
FIRE CROCODILE : A Checker for Static Firewall Configurations

Norbert Lehmann Reinhard Schwarz Jörg Keller
Institut f. Wissenschaftl. Rechnen Fraunhofer Institute for LG Parallelität und VLSI

Forschungszentrum Karlsruhe Experim. Software Engineering FernUniversität in Hagen
Hermann-von-Helmholtz-Platz 1 Fraunhofer-Platz 1 Postfach 940
76344 Eggenstein-Leopoldshafen 67663 Kaiserslautern 58084 Hagen

Germany Germany Germany

Abstract – We present FIRECROCODILE, a tool to
check the static configuration of Cisco PIX firewalls.
FIRECROCODILE is based on the extensible framework
CROCODILEand thus is extensible itself. We report onFIRE-
CROCODILE’s architecture, its abilities and features, and its
relation to other tools. Finally we report on our experiences
when analyzing the configuration of the central firewall of
a research center with a complex network and application
structure.

Keywords: Firewall, static analysis, access control lists, ex-
perimental evaluation.

1 Introduction

A firewall is a local network’s gatekeeper towards the Inter-
net, serving to disable unauthorized access to the local net-
work’s resources. Such unauthorized access may range from
port scans on the computers in the local network to flooding
attacks on servers in order to stop their service, to intrusion
with stealing or corrupting data, with many more malicious
actions reported in the literature. As such, a firewall is an
important part of the network’s security architecture.

A firewall can only perform its task if it is correctly
configured. Yet, standard configurations have to be adapted
to the particular network structure and usage, and as the
structure and usage is continually changing, the configura-
tion has to be continually adapted as well. Maintenance of
configurations of software systems is a difficult business that
requires good documentation and care on the side of the re-
sponsible administrator. However, firewall configurations are
difficult to read and understand because they involve quite
complex dependencies and also contain redundant possibili-
ties to express certain features. Therefore manual changes to
the configuration are time-consuming and rather error-prone.

For this reason, we conceived and implemented a tool
namedFIRECROCODILE to analyze the static configuration
of a firewall, as specified in the configuration file, thus sup-
porting the job of the firewall administrator and enabling a
higher level of security for an organization’s local network.
As firewalls are very different, we concentrated on the anal-

ysis of configurations of the widespread Cisco PIX firewalls.
PIX firewalls allow to export their configuration settings in
readable textual format, as a sequence of individual configu-
ration clauses. Thus, these configuration files are accessible
for static analysis.

As each organization normally has its particular struc-
ture and security policy, the checker tool should be config-
urable as well. In order to support administrators’ work, the
checker rules should be specified at a higher level of abstrac-
tion than a firewall configuration, for example, they should
be oriented more towards security policies, and they should
build on existing knowledge in the field. Furthermore, the re-
sults of the analysis, in particular warnings and errors, should
be in a format that supports reasoning about the source of the
error, in order to simplify its correction in the firewall con-
figuration file.

In order not to start from scratch, we built upon
CROCODILE, an existing checker framework for static
router configuration checking. We applied our newFIRE-
CROCODILEprototype to the firewall configuration of a large
research center with a complex network structure, at the oc-
casion of a change in equipment. We report on our findings.

The remainder of this article is organized as follows.
In Section 2, we summarize the concept and architecture of
the CROCODILE framework on which our firewall checker
has been built. In Section 3 we report on the necessary adap-
tations and extensions toCROCODILE in order to check PIX
firewall configurations. In Section 4 we report on the ap-
plication of FIRECROCODILE to analyze a firewall with a
complex configuration. In Section 5 we discuss previous and
related work. In Section 6 we conclude and give an outlook.

2 The CROCODILE framework

Our firewall configuration checker is based onCROCODILE,
an extensible framework for the implementation of static
configuration file analyzers, originally conceived for
the evaluation of Cisco IOS router configurations [1].
CROCODILE is implemented in the Perl programming lan-
guage. Due to the similarities between PIX and IOS com-



mand syntax, the basic mechanisms already provided by
CROCODILE fitted the needs of our PIX checker without
significant adaptation. In particular, the pattern-based com-
mand line parser, the interface for pluggable checker mod-
ules, the sophisticated HTML generator for hypertext evalu-
ation reports, and the available interfaces for the specification
of user-defined, high-level evaluation rules were all reusable
and provided instant support for simple evaluation tasks.

