only local
computation, will insert only EOR messages into the net-
work and never wait. Other processors may have to wait for
outstanding 1oad requests, if the latency can not be com-
pletely hidden because of hot spots in the network. When
an error occurs in a round between kx and (k + 1)z, z must
be large enough to ensure that no processor is past the point
(k + 2)z, since then the processor state for round kz is no
longer available.

An upper bound on z can be constructed in the follow-
ing way: As was said above, every processor inserts an EOR
message into the network after each round. The maximum
drift between any two processors is then determined by the
maximum number of EOR messages that can be stored on
an arbitrary path through the network. Hence, = can be ob-
tained by adding the queue sizes along such a path, which
yields z < 256 for the 64-processor prototype.

The register memory can perform two accesses every
clock cycle, thus 30 - 32 - 1/2 = 480 cycles are required to
save or restore the universal registers of all threads. Since
an instruction requires four clock cycles and there are 32
threads, saving or restoring the universal registers requires
480 - 1/4 - 1/32 = 3.75 instructions per thread. Along
with the seven instructions of the global exception, saving
or restoring the processor state requires 10.75 instructions
per thread. This translates to a maximum performance loss

of
256 + 10.75
256

per thread, if no errors are encountered. In the case of er-
rors, every restore operation will cause additional overhead
of 10.75 instructions per thread.

=4.03%

4.2 NETWORK NODES

To ensure correction of single bit errors on the critical com-
ponents of a message (mode, busy, valid), hamming codes
are used. Corresponding hardware is inserted between the
routing switch ASICs and the network. Note that the in-
coming flits enter the routing switch on two consecutive
half-cycles due to pin restriction in the routing switch gate
array. Commercial EDC circuits (e.g. IDT 49C465) can de-
tect and correct errors using hamming codes in less than
15 ns on 32 bit words. However, the timing of the in-
coming and outgoing links is tight and does not allow for
such an additional delay. Even in our case, where there are
only a small number (5) of signals to be protected by ham-
ming codes, there might not be enough time available, since
we implement the EDC circuits via programmable logic.
Therefore we introduce an additional pipeline stage at the

incoming and outgoing links, which allows us to utilize al-
most a full clock cycle for EDC. This additional pipeline
stage has to be taken in account when generating busy sig-
nals. As the routing switch can be configured to gener-
ate a busy signal at an arbitrary number of queue entries,
this poses no problem. One may argue that now even er-
ror detection and correction on whole flits is possible, but
the following reasoning shows that the associated cost is
not acceptible: Since the network consists of five stages of
printed circuit boards (processor, memory and 3 network
stages), there are 4 (number of links between stages) times
64 (number of processors) times 2 (EDC required at both
ends) times 2 (number of chips per link assuming 32 bit data
bus width) = 1024 additional EDC circuits required. Note
that this calculations assumed that request and return links
use the same chips, which may pose technical problems
due to different timing requirements. The larger number
of chips will have an significant impact on the cost, power
and board area consumption.

4.3 MEMORY MODULE

To allow for the restoration of memory state, all write ac-
cesses to a memory module must be logged along with the
overwritten values. To restore the old memory state, all
logged transactions are rolled back in reverse order. We use
a queue of size ¢ to log every write access, which must be
large enough to handle all write accesses to a single mod-
ule during an interval of 2z rounds. In the worst-case, ev-
ery thread writes to the same module for a duration of 2z
rounds. This yields a maximum queue sizeof ¢ < 2 -z - ¢,
where ¢ is the number of threads in the whole machine.
A 64-processor machine will therefore need a queue of
2 - 256 - 2048 = 1024 K entries on every memory mod-
ule. In practice, a much smaller queue size will suffice.
First of all, it is very unlikely for every thread to perform
memory writes for 2z = 512 rounds in a row. Second,
accesses to the same memory module are unlikely as well,
since addresses are hashed (i.e. a mapping is used in order
to achieve a similar load on all memory modules). In ad-
dition, if the number of processor wait cycles (e.g. caused
by memory congestion) reaches a certain threshold, rehash-
ing (i.e. switching to a different mapping) is performed rou-
tinely in the SB-PRAM [7].

