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Abstract

We consider the parallel computation of the cycle structure, i.e. the length and a repre-

sentant for each cycle, for a permutation on � elements which is given as an oracle. While

sequential algorithms for this problem can be derived from algorithms for in-situ permutation

of an array, those cannot be efficiently parallelized. We present a parallel algorithm with ex-

pected work ��� �����, transferring ideas from parallel list ranking. We present experimental

results from an implementation, and discuss applications in the field of cryptanalysis.

1 Introduction

We consider the task of computing the cycle structure of a permutation � on � numbers. The

permutation is given as an oracle, that is, when we specify �, we get back ���� from the oracle,

but have no further knowledge about the permutation’s structure. By the cycle structure we mean

that for each cycle of the permutation, we get its length and one element of the cycle.

Sequential algorithms for this task can be derived from algorithms for in-situ permutation of

arrays, because all known algorithms for this problem permute an array following the cycles of

the permutation [1]. However, for large values of � such as � � ���, a parallel algorithm is

necessary to keep the runtime in an acceptable range. We will show that parallelized versions of

the algorithms for in-situ permutation of an array will only show very small speedup for randomly

chosen permutations no matter how many processors we are willing to spend.

Therefore, we present a new algorithm to compute the cycle structure of a permutation. The

expected runtime of a sequential version is ��� �����, as is the case for previous algorithms. The
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parallel version exhibits much larger speedups than previous algorithms. The algorithms borrows

ideas from parallel list ranking algorithms [5, 7]. The main difference between our algorithm and

list ranking is the fact that a list to be ranked typically is stored in an array and thus changes to

the list by pointer doubling are possible. In our case, the structure is only implicitly given by

questioning the oracle. Therefore, changes to the permutation are not possible.

We see applications of our algorithm in the field of cryptography. First, consider pseudoran-

dom number generators (PRNGs). The transition from the current state to the next state can be

considered as a permutation on the set of states. For a simple PRNG based on linear congruences,

its period can be derived analytically. However, analysis of a complex PRNG is often not tractable.

Then, one guesses the actual period from a simplified model that can be analyzed. Computation

of the cycles would reveal the real period and identify the set of unwanted start states if there are

additional small cycles beside the main cycle. Second, symmetric encryption with a fixed key

can be viewed as a permutation on the set of codewords. A good encryption algorithm should

behave like a randomly chosen permutation. This can be tested by looking at the permutation’s

cycles. Sedgewick and Flajolet [6] give results on random permutations such as average length

of the longest cycle, average number of cycles, and so on. If, for several keys, the permutations

show a cycle structure different from that of a random permutation, then the encryption algorithm

might have some weaknesses. One challenge that lies in this application field is the size of the

permutation. For algorithms like DES and IDEA, � � ���.

The remainder of the paper is organized as follows. In Section 2, we briefly review known

algorithms for in-situ permutation of arrays and show why they cannot efficiently be parallelized.

In Section 3, we present a new algorithm for computing a permutation’s cycle structure in sequen-

tial and parallelized versions. In Section 4, we give experimental results of an implementation. In

Section 5, we discuss open problems and give a preview on further work.

2 Algorithms for In-Situ Permutation of Arrays

The task to permute an array is trivial when one is allowed to use a second array. This case is rather

seldom for large � because of memory restrictions. Instead, one considers in-situ permutation of

an array, that is, permutation without a second array. This problem has first been investigated by

Knuth [4] and has been further studied by Fich et al. [1].

All known sequential algorithms that solve this problem are cycle leader algorithms, that is,

they try to find, for each cycle of the permutation, a unique element called leader. Normally, the

leader is the smallest element on the cycle. Then the algorithms permute each cycle separately,

starting from the leader. The structure of the algorithms is given in Figure 1. The leaders are found

by checking with a procedure IsLeader() all elements from � to ��	 whether they are leaders.

As the complete array must be permuted, the runtime of all calls to PermuteCycle adds up
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void *array[n]; /* the array to be permuted */

extern int pi(int x); /* permutation as oracle */

extern in IsLeader(int i);

void PermuteCycle(int i)

{ int j; /* loop variable */

j=i;

do{ /* follow cycle */

j=pi(j);

exchange(i,j); /* exchange a[i] and a[j] */

} while (j!=i);

}

void main(void)

{ int i; /* loop variable */

for(i=0;i<n;i++)

if(IsLeader(i)) PermuteCycle(i);

}

Figure 1: The structure of cycle leader permutation algorithms
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to 
���. However, all known algorithms needing only polylogarithmic space beside storing the

array need time ��� ����� [1]. Hence, the majority of time is spent in the calls to IsLeader.

A check whether � is a leader normally proceeds along the cycle starting in �, testing � against

� � ����� for � � 	� �� 	 	 	 with procedure TestHypo(), until � is reached again or until the

assumption that � is a leader turns out to be false, see Figure 2.

