
HOW TO EMULATE FINE-GRAINED MULTITHREADING

ANDREAS GRÄVINGHOFF JÖRG KELLER
FernUniversität-GHS Hagen, Computer Science Dept., 58084 Hagen, Germany

ABSTRACT

Fine-grained multithreading can be used to hide long-
latency operations encountered in parallel computers dur-
ing remote memory access. Instead of using special pro-
cessor hardware, the emulation of fine-grained multithread-
ing on standard processor hardware is investigated. While
emulation of coarse-grained multithreading is common in
modern operating systems, in the fine-grained case research
on emulation has been limited and design of multithreaded
processors has been favored. It will be shown that latencies
encountered in todays parallel computers such as Cray T3E
can be hidden by emulation of fine-grained multithreading
using a moderate number of threads. Thus, emulation of
fine-grained multithreading can be a viable alternative to
the expensive design of custom processor hardware with
support for multiple threads.
Keywords: multithreading, emulation, parallel computers.

1 INTRODUCTION

An important problem faced by parallel computers is the la-
tency of accessing remote memory. As this latency usually
increases with the number of processors, massively paral-
lel computers are especially affected. While the latency of
remote stores can be ignored since they return no result, re-
mote loads have to be completed before computation can
proceed (at least beyond a certain point).

A popular approach to attack this problem is to avoid
latency by the use of coherent caches. However, this ap-
proach causes widely varying memory access times, there-
fore these machines are called ccNUMA (cache coher-
ent non-uniform memory access) architectures. The non-
uniform access time complicates application development,
especially for irregular applications. Instead of avoiding la-
tency, one can try to hide latency by multithreading, which
is explained in the next paragraph.

A multithreaded processor switches context between
different threads in order to perform useful computations
while other threads are waiting for completion of outstand-
ing operations, thus hiding the latency of those operations
from the user. This is only possible if several threads per
processor are available, hence the application must possess
more parallelism than in a ccNUMA machine of compara-
ble size. However, many applications possess this amount
of parallelism if the number of threads per processor is
moderate.

We distinguish between fine-grained (switches con-
text after one or a few instructions) and coarse-grained
(switches context after a block of instructions) multithread-
ing. In the context of parallel computers, fine-grained mul-
tithreading is more interesting (e.g. to ensure synchronous
operation of multiple processors as in the PRAM model).
Multithreading can be implemented by special processor
hardware or by emulation in software on off-the-shelf hard-
ware. Special processor hardware is expensive, time-
consuming to design, error-prone and often slower than
commercial processors. Examples for multithreaded pro-
cessors are Sparcle [1], Anaconda [2], SB-PRAM [3] and
the Tera MTA [4]. Emulation in software is state-of-the-
art in coarse-grained multithreading: it is called multitask-
ing and is used by almost every modern operating sys-
tem. Several new operating systems (e.g. Solaris) support
threads in the form of lightweight processes. The purpose
of these lightweight processes is not latency hiding but re-
duced overhead compared to normal processes and abstrac-
tion from the number of processors available. However,
the overhead is still too high for our purposes, hence these
lightweight processes are not considered further.

While multithreading is probably the most general ap-
proach to latency hiding, it is not the only one. See [5]
for an excellent introduction to latency hiding. For exam-
ple, block transfer or precommunication can be used to hide
latency partially. These techniques can supplement multi-
threading to reduce the number of threads.

We will present the concept of emulating fine-grained
multithreading as well as details of an implementation on
the Alpha architecture. An evaluation based on this imple-
mentation will show that latencies encountered in todays
parallel computers such as Cray T3E can be hidden by em-
ulating a moderate number of threads.

2 BASIC CONCEPT

The concept of emulating fine-grained multithreading is not
new. At least in the case of the SB-PRAM multiproces-
sor, emulation of multithreading was evaluated as an option
[6]. Since the projected performance goals were not met
by off-the-shelf hardware in 1991, a custom processor was
designed. A description of the SB-PRAM processor, which
supports fine-grained multithreading in hardware, can be
found in [3].



