
ANALYSIS OF SOFTWARE-BASED RECOVERY SCHEMES FOR SMT
PROCESSORS

Lukas Beyer, Bernhard Fechner, Jörg Keller
Department of Computer Science

University of Hagen
58084 Hagen, Germany

email: {lukas.beyer bernhard.fechner joerg.keller}@fernuni-hagen.de

ABSTRACT
Today’s microprocessors are prone to transient hardware
faults caused by e.g. ionizing particles. The usual method
to detect and correct such faults is to use duplex systems
in software. Fault detection and correction can be ac-
celerated by taking advantage of logical processors avail-
able since the introduction of commercial SMT systems,
e.g. by performing a simultaneous retry and roll-forward
on different logical processors. We derive four differ-
ent recovery schemes ({probabilistic, deterministic} ×
{pessimistic, optimistic}), each of which can be applied
after an error has been detected. The recovery software
is modular and requires only minor extensions to existing
code to provide protection. The schemes are tailored to be
executed on an SMT processor. Their execution times are
measured under the influence of transient faults, injected
at rates of 10−5, 1

4 · 10−5 and 10−6. Depending on fault
rate, checkpoint distance and the probability to correctly
guess correct versions, we make recommendations about
which variant to choose. An important insight is that a high
rate of successful guesses p is needed for the probabilis-
tic schemes to provide significant advantage over the de-
terministic ones. When randomly choosing the version to
roll-forward (p = 0.5), the optimistic deterministic variant
is faster than the optimistic probabilistic one. With p = 0.7,
the optimistic probabilistic variant begins to perform better
than its deterministic counterpart. The comparison of pes-
simistic schemes yields similar results.

KEY WORDS
Virtual Duplex System, SMT, recovery, roll-forward, roll-
back

1 Introduction

Transient faults in the form of single event upsets can arise
from ionizing particle radiation. The high-energetic par-
ticles come from different sources, e.g. radioactive decay
and cosmic radiation. They ionize while passing through
an electronic circuit. Thus, the charge of the circuit [1]
can be modified temporarily, introducing bit-flips in mem-
ory elements. Fault detection can be achieved by tempo-
ral or structural redundancy i.e. multiple processing units.
In the past, fault tolerance was only attractive for mission-

critical applications, since classical fault-tolerance mecha-
nisms like triple modular redundancy (TMR) systems sac-
rifice the performance of several processors to locate and
detect faults, including huge additional energy and spacial
requirements.

As future processors will have smaller feature sizes,
reduced voltage levels and higher on-chip transistor counts,
the frequency of transient faults will increase. Hence, fu-
ture computing systems will have to detect those faults and
be able to recover quickly from them. Simultaneous mul-
tithreading (SMT) [4] is a technique that allows multiple
instruction streams to execute in parallel by using differ-
ent functional units of a superscalar microprocessor. SMT
processors can be used for fault detection and recovery by
running processes or threads on independent logical pro-
cessors.

This paper contributes the following:

• It presents a performance analysis of four recovery
schemes under the influence of different fault rates.

• It makes recommendations about which recovery
scheme performs best under different parameter vari-
ations.

The paper is organized as follows: Section 2 presents
related work. In Section 3, we describe the modeling of re-
covery schemes in software. The simulation methodology
is presented in Section 4. Finally, Section 5 presents the
simulation results followed by a conclusion in Section 6.

