
Abstract – Unsolicited commercial emails (UCE,
spam) are currently being fought using reactive meth-
ods, filtering being the most common. Reacting means
to be always one step behind. So the focus on fighting
spam should be on prevention. Current proposals focus
on fixing SMTP's lack of authentication, but introduce
two major problems: First of all current attempts break
existing functionality and, second, it seems to be
hardly possible to enforce a world wide change of
SMTP.

Therefore other preventive measures should be imple-
mented. The most promising approach is to prevent
spammers from collecting email addresses. Several
proposals show ways to obfuscate addresses on web
pages, another proposal was to create HTTP-tar pits in
order to catch harvesters.

Our tests with real world harvesters showed room to
improve those tar pits by combining them with SMTP
tar pits. We report on the success of our experiments
with this combination.

Keywords – Spam, SMTP, HTTP, tar pit, proactive
anti-spam-measures

1 Current anti spam measures

1.1 Reactive methods

Currently, most relevant methods to reduce the amount
of UCE in a user's inbox rely on some kind of filtering.
The most basic approach is probably blacklisting, i. e.
each incoming request's IP-address on a SMTP-server
is tested against a list of known spamming hosts.
Although, when invented back in the late 1990s, it sup-
ported the demand of shutting off so called open
relays, it often has heavy side effects: Almost all big
email providers have already been blacklisted on at
least some of the widely available blacklists.

Other solutions are content filters applied to the header
and / or the body of a mail message. Filtering is based
on a “bad-word-list”. Later improvements included
scoring-mechanisms to weight words. Those filters
require a lot of fine-tuning and maintenance: Spam-
mers are reported to register mail accounts with online
services known to have spam filtering and to test their
spam against those filters. This leads to a permanent
“one-step-behind” situation for filters, no matter how
advanced content-filtering becomes [GAN05].

Another still reactive way to reduce spam is greylist-
ing, i. e. forcing the sending MTA of a message to
resend it after a short time. As of now, this solution is
quite potent, as most spam is sent through so called
zombies, usually Windows-PCs infected with some
worms. Those worms contain their own SMTP-engine,
which is usually quite simple. Most of them are still
unable to handle the temporary unavailable condition

Combining SMTP and HTTP tar pits to
proactively reduce spam

Tobias Eggendorfer
ITIS e. V. Institut für Technik Intelligenter Systeme

An-Institut der Universität der Bundeswehr
(University of Federal Armed Forces Neubiberg)

Werner-Heisenberg-Weg 39
85579 Neubiberg, Germany

Jörg Keller
FernUniversität in Hagen

Fakultät Mathematik und Informatik
Lehrgebiet Parallelität & VLSI

58084 Hagen, Germany

used in greylisting and therefore consider this condi-
tion as an error condition and stop delivery. Greylisting
has two major disadvantages: It slows email communi-
cation down and it is likely to be useless when those
worms will implement better SMTP-engines, which is
to be expected soon.

1.2 Modifying SMTP

The above touched disadvantages of reactive anti-spam
methods brought the discussion on fixing the real cause
for spam: SMTP lacks authentication. So the key
approach is to implement some kind of authentication
and authorisation. Beside some side effects seen on
current methods, like preventing intended mail-for-
warders, the real problem is to enforce the modified
standards world-wide. This is not only an organisa-
tional problem resulting from competing standards and
companies trying to win their share of market by pat-
enting their solutions, but also and mainly due to the
broad, not centrally maintained base of billions of
SMTP-clients and millions of servers in the internet.
Back at ARPANET times it was possible to change the
standard to IP almost over night, but the internet has

grown. There are still thousands of open relays out
there, although open relays are deprecated and black-
listed since at least ten years. Considering this, any
change to SMTP would need at least another ten years
to be broadly available.

1.3 Preventing harvesters

Considering this, the search for new solutions has been
opened. Probably, the most promising is to prevent
spammers from collecting email addresses, because
spammers currently only use two relevant ways to col-
lect addresses: One is by installing worms and trojans
on computers and have them read local addressbooks,
emails or even all files, collect email addresses found
there and spam to them. There is an obvious solution to
this: Have users install decent and safe operating sys-
tems, virus scanners and personal firewalls and protect
their PCs with external firewalls and application level
malware filters.

The other source of email addresses for spammers is
the internet, most notably the www and the usenet.
There, they collect email addresses using spidering

Figure 1 Illustration of how a tar pit pollutes a harvester's list of links to visit

technology known from search engines. The pro-
grammes doing this job are called “harvesters”.