Emulating fine-grained multithreading on off-the-
shelf processors can be done as follows: For each thread,
the executed program as well as the context (processor state
of the thread) are stored in memory. To execute an instruc-
tion from a given thread, the emulation program restores
the processor state, fetches and executes the instruction and
updates the processor state in memory. Afterwards, the next
thread is executed. The data structure that contains the con-
text of a thread (and some management information for the
emulation program), is called frame. To decrease the time
to switch contexts, only the part of the context used or mod-
ified by the fetched instruction is restored or saved. Note
that we assume the emulating and emulated instruction sets
to be identical. If this is not the case, then the emulated in-
structions have to be replaced by one or more instructions
of the emulating instruction set.

In the approach by Scheerer [6], the main program
contained a subroutine for every instruction type. Based on
the fetched instruction word, the emulation program called
the appropriate subroutine. Each subroutine determined the
required part of the context by examining the instruction
word at run-time. Our approach is based on the fact that
information about the required context is already available
at compile-time.

We modify the program code to replace every instruc-
tion I by a subroutine. These subroutines restore every reg-
ister that will be read or modified by I , execute I , save ev-
ery register that has been written or modified, and return.
The number and location of registers to be read, written
or modified by instruction I can be determined from the
instruction set architecture and the instruction itself. This
information is used to replace every instruction of the pro-
gram with the corresponding subroutine. Note that subrou-
tines for instructions of the same type that merely use dif-
ferent operands will be almost identical. After this modifi-
cation, the emulation program merely calls the subroutines
from all threads in a round-robin manner. The program ba-
sically consists of a single loop and is sketched below:

1. Initialization (e.g. creation/initialization of frames).

2. Load PC from current frame into register threadPC.

3. Execute subroutine by jump to value stored in
threadPC, saving old PC in register mainPC.

4. Return from subroutine to PC stored in mainPC, sav-
ing old PC in register threadPC.

5. Store PC from register threadPC to current frame.

6. Load pointer to next frame into register framePtr.

7. If the next thread is not the last one, go to step 2.

8. Perform operations that are only necessary once per
round (e.g. increasing round counter) and go to step 2.

Since execution of the main loop is required for every in-
struction, it should be compact and fast. If separation of
rounds is not required, steps 7 and 8 can be replaced by a
jump to step 2.

We assume that the high-level language source code
of the programs to be emulated is available and that the
program already uses threads. The thread-related system
calls (e.g. creation, deletion) are then replaced by our own
routines during recompilation. After modification of the
assembler source the program is linked with an additional
library containing our routines (e.g. main loop). We further
assume that all threads operate in user mode. Thus only the
registers accessible in user mode are shared between differ-
ent threads and form the context of a thread. By confining
threads to user mode, the switching time between threads
is significantly reduced. Calls to the operating system are
not emulated, but are executed as usual by system calls and
traps, i.e. there are no changes to the operating system. Ob-
viously, we can not handle self-modifying code, since we
perform all code modifications during compilation. How-
ever, this is not a serious restriction since self-modifying
code is generally considered as unfavorable.

Emulation of multithreading is not restricted to switch
context on a per-instruction basis. Instead, context can be
switched after a small sequence of instructions from the
same thread has been emulated. This will reduce the emu-
lation overhead significantly, since inside the sequence con-
text switches are no longer necessary. We will show later
that a context switch requires more clock cycles than the
average emulated instruction. Thus, switching context af-
ter sequences of multiple instruction will more than halve
the emulation overhead. Note that the size of the sequence
does not need to be fixed, which makes further optimiza-
tions (e.g. identifying sequences of instructions that operate
on the same registers and omitting unneccessary accesses to
the frame) possible.