2 Previous and Related Work

To achieve fault tolerance, a computing system requires re-
dundancy. In duplex systems, two versions of a program
are executed on two processors, fed with the same input. To
detect faults, the states of the versions are compared at reg-
ular time points. Virtual duplex systems [7] avoid the du-
plicated hardware resources associated with traditional du-
plex systems, requiring only a single processor. Instead of
executing the versions in parallel, two software processes
use used to execute the versions. The processes are sched-
uled in a round-robin fashion, thereby using temporal re-
dundancy instead of structural redundancy. If both versions
execute the same code, a permanent hardware fault in a



virtual duplex system will affect both versions in the same
way. Therefore the fault will not be detected. To support
the detection of permanent faults by virtual duplex systems,
systematic and design diversity can be applied. To achieve
design diversity, the versions have to be developed by in-
dependent individuals or groups, following the same initial
specification [3]. Systematic diversity techniques modify
the code at assembler language level [5]. The goal is di-
versifying the use of hardware in order to minimize the
probability of identical erroneous results. Reinhardt and
Mukherjee [10] used an SMT processor to achieve fault
detection by running two identical versions cycle-by-cycle
lockstepped to reduce detection time to a minimum. The
implied virtual duplex system follows a variant of the roll-
forward checkpointing scheme described in [11] and [12].
The different recovery schemes in this work follow the
classification and unified modeling introduced in [8]. Pre-
ceding theoretical results are provided in [9]. There it was
forecast that running a virtual duplex system on an SMT
processor would yield the same speedup over conventional
processors as other applications in the fault-free case, and
that average performance during roll-forward would be be-
tween 70 and 80% of that value, with a ranking between
three of the four schemes presented in Section 3.2.

3 System Modeling

Our basic model relies on the general concept of an abstract
state of a version and mapping functions from [2]. The
fault model assumes transient faults in the datapath of the
underlying processor. If the versions are developed inde-
pendently by distinct programmers, they may well choose
different representations for the states of the versions. For
example, a graph may be represented by an adjacency list
in one version and by an adjacency matrix in another. The
concrete representation of a version’s state is called inter-
nal state. For the recovery of versions and state compari-
son a common representation has to be used - the abstract
state. It has to contain enough information to recover the
state of any version. The implementation consists of two
core components:

• The versions which perform the actual functionality
of the application.

• A software component that is independent from the
concrete application, termed controller.

The controller assigns versions to the available logical
processors and compares the versions’ states by computing
hash values. Furthermore it monitors the results from the
error detection and controls the selection of different recov-
ery schemes. The controller binds the processes or threads
that execute the versions to different logical processors of
the underlying SMT processor. The execution of the ver-
sions is realized in rounds. In every round, a state transition
function is invoked to calculate the next internal state.

Five functions reside within every version besides the
application code itself:

• A write function for transforming the internal state of
a version to an abstract state and to write it to a file or
pipe.

• A recover function to restore the internal state of a
version from an abstract state. It reads the abstract
state from a specified file or pipe, transforms it to an
internal state and returns the recovered state.

• A function for releasing the internal state. The func-
tion takes the internal state and frees occupied mem-
ory.

• A function calculating the hash value over the abstract
state.

• A state transition function that takes the current inter-
nal state of the version and returns the next internal
state. This function calls the application code. An
upper limit can be set on the time permitted to exe-
cute the function. To prevent permanent faults from
affecting both versions in the same way, the imple-
mentations of the state transition functions should be
diverse.

The write and recover functions serve two purposes.
The first is to store checkpoints on the stable storage and
recover from them in case of a detected fault. Checkpoints
are written after s rounds. The second is to clone the fault-
free state of a forwarded version. After a successful roll-
forward a pipe is opened and the forwarded version is re-
quested to write its abstract state to the pipe. Concurrently,
the other version is asked to recover its state. Thereafter,
both versions are in the same state and can be executed for
further fault detection.

The controller uses a simple request/response proto-
col to supervise the execution of versions. It sends a re-
quest message to a version to execute a certain function us-
ing the supplied arguments. After the requested function is
executed, the version calculates a hash value over the new
state. The hash value is wrapped into a response message
and returned to the controller for state comparison.

Due to the modular design, the implementation of
the software fault-detection and recovery schemes requires
only minor changes to the application code.

3.1 Fault Detection

For fault detection, two versions v1 and v2 are executed
simultaneously within processes or threads, scheduled on
the two logical processors of an SMT platform. After each
round, the controller compares the hash values returned by
the versions.