The algorithms differ in their implementations of TestHypo(j,i), which give different

runtime and space requirements. The simplest test is of the form � � �. If � is smaller than �, then �

cannot be the smallest element on the cycle. Hence � is not a leader. This test leads to a worst case

runtime of �����, and to an average runtime of ��� �����, if each permutation is equally likely

[4]. Another algorithm uses 
 � � bits to store information on whether certain elements have

already been visited. It has a worst case runtime of �����
� and an average runtime of ��� �����

[1]. Note that this algorithm can achieve linear runtime for 
 � ���� but at the expense of a huge

storage requirement. The algorithm by Fich et. al. constructs a hierarchy of local minima while

proceeding along the cycle until it finds that either � is the global minimum, that is, the smallest

element of the cycle, or that � is not a leader. This algorithm has runtime ��� ����� in the worst

case.

It is also interesting to consider the space requirements of the algorithms as we target large

values of �. We do not count the space used for the array as in our application, there is no array

and the permutation is not stored explicitly. The latter is an important fact as for � � ���, storing

the permutation as a list of function values would require ��� bytes!

The simplest algorithm only needs a constant number of counters and indices, thus it consumes

������� bits beside storing the array. The second algorithm needs 
 additional bits and thus

��
� ����� in total. For � � ���, the applicability of this algorithm is restricted to 
 � �
� � ���

if we set an upper bound of 512 Megabyte on memory consumption. Therefore, its worst case

linear runtime cannot be used in such a setting. The algorithm by Fich et. al. uses up to �������

counters and indices as the hierarchy can have at most ���� levels. Thus it uses at most ������ ��

bits.

All of these algorithms can be easily parallelized, no matter whether we think about a message-

passing or a shared-memory computation model. One distributes the iterations of the for loop in

function main over the available processors. Even if this distribution is static, the large number of

iterations per processor promises — at first glance — a balanced load without further measures.

However, the speedup to be expected is quite small on the average, as the average length of

the longest cycle in a randomly chosen permutation is quite large, namely approximately �	� � �
[6, p. 358]. We consider the number of evaluations of � as a measure for runtime. The runtime

of the parallelized algorithm will be at least as large as the number of evaluations of � in function

IsLeader when called with the cycle leader of the longest cycle, namely �	� � �. If the number

of evaluations of � in the sequential implementation is � �� � ����, then the speedup to be expected
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extern void *array[n]; /* the array to be permuted */

extern int pi(int x); /* permutation as oracle */

int TestHypo(int j,int i)

{ return i<=j; }

int IsLeader(int i)

{ int j; /* loop variable */

int flag;

flag=1; /* assume i is leader */

j=i;

do{ /* follow cycle */

j=pi(j);

if(!TestHypo(j,i)){ /* until assumption turns out false */

flag=0; break;

}

}while(j!=i); /* or cycle is completely traversed */

return flag;

}

Figure 2: The structure of cycle leader checks
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is

 �
� � � � ����
�	� � � �

�

�	�
� ���� 	

We have implemented sequential versions of the three algorithms described. The implementation

of Knuth’s algorithm is the fastest on the average with � � �	��. For comparison, � � 	 for

the algorithm by Fich et. al. Hence, the speedup of any parallelized version will be smaller than

�	�� � ����, which is only 33 for � � ���, no matter how many processing elements we have.

To our knowledge, there is no known way to parallelize function IsLeader itself as methods

like pointer doubling cannot be applied. Hence, there is no hope for a more efficient parallel

algorithm based on the cycle leader algorithms above. While Hagerup and Keller [2] give a PRAM

algorithm for the in-situ permutation problem, their algorithm needs 
 � � additional bits of

storage and thus is not applicable to our problem.

3 A Parallel Algorithm for Cycle Structure Computation

In order to obtain an efficient parallel algorithm, it is necessary that no long cycle has to be tra-

versed completely by one processor. A similar problem occurs in parallel list ranking. There no

long part of the list may be traversed by one processor as well. Parallel list ranking algorithms

therefore split the list into pieces by choosing some elements as so-called rulers or anchors. The

processors start traversing the list from the anchors, and stop when they reach another anchor (or

the end of the list) [5, 7], which leads to very good speedups with high probability.

We borrow this idea and obtain the following algorithm:

0. We choose � elements as anchors.

1. For each anchor �, we follow the cycle starting in � until we reach another anchor ��. We

store ��� ��� in a list together with the number of elements we visited between � and � �.

2. The list now represents a permutation on the � anchors, with the difference that the distance

between two anchors is not 1 as in an ordinary permutation but is explicitly given as an

integer. Each cycle in this permutation represents a cycle in the original permutation, and

the sum of the distances equals the length of the original cycle.