Again there are some ways how to handle them: One is
to obfuscate email addresses, so they would not be rec-
ognised by harvesters. In [EGG05a] the author sug-
gested several solutions, that are both compatible to
any installed browser and barrier free, and proved their
effectiveness in a still ongoing real world experiment
[EGG05c]. Later, in [EGG05m], the author proposed
an automated solution to dynamically obfuscate email
addresses published on the web, thereby solving the
problem to modify or redo existing webpages.

2 Tar pits

The other approach to bar harvesters from collecting
mail addresses is to trap them in a tar pit. The basic
concept is to create random webpages containing links
to the same or other tar pits. This pollutes the list of
webpages-to-visit the harvester has, and keeps the har-
vester returning and finally staying in the tar pit. As
soon as the harvester is caught, all of its resources are
attracted to the tar pit, thereby preventing it to visit any
other webpage and collect email addresses there.

The basic concept is rather simple: On each page of the
tar pit, it offers a certain amount of links. The tar pit
we used for testing offered an average of 15 links per
page. A harvester coming across the tar pit will then
extract all links he found from this web page and add
those links to his list of webpages to visit.

On its first visit, 15 links were added. The harvester
will then go through the list and visit each page listed
therein. As soon as it calls an URL published by the tar
pit earlier, it will receive another 15 links from the tar
pit – all of them pointing back to the tar pit. The basic
principle is also shown in Figure 1.

2.1 HTTP Tar Pit Requirements

Although the concept sounds simple, setting up a func-
tional and safe tar pit is not as easy as it might seem at
first glance: First, “honest” spiders, such as Google-
Bot, should not be trapped. Second: If the tar pit pub-
lishes links back to itself, they need to be different, i.e.
the harvester should consider them new. And last but
not least the tar pit needs to make sure it is not hit by a
denial of service condition if a harvester runs in circles
through the site.

2.2 Do not catch good spiders

The first requirement, safe guarding the good, is easily
implemented: Any decent spider should obey the

robots.txt standard [HEM03], [W3CAPPB]. Excluding
any spider from the page would do. As of now, har-
vesters ignore robots.txt. From the harvester's develop-
ers point of view this is a logical decision to find even
more email addresses.

Practical experiments proved this assumption to be
correct. Both downloaded harvesters and those visiting
a test tar pit showed this behaviour.

If in the future harvesters learn not to ignore the
robots.txt-standard, this would be a positive result of
tar pits: Hiding email addresses on web pages becomes
as easy as hiding those pages from robots with a
robots.txt file.

2.3 Generate different links pointing to
the same file

The next step was to generate new pages containing
links to the page itself using different URLs. In the test
setup, filenames might have between 5 and 30 charac-
ters each and there is a choice of different filename
extensions like “.htm”, “.html”, “.shtml” or “.shtm”.

Using symlinks on the server with every possible file-
name and extension would generate approximately
4·3632 ≈ 2,5·1050 links in the filesystem. Despite the
huge amount of space needed only for the symlinks,
most filesystems are unable to handle so many files in
one directory in an efficient manner.

Therefore, the web server should redirect any request
received to the tar pit script. There are some ways to
do so. One is mod_rewrite [TOF05], [CRA05], another
uses aliases and the simplest is to use an ErrorDocu-
ment. The later has the advantage to be available for
almost anyone: Almost any of the webspace providers
offering an opportunity to run PHP on their servers
also allow the ErrorDocument directive within a “.htac-
cess” environment.

The required ErrorDocument-directive is:

ErrorDocument 404 /spamfight/index.php

The only thing to take care of with this approach is to
replace the 404-HTTP-Header with a 200-OK-HTTP-
Header. But this is easily done: If a script sends a
HTTP-Status, the web server will use this one.

The alternative is using aliases. This usually requires
access to the main web server configuration:

<Directory /spamfight>

 AliasMatch ^/spamfight/[A-Za-z0-9]+\.

[A-Za-z0-9]+$ /spamfight/index.php

</Directory>

mod_rewrite offers amazing possibilities when map-
ping different URLs to a file. [CRA05] even demon-
strated how to implement a content-management-sys-
tem based on mod_rewrite and some server side
includes. But for the purpose of a tar pit, mod_rewrite
has a serious disadvantage: It sends a “Location
moved”-HTTP-Response. So a harvester might see it
has been redirected to a location it has visited before. It
might then recognise the tar pit.