If the hash values are not equal, it can deduce that at
least one of the threads is faulty. To decide which version is
fault-free, a third hash value is needed for a majority vote.



i rounds
(retry)

i rounds
(forward)

...

stable
storage

v3

v1

v2

Zi

... Fi

round
i

round
i

Z0

Zi

prediction: Zi fault-free

Z2i

Zi

Z2i

Z2i

majority vote

...

...

state transferFi
faulty state
(after round i)

hash code comparison 
(inequality)

Figure 1. The optimistic probabilistic recovery scheme
with a correct guess of the fault-free version.

If a fault is detected at the end of round i after the last
checkpoint, the state of the third version v3 is recovered
from the most recent checkpoint. Therefore the controller
issues a recover request to v3. Then v3 is executed by the
second logical processor until round i inclusively. With the
hash value calculated by v3, a majority vote can be taken by
the controller. If another fault occurs during the retry, it will
normally lead to three different states so that the whole sys-
tem has to be reset to the last checkpoint. Simultaneously
to the retry, a roll-forward is executed on the first logical
processor to avoid a performance loss during the retry.

3.2 Fault Recovery

The four implemented recovery schemes employ different
forwarding strategies. All have in common, that the roll-
forward thread may not pass the next checkpoint. Hence,
the number of rounds to be forwarded is always trimmed
down to s−i, although we do not mention that in the sequel.

In the optimistic probabilistic scheme (Figure 1), the
controller guesses which of the versions is fault-free, binds
it to the first logical processor and forwards it for i rounds.
If the majority vote after the retry proves that the guess
was correct, the state of the forwarded version is copied to
v3 via a pipe by issuing write and recover requests. The
execution of both versions is continued starting from the
forwarded state, achieving a progress of i rounds, i.e. there
is no performance loss. If the guess was not correct, the ex-
ecution of the fault-free version and v3 is continued and no
progress is made. Obviously, the probability to correctly
guess the fault-free version is at least 0.5. If the system
gives any clue as to which version is fault-free (for exam-
ple, by providing information about cache-faults or time-
outs), then the probability of a correct guess can be sub-
stantially higher.

In the optimistic deterministic scheme (Figure 2),

...

...

stable
storage

v3

v1

v2

majority vote

i rounds
(retry)

... Firound
i

Z0 Zi Zy

y = i i
2

+

i/2 rounds
(forward)

i/2 rounds
(forward)

... Zi
round

i
Zi ZyFiZy F

v2 v1

Figure 2. The optimistic deterministic recovery scheme.

...

...

stable
storage

v3

v1

v2

prediction: Zi fault-free

majority vote

y = i i
2

+

i/2 rounds
(forward)

i/2 rounds
(forward)

... Zi
round

i
Zi ZyZy

i rounds
(retry)

... Firound
i

Z0 Zi Zy

Zi Zy

equal states (fault-free forward)

v2

v1

Figure 3. The pessimistic probabilistic recovery scheme.
The fault-free version is correctly guessed.

the versions v1 and v2 are both forwarded for i/2 rounds
on the first logical processor. After the retry is completed,
the state of the version which was correct after round i is
transferred to v3. A progress of i/2 rounds is reached in
any case.

Note that the optimistic schemes cannot detect faults
affecting the first logical processor during the roll-forward.
To detect further faults, the pessimistic variants run one or
two virtual duplex systems in the roll-forward thread.

In the pessimistic probabilistic variant (Figure 3),
the controller tries to predict the fault-free version. The
state of that version is then copied to the other version.
As a result, versions v1 and v2 are in the state which was
guessed to be fault-free. Then both versions are executed as
a virtual duplex system on the first logical processor, how-
ever without switching context after every round. After the
roll-forward has been completed, the hash codes of the for-
warded versions are compared. If they differ, a fault has
affected the roll-forward thread and execution is continued
starting from the state of v3. If the prediction was correct
and no fault occurred during the forward, a progress of i/2
rounds is attained. Otherwise no progress is made.