CROCODILE’s capabilities go far beyond purely syn-
tactic analysis:

• CROCODILE analyzes the configuration as a whole, in-
stead of each line in isolation.

• The confusing wealth of evaluation results is presented
using various task-specific displays. For example, the
tool offers an annotated overview, a differential display
relative to an earlier version of the configuration, con-
nectivity charts, and convenient hyperlinks to vendor
documentation. A particularly useful and innovative de-
tail analysis is the computation of the sets of packets ef-
fectively accepted (“whiteset”) or rejected (“blackset”)
by the access control lists protecting an interface [2].

• Findings are logically grouped to various analysis
views, with a view gathering all findings conceptually
relating to a certain configuration aspect as defined by
the user (e.g., authentication or logging). The configura-
tion clauses covered by a view may be scattered across
the configuration, and one clause may contribute to sev-
eral views. During inspection, the user may focus on
any particular view. The view-based presentation makes
the reasoning behind the configuration easier to con-
ceive, and consequently makes errors and vulnerabili-
ties more transparent [3].

CROCODILE thus relieves the user from cumbersome
low-level work and raises configurations to a semantic level
where the human expert is more adequately supported.

2.1 TheCROCODILE architecture

TheCROCODILE core consists of a parser with a number of
pluggable checker modules attached to it (Fig. 1). At their
plug-in interface, the modules announce syntax patterns that
they are interested in (specified in extended Backus-Naur
Format) and corresponding handlers to be called on the oc-
currence of a pattern. The parser reads a configuration file,
searching for the specified syntax patterns. Whenever the
input matches some pattern, the input line is split into its
components according to the pattern specification, and the
handler(s) associated with the matching pattern are invoked
with the components of the splitted configuration line as in-
vocation parameters. On invocation, the handler evaluates
the given configuration clause, typically in the context of ear-
lier invocations of other handlers and the state changes they
triggered in the plug-in module.

Figure 1: Architecture of theCROCODILE framework

Each plug-in module stores the results of its analy-
sis into the evaluation result database. After the parser has
finished reading and all handlers have run to completion, re-
port generators transform the database contents into differ-
ent types of evaluation reports. Some findings are reported
in plaintext format, others are transformed into an interme-
diate XML format for later postprocessing. For interactive
assessment, a comprehensive hypertext report is generated in
HTML format (see [1, 3] for detailed examples).

2.2 Using and extendingCROCODILE

Users do not normally come into contact with the interface
between the parser and the checker modules, even when they
construct their own checker modules. The interplay results
automatically, as all checker modules are derived from a
common base class that provides all the machinery to in-
terface with the rest of the system. To add new evaluation
functionality to the framework, a user derives a new plugin
from the pluggable module base class, specifies the relevant
patterns in BNF and codes the corresponding handlers that
implement the evaluation logic.

But CROCODILE offers an even more convenient ac-
cess to evaluation capabilities: Some plug-in modules con-
tain generic rule interpreters that read evaluation rules from a
configuration file, automatically derive the required patterns
and handlers from the symbolic rule specifications, announce
these patterns to the parser and perform the corresponding
evaluation tasks with their predefined handlers. Instead of
low-level handler programming, evaluation tasks may thus
be specified as high-level checker rules. Using high-level
specifications is more convenient and less error prone, but
of course the high-level rule format restricts the user in her
ability to specify arbitrarily involved evaluation steps. The
user may formulate new evaluations rules in any of the avail-
able high-level formats (see Sections 2.3.1, 2.3.2, and 2.3.4
for examples), or write a new checker module from scratch,
depending on the complexity of the evaluation task.