3 IMPLEMENTATION

We exemplified the emulation of fine-grained multithread-
ing on the Alpha Architecture [7] from Digital. This ar-
chitecture was chosen for several reasons: First of all, the
user mode context contains only data registers, the pro-
gram counter (PC) and the floating-point control regis-
ter (FPCR). For non-floating-point instructions, only the
registers explicitly specified in the instruction have to be
saved/restored. For floating-point instructions, the FPCR
has to be saved/restored as well. Second, the large virtual
address space simplifies mapping of large shared memories
within parallel computers. Third, implementations of the
Alpha Architecture (e.g. DECchip 21064, 21164, 21264)
continued to be among the most powerful microprocessors
available since their introduction in 1992 according to the
SPEC benchmarks.

Alpha is a ��bit load/store RISC architecture. All reg-
isters are ��bit in length: there are 32 integer registers R0-
R31 (R31 is read as zero, writes are discarded) as well as 32
floating-point registers F0-F31 (F31 is read as zero, writes
are discarded). Instructions are �� bit in length. Supported
data types include longword (��bit) and quadword (��bit)
integers and five different floating-point formats: VAX F
(�� bit), VAX G (��bit), IEEE single (��bit), IEEE dou-



ble (��bit) and IEEE extended (���bit). Recent imple-
mentations (e.g. DECchip 21264) also support byte (� bit)
and word (��bit) integers and motional video instructions
(MVI). Virtual address space is �� bit with a physical ad-
dress space of �� bit in the case of the DECchip 21164
(21164 for short).

The context of a thread is stored in a data structure
(frame) consisting of the following items:

� pointer to the next frame (quadword, offset: � bytes)

� number of thread (quadword, offset: � bytes)

� status of thread (quadword, offset: �� bytes)

� floating-point control register (quadword, offset:
�� bytes)

� program counter (quadword, offset: �� bytes)

� integer registers (28 quadwords, offsets: ��–
���bytes)

� floating-point registers (31 quadwords, offsets: ���–
���bytes)

The integer registers R28, R29 and R30 are used exclu-
sively by the emulation program, access to these registers
by the emulated program is therefore prohibited. As a con-
sequence, storage for these registers is not necessary. This
allows us to keep the frame size to be a multiple of the DEC-
chip 21164 cacheline size, which is �� or �� bytes depend-
ing on cache type and configuration.

Several frames are organized in a ring, with the last
element marked with a non-zero status. This data organiza-
tion allows us to keep the main loop very small:

LOOP: LDQ R29, #32(R30) ;load PC
JSR R28, R29 ;execute
STQ R29, #32(R30) ;store PC
LDQ R30, #0(R30) ;load frame
LDQ R29, #16(R30) ;load status
BEQ R29, LOOP ;check status

During emulation, R30 holds the pointer to the current
frame, R29 and R28 are used to store threadPC and
mainPC values, respectively.

Based on the instruction type (int, fp, special), number
of accessed registers, the need for traps or the floating-point
control register, we partition the Alpha architecture instruc-
tion set into 19 subsets. Instructions within the same subset
use almost identical subroutines. For example, the subset
(INT, TRAP, (2/1)) contains all integer (INT) instructions
that may cause an exception (TRAP) and use two source
as well as one destination register (2/1). These are the the
add, subtract and multiply instructions on quad- and long-
words with enabled integer overflow. Because of space re-
strictions, we will only present one basic and one more de-
manding example of subroutines.

3.1 EXAMPLE 1: QUADWORD ADD

The Quadword Add (ADDQ Ra, Rb, Rc) instruction
uses three registers: The �� bit sum of register Ra’s and
Rb’s contents is written to register Rc. Since the ADDQmay
cause an arithmetic exception, this instruction is a member
of the (INT, TRAP, (2/1)) subset. The subroutine for in-
structions within this subset is straightforward:

LDQ Ra,40+a(R30) ;load Ra
LDQ Rb,40+b(R30) ;load Rb
ADDQ Ra,Rb,Rc ;instruction
TRAPB ;trap barrier
STQ Rc,40+c(R30) ;store Rc
RET R29,R28 ;return

The term 40+a denotes register Ra’s offset within the
frame. Register R30 holds the pointer to the current frame.
The trap barrier ensures that arithmetic exceptions caused
by the ADDQ instruction have been handled before the sub-
routine returns.