We solve this reduced problem with one of the sequential algorithms. We obtain the length

and a representant of each cycle that contains at least one anchor. The representant is not

necessarily the smallest element, but the smallest anchor on the cycle.

3. If the sum of the lengths of the cycles found so far equals �, then we are done. Otherwise, we

need to find all cycles that do not contain an anchor. To do this, we check each non-anchor

� whether it is the leader of such a cycle. We follow the cycle starting in � until we find an
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anchor, an element � � �, or if we meet � again. In the last case, � is the cycle leader of a

cycle not containing an anchor.

The code for the algorithm is shown in Figure 3.

Ideally, anchors should be chosen randomly. However, this makes detection whether an el-

ement is an anchor costly. Ranade [5] partitions the � elements into � intervals of equal size,

i.e. �� 	 	 	 � ��� � 	, then ���� 	 	 	 � ���� � 	, and so on. In each interval, one anchor is chosen

randomly. This allows detection of an anchor in a constant number of steps (if each processing

element possesses the complete list of the anchors). His algorithm has the same complexity as pre-

vious algorithms for parallel list ranking, only the analysis is more tricky. For a randomly chosen

permutation however, even a deterministic choice of the anchors, such as multiples of ���, should

work equally well.

We now assume that we can decide in a constant number of steps whether an element is an

anchor. Then, phase 0 has work at most ���� � ����. Phase 1 has work ���� as each element is

visited at most once. Phase 2 has work ����� in the worst case and ��� ��� �� on the average if we

use Knuth’s algorithm. Phase 3 has work ����� in the worst case and ��� ����� on the average,

as it equals Knuth’s algorithm in the worst case.

For � � ��
�
��, we obtain work ��� ����� on the average and work ����� in the worst case.

Hence, the sequential algorithm has the same average case complexity as previous algorithms.

In contrast to previous algorithms, our algorithm promises more efficiency for a paralleliza-

tion. If we assume deterministic choice of the anchors, then phase 0 needs constant time. The

loop in phase 1 can be easily parallelized by a static mapping of iterations to processors. As no

data are shared, the parallelization works equally well for shared-memory and distributed-memory

machines. There is a large probability that the speedup is very good, because the probability is

small that there is a cycle of length � � � with only one anchor. The probability is

	

� � � �
�

	

�	� ���

����

Phase 3 will also show a good speedup as the probability is small that a long cycle has not been

found in phase 1 and hence must be completely traversed in phase 3.

Our algorithm needs space ��� � �����, as we need to store the permutation over the anchors

explicitly.

Note that the algorithm can be accelerated with several heuristics that use knowledge about the

number of elements not yet visited in function TestHypo to stop searches earlier [3].

The exact analysis of the algorithm’s behaviour is subject to future work. For now, we support

our arguments by an implementation.
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extern int pi(int x); /* permutation as oracle */

struct Anchorlist{ /* list of anchors */
int next; /* next anchor found */
int length; /* number of elements visited */
} alist[n];

void FindNextAnchor(int i)
{ int j; /* loop variable */
int length=0; /* counter */

j=GetAnchorValue(i); /* deterministic: j=i*n/r */
do{ /* follow cycle */
j=pi(j); length++;

} while (IsNotAnchor(j)); /* until anchor is reached */
j=AnchorNum(j); /* deterministic: AnchorNum= j / (n/r) */
alist[i].next=j; alist[i].length=length; /* append to list */

}

int IsAnchorLeader(int i)
{ int j; /* loop variable */
int flag;
int length=0; /* counter */

flag=1; /* assume i is leader */
j=i;
do{ /* follow cycle */
length+=anchorlist[j].length; /* is length++ in IsLeader() */
j=anchorlist[j].next; /* is j=pi(j) in IsLeader() */
if(!(i<=j)){ /* until assumption turns out false */
flag=0; break;

}
}while(j!=i); /* or cycle is completely traversed */
/* return cycle length if i is leader, 0 otherwise */
if(flag) return length; else return 0;

}

int TestHypo(int j,int i)
{ return ((i<=j) && IsNotAnchor(j)); }

int IsLeader(int i)
{ int j; /* loop variable */
int flag;
int length=0; /* counter */

flag=1; /* assume i is leader */
j=i;
do{ /* follow cycle */
j=pi(j); length++;
if(!TestHypo(j,i)){ /* until assumption turns out false */
flag=0; break;

}
}while(j!=i); /* or cycle is completely traversed */
/* return cycle length if i is leader, 0 otherwise */
if(flag) return length; else return 0;

}

void main(void)
{ int i; /* loop variable */
int length; /* cycle lengths */

/* phase 0: choose r anchors, empty with deterministic choice */
for(i=0;i<r;i++) FindNextAnchor(i); /* phase 1 */
for(i=0;i<r;i++) /* phase 2 */
if(length=IsAnchorLeader(i)) printf("Leader %d, length %d\n",i,length);
for(i=0;i<n;i++) /* phase 3 */
if(IsNotAnchor(i))
if(length=IsLeader(i)) printf("Leader %d, length %d\n",i,length);