In the pessimistic deterministic algorithm (Figure
4), two virtual duplex systems are executed in the roll-



...

...

i/4 r.
(fwd)

i rounds
(retry)

...

stable
storage

v3

v1

v2

Zi

... Fi

round
i

round
i

Z0 Zi

Zy

Zy

majority vote

y = i i
4

+

Fi
i/4 r.
(fwd)

Zi Zy F

v2

i/4 r.
(fwd)

Zi Zy
i/4 r.
(fwd)

Fi F

v1

equal states (fault-free forward)

Figure 4. The pessimistic deterministic recovery scheme.

forward thread - one forwarding the state of v1 and the
other one forwarding the state of v2. Hence, four processes
are scheduled on the first logical processor. If no fault influ-
ences the roll-forward of the fault-free version, a progress
of i/4 rounds is made.

4 Simulation Methodology

To compare the performance of the described recovery
schemes we did simulation studies on an Intel Pentium 4
Hyper-Threading [13] machine with 1GB of RAM, run-
ning Linux kernel 2.6. We did five software-based fault-
injection runs and averaged over the measured runtimes
(relative avg. deviation 2.17%). In each fault-injection run
two million rounds were executed. The versions did a ma-
trix multiplication of two (5,5)-matrices. Hash values over
the resulting matrices were calculated and compared.

Before issuing a message, the controller used a ran-
dom number generator to determine whether a fault should
be injected. The outcome of the test was added to the re-
quest message as an additional parameter. If the value of
the parameter was true, the resulting matrix was altered by
the version. Hence, a fault was detected by the controller
and the recovery algorithm will be executed.

The parameters used in our measurements are defined
as follows:

• The number of rounds between checkpoints, s. For
example, if the value of s is 100000, one checkpoint
is stored on the stable storage every 100000 rounds.
The values chosen for s are: 75000, 100000, 125000,
150000 and 200000.

• The probability of a fault per round, f . We used three
different values of f : 10−5, 1

4 · 10−5 and 10−6. For
example, a value of 10−5 means that one fault occurs
every 105 rounds on average.

• The ratio of correct guesses for the probabilistic re-
covery schemes, p. For example, if p is 0.7, 70% of
the predictions on which version to forward are cor-
rect.

5 Results

The execution of the versions on two logical processors
yielded an average speedup of 34.1% in comparison to
a mapping of processes/threads to one logical processor.
This is in line with the observations of [6] and the ranking
from [9]. We found no significant difference in the execu-
tion times of the thread and process variant. This could be
explained by the fact, that the Linux thread library creates
threads corresponding to a process in the kernel. Figure 5
shows the execution times of the four recovery schemes for
a mapping on one or two logical processors, respectively.
Execution times were measured in milliseconds, those of
the probabilistic schemes resulted in calculating the arith-
metic mean for p={0.5, 0.7, 0.9}.

Optim.Probab. Optim.Determ. Pessim.Probab.Pessim.Determ.

ex
ec

ut
io

n 
tim

e 
(m

s)

0

50000

100000

150000

200000

250000

300000

350000

scheduled on 2 logical processors
scheduled on 1 logical processor

Figure 5. Hyper-threading performance gain for different
recovery strategies.

Table 1 shows the execution times of the optimistic
deterministic variant divided by those of the optimistic
probabilistic variant. For p = 0.5, the optimistic deter-
ministic variant was always faster than the optimistic prob-
abilistic variant. Even with 70% correct guesses (p = 0.7),
the maximum performance loss of the optimistic determin-
istic variant was merely 3.63%. For p = 0.9 the gains of the
optimistic probabilistic variant highly depend on f and s.
For maximum values of f and s (f = 10−5, s = 200000),
the optimistic probabilistic variant was 16.9% faster than
the optimistic deterministic variant.