For floating-point additions, i.e. members of the (FP,
TRAP, FPCR, (2/1)) subset, the FPCR is required to log
exceptions and select some rounding modes, which adds
some complexity to the appropriate subroutine.

3.2 EXAMPLE 2: JUMPS

The Jump to Subroutine (JSR Ra,(Rb)) instruction uses
two registers: The updated PC is written to register Ra, and
the PC is loaded from register Rb, ignoring the two low-
ermost bits. Ra and Rb may specify the same register. We
use arithmetic instructions instead of explicit jumps to mod-
ify the PC, since this reduces the amount of changes in the
instruction stream. To do so, several issues have to be re-
solved:

� the target address has to point to the subroutine (its first
instruction) that replaces the original instruction. This
target recalculation can be done during modification of
the original program.

� the return address has to point to the next subroutine
rather than to the next instruction. This can be done by
a simple addition during run-time. The required offset
depends on the size of subroutines.

The above reasoning leads to the following result:

ADDQ R29, #20, R27 ;calc returnPC
LDQ R29,(32+b)(R30) ;load Rb
BIC R29,#3,R29 ;mask R29
STQ R27,(32+a)(R30) ;store R27
RET R31,R28 ;return

A minor problem arises if PC-relative jumps are emulated.
These instructions feature a �� bit displacement, while in-



teger arithmetic instructions are limited to an � bit displace-
ment. Thus the displacement has to be constructed in a sep-
arate register, which requires two additional instructions.

4 EVALUATION

Our evaluation is based on the Cray T3E massively par-
allel computer system from Cray Research Inc [8]. The
Cray T3E supports between � and ���� processing nodes
interconnected by a bidirectional 3D torus. Each process-
ing node contains a 21164 Alpha processor (at ���, ���
or ���MHz), up to �GB of local memory, a router and
other supporting circuitry. Instead of an external third-level
cache, stream buffers are used to speed up access to local
memory via prefetching on previously detected access pat-
terns. Access to remote memory, which is not cached at
all, is performed via a large (��� user + ��� system) num-
ber of so-called E-registers. A remote load is performed by
specifying the target address and an E-register for the re-
sult. The result can then be collected from the E-register
by a load instruction, which will stall if the result is not yet
available. The E-registers significantly increase the number
of outstanding loads, since the 21164 itself can only sustain
two outstanding loads. The E-registers therefore provide
support for hiding the latency of remote memory. For a
2048 processor system, the average and maximum network
latency (excluding memory access and processing times) is
approximately ���� and ����ns, respectively. At a proces-
sor speed of ���MHz, this translates to 	�� and ���� clock
cycles, respectively.

The 21164 Alpha processor is the current implementa-
tion of the Alpha Architecture. The 21164 is a superscalar
processor featuring two integer as well as two floating-point
function units and a sustained (in-order) issue rate of four
instructions per clock cycle. On-chip caches include two
�KB direct-mapped data and instruction caches as well as
a 	�KB, 3-way set-associative unified second level cache.
Support for an external third-level cache with up to ��MB
is included. Virtual address space is �� bit large, while only
�� bit are implemented physically. The maximum speed
supported by the 21164 is ���MHz at present.

We will calculate the average number of clock cycles
per executed (�) and emulated (�) instruction based on the
instruction latencies and issue rules for the 21164 proces-
sor. To obtain �, �, we calculate the weighted sum of the
instruction latencies presented in Table 1:

� 

X
I

wI � CPII � 

X
I

wI � gCPII
The instruction weights are based on measurements for the
DLX processor [9, p. C-5]. To obtain the weights, the DLX
instructions were mapped to equivalent Alpha instructions
and matched to instruction classes as defined in the 21164
hardware reference manual [10]. The results have been
scaled and rounded to get a total sum of 1.