}

Figure 3: New algorithm to compute a permutation’s cycle structure
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4 Experimental Results

We implemented our algorithm on a workstation with a Pentium II processor running at 333 MHz,

with FreeBSD operating system and GNU C compiler. We tested on the one hand randomly cho-

sen permutations for � � ���� 	 	 	 � ���, and on the other hand used the lrand48 pseudorandom

number generator function as permutation on � � ��� elements. This permutation has only one

cycle, and hence the algorithm terminates after phase 2. In all cases, we used � �
�
� anchors.

The randomly chosen permutations were stored as an array. Hence, the available main memory

gave an upper bound on �. We created the permutations with the procedure given in [6, Prog.

6.1] for randomly permuting an array. Here, the array was initialized with pi[i]=i. We used

lrand48 as pseudo random number generator and used multiples of 100 as seeds.

To measure execution time, we used the number of calls to pi instead of wall-clock time in

order to abstract from unwanted influences on execution time such as cache behaviour, which might

have significant impact depending on the permutation. We also felt that neglecting the number of

instructions executed in a loop iteration beside evaluation of the permutation does not hurt, as the

evaluation of permutation � will often dominate the time spent in one iteration of the loops in

phases 1 and 3.

We found that the average number of evaluations was about �	�� � � � ����, over all �, in

accordance with our arguments of the previous section.

We found that the speedups in phases 1 and 3 were 350 and 838, respectively, as the average

over 5 permutations, when we simulated 1,024 processors. To do this, we ran the algorithm on

the workstation, and counted the evaluations for each loop iteration. Then we used a cyclic static

mapping of iterations to processors to compute how many evaluations each processor would have

done, and how many were there in total. From these numbers, we computed the speedups. The

speedup for phase 1 is much lower than for phase 3 as we counted the number of evaluations

j=alist[j].next in phase 2 as evaluations that are mapped to processor 0. To speed up our

implementation, we had replaced Knuth’s algorithm in phase 2 by the faster algorithm using 
 � �

bits and thus needing only ���� evaluations.

We found that the average length of the longest cycle found was �	�� � � over all �, which is

even larger than the number given in [6]. The average number of cycles grows slowly with � and is

about 15 for � � ���. Note also that the average number of elements not visited in phase 1 is only

about 3,500 for � � ���. Thus, if we are not interested in the “micro”-structure of the permutation,

we can stop after phase 2 and omit phase 3.

For the lrand48 application, we found that our sequential implementation executed about ��	

evaluations per minute. Hence, to complete phase 1, it would need ��	 minutes or 364 days. On a

workstation cluster with �� processors and a 35% percent efficiency, phase 1 would be completed

in 8 days. Phase 2, solving the problem for ��� anchors needs less than 30 minutes. It seems
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that following a list instead of evaluating a permutation needs more time, as the ��� evaluations

of � would need less than a minute. We re-implemented the application on a Compaq XP1000

workstation with an Alpha 21264 processor running at 500 MHz. After setting a few compiler

switches, we obtained a performance increase by a factor of 5 compared to the Pentium-based

workstation. We attribute this to the fact that the Alpha is a 64-bit microprocessor and is running at

a higher frequency. For a multiprocessor such as a Cray T3E with �	 � �	� Alpha microprocessors

running at 750 MHz, we guess that it would take less than 7 hours to complete phases 1 and 2.

5 Open Problems and Further Work

An exact analysis of the parallel complexity of our algorithms remains to be done. Furthermore, it

is not clear how many processors can be successfully employed, if the processor count reaches or

even goes beyond the number of anchors.

Future work will be concentrating on a message-passing implementation for a workstation

cluster or multiprocessor to validate our preliminary results. Another permutation to be tested will

be the DES encryption algorithm with a fixed key. The number of elements in this permutation

is by a factor of ��� larger than in the lrand48 case. Also, evaluation of the DES permutation

will take much longer than evaluating the lrand48 permutation. Therefore, an implementation

without further optimization could lead to a runtime of more than a hundred years.

Hence, an interesting field of research will be the investigation of the performance improve-

ment possible through the use of programmable hardware such as field-programmable gate arrays

(FPGAs). In the simplest case, these devices are added to the processors (as boards in the cluster

scenario) and are used to accelerate evaluation of the permutation. In the case of DES, this could

lead to a performance improvement by more than a magnitude. Also, the control flow in our algo-

rithm is quite regularly. Thus in a single FPGA, several processing instances to solve the problem

could be implemented and multiple FPGAs could be used. It could thus be possible to construct a

specialized FPGA-based machine to solve the cycle-structure problem.
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