2.3 AvailableCROCODILE plugin modules

The originalCROCODILE framework offers a number of pre-
defined plugin modules, each performing a specific set of



evaluation tasks. Some of the modules are specifically tai-
lored to IOS, but several modules provide capabilities that
are useful in both IOS and PIX contexts. We give details of
these modules in the sequel.

2.3.1 RATemulation This module emulates the Router
Audit Tool (RAT), a utility for benchmarking IOS router or
PIX firewall configurations with respect to a given set of se-
curity requirements (cf. Section 5.1). Requirements are spec-
ified by the user as configurable rulesets. Predefined rulesets
can be downloaded from the Internet and adapted to local
security policies.

The plug-in module takes original RAT rulesets as
input and faithfully applies the specified evaluation criteria
to the configuration under test. In addition to customary
CROCODILE views, the emulation module produces reports
equivalent to those of original RAT. RATemulation enables
CROCODILE to participate in future advances of the RAT
evaluation rulesets.

2.3.2 CompoundPatterns The most versatile checker
module delivered withCROCODILE is the CompoundPat-
terns module. It supports user-defined evaluation criteria for
the (non)existence of certain configuration clauses. The user
may specify arbitrary syntax patterns and, for each pattern,
assign a severity to (1) the occurrence of this pattern in the
configuration and (2) the omission of the pattern. Depend-
ing on the user’s choice,CROCODILE will generate a config-
urable OKAY, INFO, CHECK, WARN, or ALERT message
in each case. A pattern may be either a basic pattern referring
to a single configuration clause, or a compound consisting of
several basic patterns linked, for example, by logical AND,
OR, XOR, NOT, or IF-THEN-ELSE operators, or even by
FOREACH and EXISTS quantifiers with bound variables.
The CompoundPatterns plugin recognizes so-called configu-
ration modes (e.g. IOS ’interface’ mode), and patterns may
be restricted to be applicable in certain configuration modes
only.

Fig. 2 shows an example of typical macro and IOS
compound pattern specifications. The compound pattern re-
quires that for all interfaces except ‘Loopback’ or ‘Null’ in-
terfaces, the interface must be either disabled (“shutdown”),
or else the Cisco Discovery Protocol (CDP) must be disabled
— either local to the interface context (“no cdp enable”), or
at global level for all interfaces(“no cdp run”). If this condi-
tion is met,CROCODILE generates an OKAY message (‘o’)
“CDP disabled”; otherwise, a WARN message (‘w’) “CDP
enabled” is issued and attached to the configuration clause
that violates the CDP policy.

Typical evaluation problems covered by Compound-
Patterns are, for example, checking that (un)desired services
and modes are explicitly (de)activated, that certain com-
mands are assigned the required level of privilege, or that
passwords are assigned and sufficiently securely encrypted.

INTERFACE ::= { int | interface }

INTERFACE !Loopback !Null ... {
o "CDP disabled"
w "CDP enabled"

if (NOT shutdown) {
no cdp enable | Global(no cdp run)

}
} INTERFACE ...

Figure 2: A simple CompoundPattern

By using quantified patterns with bound variables, we
can even express relationships that require comparisons be-
tween specific attributes of multiple pattern instances, for ex-
ample, that an arbitrary name found in use has been properly
defined elsewhere. This yields a very intuitive way to de-
scribe many simple properties of a configuration. Our ex-
perience has shown that compound patterns contribute sig-
nificantly to a large evaluation coverage. Nevertheless, an
analysis of the complex aspects of a configuration needs to
dig deeper than this. To this end,CROCODILE provides the
more specific modules described next, which offer advanced
capabilities at the expense of less flexibility in module con-
figuration.

2.3.3 Connectivity This module extracts from the con-
figuration information about the topology of the compo-
nent’s network neighborhood with its surrounding subnets
and nodes. While it does report some irregularities and po-
tential weaknesses, the focus of this module is not on security
checking, but on extracting and deriving topology informa-
tion for later processing by other modules or for manual in-
spection. The reconstructed topology data are displayed in
a graphical output format, as a so-called connectivity chart.
Taking the case of an interface as an example of the extracted
information, the module would list which IP protocols are
routed through this interface as inbound and outbound traffic
to and from which subnets or hosts.