The CPII values, where I denotes the instruction
class, were taken from the 21164 hardware reference man-
ual [10]. To reflect the superscalarity of the 21164, these

I wI CPII � gCPII �
ICOMP 0.41 0.50 0.21 5 2.05
SHIFT 0.07 1.00 0.07 5 0.35

IBR 0.16 1.00 0.16 4 0.64
LD 0.22 1.50 0.33 7 1.54
ST 0.10 1.00 0.10 4 0.40

FADD 0.02 4.00 0.08 19 0.38
FMUL 0.01 4.00 0.04 19 0.19
FDIV 0.01 60.00 0.60 75 0.75P

1.00 1.59 6.30

TAB. 1: AVERAGE NUMBER OF CLOCK CYCLES

values were divided by the number of function units able to
perform instructions from this class.

The gCPII values are the maximum number of clock
cycles (excluding main loop) spent in any subroutine that
corresponds to an instruction from class I . The calculation
takes into account the 21164 instruction latencies and issue
rules. Since the 21164 issues instructions in-order, we can
guarantee that all function units are available upon subrou-
tine entry. Note that the STx instructions(s) that update the
current frame do not issue (due to ressource conflicts) until
all previous instructions have been completed.

In addition, several assumptions were made to deter-
mine the instruction/subroutine latencies: The (on-chip)
first and second level caches are modeled with a miss rate
of ���� and ���� percent, respectively. We computed these
values by simulation of address traces for several programs
from the SPECint and SPECfp benchmark suites. The sim-
ulation was performed using Bryan Hunt’s acs program 1.
Main memory has a latency of ��� ns as encountered in
21264–based systems using the Tsunami chipset [11]. At
���MHz, this translates to �� clock cycles. This latency as
well as the first and second level cache miss rates were used
to determine the average number of clock cycles per LD in-
struction. We further assume that there are no arithmetic
exceptions.

Comparing � and �, we note that � is approximately
four times larger than �. Along with the latency of the main
loop, this constitutes the emulation overhead. Note that a
six-fold increase in code size has to be expected. The dif-
ference between the size and latency of the subroutines is
caused by the inherent instruction-level parallelism.

Several sophisticated models that predict the utiliza-
tion of a multithreaded processor have appeared in litera-
ture [12, 13]. These models take into account the effect
of multithreading on other parameters of the system (e.g.
caches, network). In contrast, Bianchini and Lim [14] use a
simple model of processor utilization and extend it to pre-
dict an upper bound on the performance gain achievable by
multithreading. We adapt their model to cover emulation of
multithreading. The model uses several parameters that are
summarized in Table 2: �, � are the average number of cy-
cles per executed/emulated instruction as calculated above.
p is the number of threads, while C is the context switch

1acs -a 1 -A 3 -b 32 -B 64 -s 1 -S 1 -i 8096 -d 8096 -U 98304 -x



�� � Average no. of cycles per instr.
p Number of threads per processor
C Context switch overhead

t��� t�p Time between remote loads
T���T�p Average latency of remote loads
U���U�p Processor utilization

G�p Performance gain due to multithreading

TAB. 2: PARAMETER SUMMARY

����
����
����

����
����
����

C C Cβ β β β
Thread 2Thread 1 Thread 1

T(p)

Thread 2

C C C Cββββ
Thread 1 Thread 1Thread 2 Thread 2

T(p)

t(p) - 1 times

α

FIG. 1: CALCULATION OF U�p

overhead (i.e. cycles spent in main loop). Every t�� (t�p
in the multithreaded case) cycles, a remote load occurs. The
latency of such a load is T�� (T�p in the multithreaded
case) cycles. U�� and U�p are the processor utilization
in the non-multithreaded and multithreaded case, respec-
tively. G�p is an upper bound on the performance gain
U�p�U�� due to emulation of multithreading.