A high ratio of correct guesses was required to
let the probabilistic schemes outperform the deterministic
schemes significantly. For p = 0.5 and p = 0.7, differ-
ences between the schemes became small. Comparing the
pessimistic deterministic with the pessimistic probabilistic
scheme leads to similar results. Figure 6 plots the slow-
down of the pessimistic deterministic variant for p = 0.7,
p = 0.9. For p = 0.5, the performance of the pessimistic
deterministic and pessimistic probabilistic schemes showed
no difference. For p = 0.7 and f = 10−5, the average per-
formance advantage of the optimistic probabilistic scheme
was no better than 4.4%. To let the optimistic probabilis-
tic scheme gain a significant advantage over the optimistic
deterministic scheme, 90% of the guesses had to be cor-



s
f p 75000 150000 200000

10−5
0.5 0.9862 0.9384 0.9760
0.7 1.0176 1.0305 1.0363
0.9 1.0671 1.1217 1.2030

1
4 · 10−5

0.5 0.9614 0.9878 0.9895
0.7 0.9861 0.9852 1.0121
0.9 1.0193 1.0580 1.0666

10−6
0.5 0.9905 0.9891 0.9816
0.7 0.9969 0.9911 1.0291
0.9 1.0092 1.0009 1.0131

Table 1. Execution time ratio of the optimistic determin-
istic to the optimistic probabilistic scheme. Values greater
than 1 imply that the deterministic scheme is slower.

rect (p = 0.9) and a large value had to be chosen for s
(s = 200000).

f=0.000001 f=0.000025 f=0.00001

t(
P
D
)/
t(
P
P
)

0.95

1

1.05

1.1

1.15

1.2

p=0.7 p=0.7 p=0.7p=0.9 p=0.9 p=0.9

s=75000
s=150000
s=200000

Figure 6. Execution time ratio of the pessimistic determin-
istic to the pessimistic probabilistic scheme. Values greater
than 1 imply that the deterministic scheme is slower.

Performance differences between the optimistic and
pessimistic schemes are highly dependent on s and f , but
hardly on p. Figure 7 shows the slow-down of the pes-
simistic schemes compared to their optimistic counterparts.
The values plotted for the probabilistic scheme apply to
p = 0.7. For moderate values of f and s, both schemes
performed similarly. For f = 10−5 and s ≥ 100000, the
optimistic schemes surpassed their pessimistic counterparts
by more than 10%.

Figures 8 and 9 show the execution times of the four
recovery schemes for f = 10−5. The probabilistic schemes
are illustrated for p = 0.7 and p = 0.9. We see that for
p = 0.9 the optimistic probabilistic scheme requires a large
checkpoint interval to make good use of the high probabil-
ity for a correct guess.

f=0.000001 f=0.000025 f=0.00001

t(
P
e
ss
im
.)
/t
(O
p
tim
.)

0.95

1

1.05

1.1

1.15

1.2

Deter. Deter. Deter.Proba. Proba. Proba.

s=75000
s=150000
s=200000

Figure 7. Execution time ratio of the pessimistic schemes to
the corresponding optimistic schemes. Values greater than
1 imply that the pessimistic scheme is slower. The relations
between the probabilistic schemes apply to p = 0.7.

s
75000 100000 125000 150000 175000 200000

ex
ec

ut
io

n 
tim

e 
(m

s)

140000

150000

160000

170000

180000

190000

200000

Optimistic Probabilistic
Optimistic Deterministic
Pessimistic Probabilistic
Pessimistic Deterministic

Figure 8. Execution times of the recovery schemes (p =
0.7,f = 10−5).