2.3.4 IngressEgress This module verifies that the con-
figuration of access control lists (ACLs) and network inter-
faces conforms to the desired behavior as specified by the
CROCODILEuser. The user may specify blacksets and white-
sets for these objects, and the IngressEgress module will list
any violations found in the ACL or interface configuration,
relative to these sets.

Fig. 3 shows an example of a user-defined egress re-
striction. Note that format and order of independent egress
clauses is irrelevant: IngressEgress computes the precise
meaning — i.e., blackset and whiteset — of the specifica-
tion, and checks whether the evaluation target is at least as
restrictive as the blackset, and open at least for the whiteset.



INGRESS_EGRESS_INTERFACE ::= Serial {1|2}
NETMASK ::= 0.0.0.255
LOCALNET ::= 157.106.153.0 NETMASK

! RFC1918 outbound address filtering

interface INGRESS_EGRESS_INTERFACE out {
deny ip any 10.0.0.0 0.255.255.255
deny ip any 127.0.0.0 0.255.255.255
deny ip any 172.16.0.0 0.15.255.255
deny ip any 192.168.0. 0 0.0.255.255
permit ip LOCALNET any

}

Figure 3: A simple IngressEgress restriction for IOS

2.3.5 CiscoLinks This plugin does not perform any anal-
ysis, but assigns to each configuration clause the appropriate
hyperlinks to Cisco’s Online Documentation. To this end,
each configuration command is looked up in a list contain-
ing all commands, and for each command a list of URLs to
relevant manual pages.

The list of Cisco links can be generated semi-
automatically by traversing the HTML index pages of the
Cisco Online Documentation.

3 Deriving a PIX-specific firewall an-
alyzer from CROCODILE

We used the modules described in Section 2.3 as a starting
point for the development of a PIX-specific evaluation func-
tionality. In this section, we discuss the changes required to
these modules, and how they can be used in a PIX environ-
ment. We also sketch where additional modules were nec-
essary to test certain configuration aspects of firewalls that
have no counterpart in IOS routers.

3.1 Adapting existing modules

3.1.1 RATemulation The Router Audit Tool (RAT) (cf.
Section 5.1) is already emulated inCROCODILE. Therefore
it was sufficient to download and install the RAT version 2.2
ruleset, which also provides some evaluation rules for PIX
firewall configurations. Obviously, each organization must
adapt this rule set to their local situation.

3.1.2 CompoundPatterns As the module Compound-
Patterns allows to specify arbitrary syntax patterns, no
changes to the module itself were necessary. Obviously, PIX-
specific syntax patterns have to be specified to apply this
module to firewall configurations.

We defined a set of PIX patterns on the basis of usage
guidelines and recommendations contained in Cisco’s ‘PIX
Firewall Configuration Guide’ and ‘PIX Firewall Command
Reference’. Another important source for evaluation criteria

covered by CompoundPatterns is the individual security pol-
icy of an organisation. Since the patterns are easy to create,
and processing with theFIRECROCODILEparser is very fast,
one can implement as many evaluation rules as needed.1

An example is the following pattern to recognize filter
rules allowing full access to computers behind the firewall:

a "avoid unlimited inbound permissions"
access-list acl_outside permit ip any ...

3.1.3 ConnectivityPIX The code of the original IOS
Connectivity module directly refers to IOS configuration
commands. Thus, a new module ConnectivityPIX had to be
devised. As the relevant IOS and PIX commands are largely
similar, the re-implementation of the module required only
small adaptations of the code to the syntax and semantics of
the appropriate PIX commands. Yet, as a consequence, some
of the data container classes ofCROCODILE, such as those
for access lists and interfaces, had to be re-implemented as
well. As some of the relevant PIX commands have no coun-
terpart in IOS, we had to add some routines to handle these
commands. Most effort was required to support PIX object
groups in ACLs and the close coupling of ACLs and network
address translation (NAT) that is characteristical for PIX fire-
walls.