Before we introduce our model, we make several
assumptions: Context is switched after every emulated
instruction (i.e. after � cycles). The time between re-
mote loads t��� t�p as well as the remote load latency
T���T�p are constant. The effect of the emulation on
synchronization overhead is neglected. We further assume
that t�� � t�p andT�� � T�p, i.e. multithreading leads
to shorter run-lenghts and larger remote latencies due to in-
creased memory traffic and cache pollution [12].

For non-multithreaded processors, utilization U�� is
given by (1), as observed by Bianchini and Lim [14]:

U�� 

t��

t�� � T��
(1)

To determine the utilization U�p, we have to cover
two different cases as depicted in Fig. 1. In the first case,
the latency of remote loads T�p can be completely hidden.
This is equivalent to

T�p � ��p� �� � pC (2)

In the second case the number of threads is too small. After
t�p�� instructions (the number of instructions between re-
mote loads), a remote load occurs that cannot be completely
hidden. Since we use � instead of � cycles per instruction,
we have to scale the utilization with a factor of ��� in both
cases. The utilization U�p is therefore given by

U�p 


����
���

�
� � C

if (2) holds

pt�p
t�p

�
p�� � C � �

otherwise (3)

where � 
 T�p���p����pC represents the amount of
latency that could not be hidden. Based on eq.s (1) and (3)
as well as the inequalities t�� � t�p and T�� � T�p,
we derive an upper bound on the performance gain:

G�p �

�����
����

�
� � C

�
� �

T�p
t�p

�
if (2) holds

p�t�p � T�p
t�p

�
p�� � C � �

otherwise
(4)

We now apply eq. (4) using paramers as encountered
in a Cray T3E system. The values of � and � were al-
ready determined to be ���	 and ����, respectively. The
number C of cycles spent in the main loop can be deter-
mined in the same way as the gCPII values, which yields
C 
 	. Figure 2 contains four plots of G�p according
to eq. (4) for p 
 �� �� ��� �� in the range t�p 
 ������
and T�p 
 �������. Note that the graphs intersect the sur-
rounding box at G�p 
 � instead of G�p 
 �, which
simplifies determination of regions that favor emulation of
multithreading. As we can see from Fig. 2, small run-
lengths and large latencies favor emulation of multithread-
ing. The achievable gain increases with the number of
threads. Larger run-lengths require an accompanying in-
crease in latency for the emulation to be competitive.

Now we look at emulation of multithreading on a large
Cray T3E configuration by fixing T�p. We already men-
tioned the average network latency (excluding memory ac-
cess and processing times) for a 2048 processor Cray T3E
system to be 	�� cycles at ���MHz (processor speed in the
T3E-1200 versions). Therefore T�p 
 	��. The result
is displayed in Fig. 3, which plots G�p according to eq.
(4) for p 
 �� �� ��� �� dependent on t�p. Under these
conditions, applications with average run-lengths below 70
cycles and utilizing at least four threads can benefit from
emulation of multithreading.

Emulation of multithreading favors large systems (i.e.
massively parallel computers) with an correspondingly
large latency. On the application side, small run-lengths
(depending on the number of utilized threads) are required.
However, there is no need to emulate a whole application.
Instead, emulation can be applied to selected functions that
match the required criteria. The system/application domain
that may benefit from emulation of multithreading can be
increased by reducing the overhead as outlined in Section
2. For example, switching context every two instructions
almost halves the value of C.