6 Summary and Conclusion

We presented a performance analysis of four different
software-based recovery schemes, tailored for a contem-
porary SMT-system under the influence of faults. The ex-
ecution of the versions on two logical processors gave an
average speedup of 34.1% in comparison to a mapping of
processes/threads to one logical processor. No significant
difference in the execution times of the thread and pro-
cess variants was measured. For p = 0.5, the optimistic
deterministic variant was faster than the optimistic proba-
bilistic variant. With p = 0.7, the optimistic probabilistic
variant began to perform better than its deterministic coun-
terpart. For maximum values of p, f and s (p = 0.9,
f = 10−5, s = 200000), the optimistic probabilistic
variant was 16.9% faster than the optimistic deterministic



s
75000 100000 125000 150000 175000 200000

ex
ec

ut
io

n 
tim

e 
(m

s)

140000

150000

160000

170000

180000

190000

200000

Optimistic Probabilistic
Optimistic Deterministic
Pessimistic Probabilistic
Pessimistic Deterministic

Figure 9. Execution times of the recovery schemes (p =
0.9, f = 10−5).

one. Thus, a high ratio of correct guesses is required to
let the probabilistic schemes outperform the deterministic
schemes. The comparison of pessimistic schemes yielded
similar results. The optimistic probabilistic scheme with
p = 0.9 required a large checkpoint interval to make good
use of the high guess precision.

[1] J.F. Ziegler et al., IBM experiments in soft fails in
computer electronics (1978-1994), IBM Journal of
Research and Development, 40(1), 1996, pp. 3-18.

[2] A. Romanovsky, On version state recovery and ad-
judication in class diversity, International Journal of
Computer Systems Science and Engineering, 17(3),
2002, pp. 159-168.

[3] A. Avizienis, The Methodology of N-Version Pro-
gramming, in Lyu (Ed.) Software Fault Tolerance,
(Hoboken: John Wiley and Sons Ltd, 1995), pp. 23-
46.

[4] D. Marr et al., Hyper-Threading Technology Archi-
tecture and Microarchitecture, Intel Technology Jour-
nal, 6(1), 2002, pp. 4-15.

[5] T. Lovric, Fault detection by systematic diversity in
design-diverse and temporal redundant computer sys-
tems and their evaluation through fault-injection (in
German) (Berlin: Logos Verlag, 1997).

[6] J. Bulpin and I. Pratt, Multiprogramming Perfor-
mance of the Pentium 4 with Hyper-Threading, Third
Annual Workshop on Duplicating, Deconstruction
and Debunking, 2004, pp. 53-62.

[7] K. Echtle and B. Hinz and T. Nikolov. On Hardware
Fault Diagnosis by Diverse Software, Proceedings of

the 13th International Conference on Fault-Tolerant
Systems and Diagnostics, pp. 362-367, 1990

[8] P. Sobe, B. Fechner, J. Keller. Classification and Uni-
fied Modeling for Duplication-based Recovery. In
Proc. Fifth European Dependable Computing Confer-
ence (EDCC-5), 2005.

[9] B. Fechner, J. Keller, P. Sobe. Performance Estima-
tion of Virtual Duplex Systems on Simultaneous Mul-
tithreaded Processors. In Proc. 9th IEEE Workshop
on Fault-Tolerant Parallel, Distributed and Network-
Centric Systems, 2004.

[10] S. K. Reinhardt and S. S. Mukherjee. Transient fault
detection via simultaneous multithreading. In Pro-
ceedings of the 27th Annual International Symposium
on Computer Architecture, pages 25-36, 2000.

[11] D. Pradhan, D. Sharma, and N. Vaidya. Roll–Forward
Checkpointing Schemes. In M. Banatre and P. Lee,
editors, Hardware and Software architectures for
Fault-Tolerance, No. 774 Lecture Notes in Computer
Science. Springer, 1994.

[12] D. Pradhan and N. Vaidya. Roll–Forward Check-
pointing Scheme: A Novel Fault-Tolerant Architec-
ture. IEEE Transactions on Computers, 43(10), Octo-
ber 1994.

[13] M. Withopf. Virtual tandem: Hyperthreading in the
new Pentium 4 with 3 GHz (in German). ct, 24:120ff,
2002.