3.1.4 IngressEgress Similarly to the previous module,
IngressEgress also had to be re-implemented to IngressEg-
ressPIX. As IngressEgress builds upon Connectivity, In-
gressEgressPIX could build upon ConnectivityPIX. There-
fore, the necessary changes were relatively small. Changes
had to be made to consider the “security level” of the in-
terfaces. Without an explicit ACL, all traffic from lower to
higher security levels is forbidden and all traffic from higher
to lower interfaces is permitted on a PIX firewall.

3.1.5 CiscoLinks CROCODILE uses a perl script to gen-
erate an index file from the online IOS command reference
provided by Cisco. The online PIX command reference dif-
fers in structure from the IOS reference, thus the perl script
had to be adapted. As the index file has the same format
as before, changes to the CiscoLinks module itself were not
necessary.

3.2 Additional modules

An important functionality of PIX firewalls that is signifi-
cantly different in IOS routers is network address translation
(NAT). As mentioned earlier, there is a close connection be-
tween ACLs and NAT on PIX firewalls. In particular, if a

1For our tests with the prototype tool, we specified only 26 compound
patterns. This is a small rule set compared to the orginalCROCODILEdistri-
bution, which provides a default rule base of about 200 compound patterns,
some of which contain nested quantifiers yielding compounds of substantial
complexity.



computer behind the firewall should be reachable from out-
side, we have to configure a static NAT for this computer.
This part of the configuration is covered by the module In-
boundPIX. InboundPIX checks if there are appropriate trans-
lations for each of the reachable computers.

Another important aspect is the VPN configuration of
a PIX firewall. A module covering VPN issues would be
worthwhile, but has not been implemented yet.

4 Experimental results

We usedFIRECROCODILE to analyze the configuration of
the Internet firewall of the German Research Center at Karls-
ruhe (Forschungszentrum Karlsruhe). The Research Center
has approximately 3,800 employees and more than 10,000
computers connected to the LAN, subdivided into 240 sub-
nets. The research activities of Forschungszentrum Karls-
ruhe cover a total of 11 programs in five research areas.
There are close cooperations with research centers, univer-
sities and industrial companies in 47 countries all over the
world. Thus, the network and application structure is quite
complex. The PIX configuration file consisted of about 1,800
command lines, among which about 1,000 were filtering
rules.

We noticed that the modules ConnectivityPIX and
IngressEgressPIX, which are known to be most time-
consuming, were able to handle even quite large ACLs. In In-
gressEgressPIX, the running time mainly depends on length
and structure of the specified blackset/whiteset. We ana-
lyzed the given configuration (with ACLs consisting of over-
all about 1000 lines, as mentioned above) for compliance
with an IngressEgressPIX specification comprising 20 rules.
In these experiments, the running time was 5 to 10 minutes
on a PC with a Pentium 4 processor with 3 GHz, 512 MByte
RAM, SuSE Linux 9.2 operating system, and Perl 5.8.5, de-
pending on the structure of the specified blackset/whiteset
under study.

The module ConnectivityPIX revealed that 20 of the
1,000 filtering rules were void, as they were completely cov-
ered by other rules. Hence, it served to simplify the rule
structure and potentially avoid future errors due to redun-
dant rules. The connectivity chart produced by this mod-
ule presented an overview of configured routes and the ser-
vices available at internal computers. The connectivity chart
replaced the previous documentation that had been created
manually, which is an error-prone process.

The module CompoundPatterns found 7 filtering rules
that rendered internal computers unconditionally reachable
from the Internet without any access restrictions. Those rules
had once been inserted as a test or a quick fix, and had not
been removed or documented.

The module RATemulation hinted to activate the
‘floodguard’ of the PIX firewall, which until then had been

inactive. Floodguard is a mechanism to protect the PIX fire-
wall against denial-of-service attacks.

In summary,FIRECROCODILEproved helpful in find-
ing residual weaknesses in a complex firewall configuration,
although this configuration had been actively maintained and
documented by manual work prior to our tool check. Beyond
the unveiling of potential weaknesses, for a new employee,
taking over the administration of the firewall, using this tool
provided a comprehensive and quick insight into the given
configuration.