5 CONCLUSIONS

We presented a concept to emulate fine-grained multi-
threading as well as detailed information about an im-
plementation on the Alpha architecture. First, the over-
head introduced by emulation of multithreading was deter-
mined by calculating the average number of cycles per exe-
cuted/emulated instruction. The overhead decreases signif-



0
500

1000
1500

2000
T(p)

20
40

60
80

100
t(p)

2

4

6

8

10

12

14

16

G(p)

4 threads

0
500

1000
1500

2000
T(p)

20
40

60
80

100
t(p)

2

4

6

8

10

12

14

16

G(p)

8 threads

0
500

1000
1500

2000
T(p)

20
40

60
80

100
t(p)

2

4

6

8

10

12

14

16

G(p)

16 threads

0
500

1000
1500

2000
T(p)

20
40

60
80

100
t(p)

2

4

6

8

10

12

14

16

G(p)

32 threads

FIG. 2: MAXIMUM GAIN OVER ALL PARAMETERS

icantly by switching context only after execution of sev-
eral instructions. In addition, the emulation can be per-
formed on several closely coupled processors by splitting
the threads between the processors and thus hiding the em-
ulation overhead.

A model for predicting multithreaded processor uti-
lization was used to examine whether the emulation over-
head can be offset by the amount of hidden latency. Under
conditions as encountered in a large Cray T3E system, char-
acteristics for applications that may benefit from emulation
of multithreading were determined.

Our results have yet to be verified by run-time mea-
surements. In order to perform these measurements, ac-
cess to a 512 processor Cray T3E-900 has been granted by
the HLRS (high performance computer center) in Stuttgart,
Germany. After implementation of the necessary frame-
work, the concept will be tested on several aplications (e.g.
NASPAR parallel benchmark suite).

The current evaluation is based on a processor that is-
sues instructions in-order. The effect of out-of-order exe-
cution on emulation of multithreading will be interesting.
The next-generation Alpha processor, the 21264, seems to
make heavy use of out-of-order execution and register re-
naming [11] and will therefore be a good platform for mea-
surements in this area.

G(p)

t(p)

p=32

p=16

p=8

p=4

0

2

4

6

8

10

12

14

16

y

20 40 60 80 100
x

FIG. 3: MAXIMUM GAIN WITH FIXED LATENCY

REFERENCES

[1] A. Agarwal et.al. Sparcle: An evolutionary processor design for
large-scale multiprocessors. IEEE Micro, 13(3):48–61, 1993.

[2] S. W. Moore. Multithreaded Processor Design. Kluwer Academic
Publishers, Norwell, MA, 1996.

[3] J. Keller, W. J. Paul, and D. Scheerer. Realization of PRAMs: Pro-
cessor design. In Proc. 8th Int.l Workshop on Distributed Algo-
rithms, pages 17–27, 1994.

[4] G. T. Byrd and M. A. Holliday. Multithreaded processor architec-
tures. IEEE Spectrum, 32(8):38–46, 1995.

[5] D. Culler and J. P. Singh. Parallel Computer Architecture. Morgan
Kaufmann, San Mateo, CA, 1998.

[6] D. Scheerer. Der Prozessor der SB-PRAM. Dissertation, Universität
des Saarlandes, 1995.

[7] Digital Equipment Corporation, Maynard, Massachusetts. Alpha
Architecture Handbook, 3rd edition, 1996.

[8] S. L. Scott. Synchronization and communication in the T3E multi-
processor. In Proc. 7th Int.l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 26–36, 1996.

[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: a
quantitative approach. Morgan Kaufmann, San Mateo, CA, 1990.

[10] Digital Equipment Corporation, Maynard, Massachusetts. Digital
Semiconductor 21164 Alpha Microprocessor Hardware Reference
Manual, 1997.

[11] L. Gwennap. Digital 21264 sets new standard. Microprocessor
Report, 10(14):11–17, 1996.

[12] A. Agarwal. Performance tradeoffs im multithreaded processors.
IEEE Transactions on Parallel and Distributed Systems, 3(5):525–
539, 1992.

[13] S. Nemawarkar, R. Govindarajan, G. Gao, and V. Agarwal. Analy-
sis of multithreaded architectures with distributed shared memory.
In Proc. 5th IEEE Symposium on Parallel and Distributed Process-
ing, pages 114–121, 1993.

[14] R. Bianchini and B. Lim. Evaluating the performance of multi-
threading and prefetching in multiprocessors. Journal of Parallel
and Distributed Computing, 37:83–97, 1996.