Nevertheless, should an overflow occur, this fact is re-
ported to the host. As already outlined above, the hosts sub-
sequently restores processor and memory states to the last
checkpoint. In the case of an overflown queue, rehashing is
perfomed in addition before computation resumes.

5 CONCLUSIONS

An investigation of the SB-PRAM on fault-tolerance was
performed using a single-bit error model. A detailed anal-
ysis of possible errors was used to design a recovery strat-
egy to handle such errors. The presented strategy can be
implemented with no modifications to the routing switches
and processor chips, as all additional hardware can be put
off-chip. In the case of the processor node, the additional

logic can be implemented using programmable logic (two
CPLDs), a memory chip and standard logic. The EDC cir-
cuits at the network nodes can be implemented with pro-
grammable logic, since the number of signals to be pro-
tected is very small. The on-chip implementation of error
correcting codes on whole flits would have increased the
critical path in the routing switch. For example, the par-
ity generation logic is on the critical part for the routing
switch [8]. At the memory nodes, the queue control logic
can be added to the already present FPGA. This may re-
quire a larger FPGA with more gates and pins. Since the
FPGA used at present is quite small (13.000 gates accord-
ing to Xilinx), this poses no problem. In all three cases,
a redesign of the printed circuit board will be necessary.
However, as the changes are located in small, closed sec-
tions of the different boards, this is neither difficult nor ex-
pensive. We plan to simulate memory system behaviour in
order to obtain information about practical queue sizes.

Failure of a routing switch can be handled by using
a modified butterfly network, where paths are not unique.
This can be achieved by placing a copy of the last network
stage before the first and the ability to bypass faulty routing
switches on the first and last stages. The strategy to recover
from the failure remains largely identical. Additionally the
network must be reconfigured to allow bypassing the faulty
switch. Failure of processors can be handled by checkpoint-
ing and migration of threads. To do this, a small number of
threads is reserved at every processor and processor states
are saved to disk at regular intervals (larger than z). Upon
failure of a processor, the corresponding threads are loaded
from disk and distributed among the reserved threads of the
remaining processors. A mechanism to handle failure of
memory modules in the case of randomized (i.e. hashed)
addressing has been presented by Savva and Nanya [9].

REFERENCES

[1] F. Abolhassan et.al. On the physical design of PRAMs. Computer
Journal, 36(8):756-762, 1993.

[2] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly
scalable server. In Proc. 24th Annual Int.I Symp. on Computer Archi-
tecture, pages 241-251, 1997.

[3] S. Fortune and J. Wyllie. Parallelism in random access machines.
In Proc. 10th ACM Annual Symp. on Theory of Computing, pages
114-118, 1978.

[4] R. Alverson et.al. The Tera computer system. In Proc. 1990 Int.|
Conf. on Supercomputing, pages 1-6. ACM, 1990.

[5] Arno Formella et.al. Scientific Applications on the SB-PRAM. In
Proc. Int.I Conf. on Multi-Scale Phenomena and Their Smulation,
1997.

[6] P.Bach et.al. Building the 4-processor SB-PRAM prototype. In Proc.
30th Int.] Symp. on System Science, volume 5, pages 14-23, 1997.

[7] J. Keller. Fast rehashing in PRAM emulations. Theoretical Computer
Science A, 155:349-363, 1996.

[8] T. Walle. Das Netzwerk der SB-PRAM. Dissertation, Universitdt des
Saarlandes, 1997.

[9] A. Savva and T. Nanya. Gracefully degrading systems using the
bulk-synchronous parallel model with randomised shared memory.
In Proc. 25th Int.] Symp. on Fault-Tolerant Computing, pages 299—
308, 1995.