5 Related Work

The static analysis of firewall configurations is a field of ac-
tive research. A number of tools have been developed that
assist the human expert in interpreting configuration settings,
locating potential misconfigurations, and removing config-
uration defects and weaknesses. Most approaches (e.g.,
[4, 5, 6, 7, 8, 9, 10]) only address the configuration of fil-
tering rules, while other aspects of a firewall configuration
— e.g., configuration clauses that control network address
translation, encryption, time synchronization, logging — are
out of scope. In contrast to that, theCROCODILE framework
has powerful mechanisms for checking filtering properties
[2], but it is equally capable of evaluating general network
management and security policy aspects of a firewall config-
uration.

5.1 RAT

The Router Audit Tool (RAT) is probably one of the best-
known tools for router configuration checking [11]. Since
version 2.2, RAT also supports evaluation rulesets for PIX
firewalls. The tool is freely available from the Center for
Internet Security [12].

The RAT tool checks configuration files against con-
figurable checking rules mirroring network security best
practice. A RAT rule consists of a pattern, which is declared
as either required or forbidden. The rule is considered as
“pass” or “fail” depending only on whether or not the cor-
responding pattern appears in the configuration text. RAT is
thus limited to line-by-line comparisons at a purely syntacti-
cal level. Such a naive approach lacks the essential abilities
for deeper analysis, as it is required for multi-clause config-
uration settings, or for the analysis of firewall filters. While
RAT is not really capable of semantic analyses of access con-
trol lists, its evaluation covers diverse configuration aspects
beyond firewall filter settings.

5.2 Lumeta and AlgoSec Firewall Analyzers

The Lumeta Firewall Analyzer (LFA) [4] simulates the fil-
tering behavior of a firewall with graph algorithms. A query
engine operates on a topology graph representing different
network zones and gateways between them, and answers



user queries concerning the reachability of certain services
on given nodes in specific zones. The LFA presents a graphi-
cally appealing HTML view of accepted and rejected incom-
ing and outgoing packets, itemizing IP services, hosts, and
networks. UnlikeCROCODILE, which computes a symbolic
representation of the exact blackset and whiteset of the fire-
wall filters, the LFA explores the blackset and whiteset by
continuously trying out different combinations of source ad-
dress, destination address, and IP service, including the use
of wildcards. In this way, dead or contradictory filtering rules
cannot be identified. Unfortunately, hardly any substantiated
assertion about speed, completeness, and generality of the
LFA algorithm can be made, because [4] and [9] give no ad-
equate performance data and there is no further information
known to us.2

The AlgoSec Firewall Analyzer from Algorithmic Se-
curity Inc. is a commercial tool based on LFA [13].

5.3 Expert system for analyzing firewall rules

Eronen and Zitting developed another tool for analyzing ac-
cess control lists. Their approach is to translate ACL clauses
to facts expressed in a Prolog-like programming language
[5], and to infer properties of the ACL from these facts.

In essence, ACL clauses are represented as 6-
dimensional hypercubes, with numerical intervals restrict-
ing each dimension. These dimensions cover protocol, ad-
dresses, ports, and packet flags. In addition to ACL infor-
mation, a so-called knowledge base is supplied with further
topology related information. An inference engine then an-
swers queries regarding the filtering behavior of the ACL un-
der consideration. By taking into account routing informa-
tion from the knowledge base, queries cannot only be made
on ACLs themselves, but also on the network data flows con-
trolled by these ACLs. This resemblesCROCODILE’s analy-
sis that uses routing information to determine those address
ranges that can be reached via a given interface.

A query is specified as a Prolog-like goal expression.
The inference engine will find all possible substitutions for
the free variables in a given goal that are consistent with
the facts stored in the knowledge base. A typical goal for
ACL analysis is, for example: “Find all ACL clauses that
are never matched”. This will yield a characterization of all
dead clauses. Eronen and Zitting do not explicitly mention
blackset/whiteset computations as a general means for ACL
analysis, but in principle, arbitrarily complex queries may be
specified as long as the knowledge base contains sufficient
facts to determine a solution. A challenging problem with
the inference engine is the retranslation of query results into
a clear evaluation report. To present evaluation results in a
format and order meaningful to the average firewall adminis-
trator, substantial retranslation effort may become necessary.

2We tried to contact the authors but received no reply. Meanwhile the
firewall analyzer is a commercial product and some details of its inner work-
ing are apparently considered business secrets.

5.4 Equant ACL consistency checker and
Firewall Policy Advisor

The ACL consistency checker (VACL) developed by Equant
[6] and the Firewall Policy Advisor (FPA), developed by Al-
Shaer and Hamed [7] both avoid any complexities caused
by a comprehensive analysis of a complete filtering set, but
are restricted to the computation of rule interference between
pairs of filtering rules only. Considering only rule pairs sim-
plifies the computation substantially. However, the analy-
sis misses some types of interference, for example situations
where a rule is “dead” because it is completely “shaded” by
the combined effect of a preceding subset of rules — but not
by any single predecessor.

5.5 Binary decision diagram for ACL analysis

Hazelhurst presents a prototypical tool for interactively
querying the filtering behavior of an ACL in [8]. To this
end, the ACL clauses are represented as a so-called reduced
Binary Decision Diagram (BDD). This yields a unique char-
acterization of the ACL, comparable to our blackset/whiteset
representation.

Similar to the expert system described in Section 5.3,
the tool answers questions about accepted and rejected pack-
ets of a specific ACL. The tool allows to calculate the domi-
nance relation between two given ACLs, that is, whether two
ACLs are equivalent, or one implies the other. Based on their
BDDs the net difference between two ACLs or between an
altered ACL and its previous version can also be computed,
that is, their differential blackset and whiteset.

Making queries to the system is complicated by the
use of boolean expressions to construct and query the BDDs.
The same holds for the interpretation of query results: Suit-
ably retranslating complex boolean expressions back into or-
dinary ACL syntax is far from trivial. In fact, [8] mentions
the presentation problem and the inefficient implementation
of the tool, as well as missing experience with real-world in-
put data as the most important areas for further study.

5.6 Generating firewall configurations

An interesting alternative to the analysis of existing firewall
configurations is their synthesis. By deriving the configu-
ration from a high-level specification and by automatically
generating the low-level configuration clauses of a specific
firewall device, many of the common configuration errors
can be avoided. In [10] Prandini presents a prototype tool
that generates the configuration file for iptables firewalls. In
this approach, the correctness of the firewall configuration
rests mostly on the clarity of the abstract specification format.
The tool’s validation functionality is limited to simple policy
syntax checking. Like most other tools, Prandini’s prototype
only considers filtering and forwarding aspects, but does not
cover other configuration settings that may contribute to the
implementation of a security policy.



6 Conclusion

We presented the concept and prototype ofFIRE-
CROCODILE, a tool to analyze the static configuration of a
PIX firewall. The tool builds uponCROCODILE, a frame-
work for the analysis of IOS router configurations. In con-
trast to previous work,FIRECROCODILE does not process
the configuration file literally, i.e. line by line, but builds a
configuration representation from the file and analyzes this
representation. It allows to check for misconfigurations and
for violations of policies, which can be formulated very
freely. Our tool has been applied to a complex firewall
configuration that was actively maintained and documented.
Still, FIRECROCODILE identified several configuration er-
rors and weaknesses. This indicates that beyond a certain
network size, firewall configurations are too complex to be
maintained manually, and that tool support on an advanced
level, as supplied byFIRECROCODILE, is a necessity.

In the future, we would like to implement further
modules to refine and extend the evaluation capabilities of
our tool. Also, Cisco meanwhile released PIX version 7.0,
which differs from version 6.3 that our prototype currently
supports. Hence we plan to updateFIRECROCODILE to the
new PIX version.

Acknowledgment

The authors would like to thank Fraunhofer IESE for pro-
viding access to the source code ofCROCODILE, and
Forschungszentrum Karlsruhe for providing the real-world
test case.

References
[1] H. Peine, R. Schwarz, T. Schwenkler, and K. Si-

mon, CROCODILE User Manual, 3rd ed., Fraunhofer
Institute Experimental Software Engineering (IESE),
Kaiserslautern, Germany, Dec 2004. [Online]. Avail-
able: http://www.iese.fraunhofer.de/crocodile

[2] H. Peine, R. Schwarz, and T. Schwenkler, “Understand-
ing the true effect of ip access control lists,” Fraunhofer
Institute Experimental Software Engineering (IESE),
Kaiserslautern, Germany, Tech. Rep. IESE Report
No. 36.04/E, Apr 2004. [Online]. Available: http:
//bib.iese.fhg.de/reports/public/2004/iese-03604.pdf

[3] H. Peine and R. Schwarz, “A multi-view tool for
checking the security semantics of router config-
urations,” in Proc. 19th Annual Computer Secu-
rity Applications Conference (ACSAC 2003), Las
Vegas, Nevada, Dec 2003. [Online]. Available:
http://www.acsa-admin.org/2003/papers/34.pdf

[4] A. Wool, “Architecting the lumeta firewall ana-
lyzer,” in Proc. 10th USENIX Security Sympo-
sium, Washington, D.C., USA, Aug 2001. [Online].

Available: http://www.usenix.org/publications/library/
proceedings/sec01/fullpaper%s/wool/wool.pdf

[5] P. Eronen and J. Zitting, “An expert system for
analyzing firewall rules,” inProc. 6th Nordic Workshop
on Secure IT Systems (NordSec 2001), Copenhagen,
Denmark, Nov 2001. [Online]. Available: http://www.
niksula.hut.fi/∼peronen/publications/nordsec2001.pdf

[6] D. Valois and C. Llorens, “Identification of security
holes in router configurations,” inProc. 14th Annual
Forum of Incident Response and Security Teams Con-
ference (FIRST 2002), Hawaii, USA, Nov 2002.

[7] E. S. Al-Shaer and H. H. Hamed, “Firewall Policy
Advisor for Anomaly Detection and Rule Editing,” in
Proc. IEEE/IFIP 8th Intl. Symp. Integrated Network
Management (IM 2003), Mar 2003, pp. 17–30.
[Online]. Available: http://www.mnlab.cs.depaul.edu/
∼ehab/papers/im03-cr.pdf

[8] S. Hazelhurst, “Algorithms for analysing firewall
and router access lists,” University of Witwatersrand,
Johannesburg, South Africa, Tech. Rep. TR-Wits-CS-
1999-5, Jul 1999. [Online]. Available: ftp://ftp.cs.wits.
ac.za/pub/research/reports/TR-Wits-CS-1999-5.ps.gz

[9] A. Mayer, A. Wool, and E. Ziskind, “Fang: A firewall
analysis engine,” inProc. 21th IEEE Symp. on Security
and Privacy, Oakland, CA, May 2000. [Online].
Available: http://www.eng.tau.ac.il/∼yash/sp00.ps

[10] M. Prandini, “A multi-platform toolkit for the configu-
ration of packet-filtering firewalls,” inProceeding (499)
IASTED Intl. Conference on Communication, Network,
and Information Security (CNIS 2005), Phoenix, AZ,
Nov 2005, pp. 146–153.

[11] B. Stewart,Router Audit Tool: Securing Cisco Routers
Made Easy!, 1st ed., The SANS (SysAdmin, Audit,
Network, Security) Institute, Bethesda, MD, Mar 2002.
[Online]. Available: http://www.sans.org/rr/netdevices/
ciscoRAT.php

[12] The Center for Internet Security, “Router Audit
Tool,” Webpage, Oct 2003. [Online]. Available:
http://www.cisecurity.org

[13] Algorithmic Security Inc., “AlgoSec Firewall An-
alyzer,” Webpage, 2003-2006. [Online]. Available:
http://www.algosec.com/Products/FA/