2.4 Avoid Denial of Service

The most difficult task is to avoid a denial of service
condition: If the tar pit publishes 20 links per page, the
harvester will add those links to his list of pages to
visit. On each of those links visited, it will receive yet
another 20 links. Within a short time, the harvester has
some millions of links in his list all pointing to the tar
pit. Counting in rounds, the list grows exponentially. A
round is defined by induction: The first round is the
first visit to the tar pit and each subsequent round is the
moment, when all links collected during the previous
round have been visited.

If the harvester supports parallel spidering and is run-
ning on multiple machines, it might have enough band-
width to pull the whole server down. If the server is
only serving the tar pit, this does not matter – but if the
tar pit is run on an a server also used for other pur-
poses, the “real” pages become undeliverable.

To avoid those problems, the number of instances of
the tar pit running should be limited to a maximum.
But using PHP as programming language, there is no
simple way to determine how many instances of the
same script are currently running: ps -ef e.g. will not
list those scripts.

Implementing some kind of interprocess communica-
tion is needed. The easiest mean are semaphores.
Binary semaphores are commonly used to programme
mutually exclusive tasks: A semaphore S is created.
Each task about to enter its critical section first does a
P(S)-operation. This action is atomic, i.e. the operating
system's scheduler won't interrupt it. P(S) decrements
the semaphore by one if the semaphore is still greater
than zero. If not, it will send the requiring process to
waiting state and bring it back to the ready state as
soon as the semaphore is increased again [TAN02].

For the tar pit, the whole tar pit script is enclosed with
P(S) and V(S). Doing so, the maximum of parallel pro-
cesses is limited by the semaphore's start value, e.g. if
20 processes are allowed to run simultaneously, the
semaphore's initial value is 20.

For a more detailed explanation of the tar pit, see also
[EGG05o].

3 Optimisation of the tar pit

Although the basic tar pit works in real-world experi-
ments, tests with off-the-shelf harvesters available in
the web gave some hints on how to modify the tar pit
to be even more effective.

Most harvesters implement some kind of progress
meter by listing the last email addresses found. The
basic tar pit did not deliver any email addresses. A
human operator could then realise that his harvester got
caught by a tar pit. He could even blacklist the tar pit
and inform other spammers of its existence.

To have harvesters stick longer to the tar pit, the tar pit
should offer some email addresses to the harvester. But
those addresses need to be existent: Random addresses
under random domains might easily contain existing
email addresses belonging to someone else who then
will receive spam.

The other downside to random addresses is the so
called bounce spam. This is spam sent to a non-existent
address seeming to originate from another domain or
email address than the one the spammer has. For each
undeliverable spam message an error message is cre-
ated and sent to the supposed sender's address, and, if
it is also non-existent, to the postmaster of his domain.

Considering this, email addresses published by the tar
pit should exist and a mail server should accept mes-
sages to them. However, setting up a plain mail server
to accept this spam and store it in some kind of data-
base would thwart the efforts in setting up the http tar
pit.

Instead, it would be nice to again trap spammers in a
tar pit when they try to deliver mail to the addresses
collected from the webpage.

4 SMTP tar pit

To achieve this, a SMTP tar pit would be needed.
There are different kinds of SMTP tar pits available in
the net, as quite a lot of anti-spammers use them,
although none of them has been used to our knowledge
in combination with the new HTTP tar pit.

SMTP tar pits usually accept mails, but they answer
incoming SMTP connections very slowly and thereby
waste the time of the sender. There are two basic con-
cepts in slowing down the connection: One is to slow
down the connection on the TCP/IP-Level by using
minimum frame sizes, sending each frame on its own
etc. [LIoA]. The other, more common concept, is to
use application level slow downs. To do so, SMTP
continuation lines are used [RFC0821]: Each request is
answered with dozens of response lines. Those lines
are usually sent with short delays in between, adding
an extra slowdown.

Figure 2 shows an example SMTP dialogue. Lines 2 to
8 are an example for continuation lines: After sending
the status code a dash is written. This dash indicates,
that additional lines will be sent by the server. Lines
10, 12 and 15 are single-line answers.

The SMTP tar pit will add a lot of bogus continuation
lines, forcing the client to wait.

Doing so, bulk mailers should be slowed down on each
connection they have to a tar pit. But set up on their
own, SMTP tar pits are quite ineffective: They only
slow down one connection to a certain mail server at a
time, which usually has almost no impact, as one server
is able to accept many mails during one connection and

most bulk mailers are capable of connecting to many
mail servers in parallel.

This turns SMTP tar pits into a not very effective anti
spam measure [EGG06].

In contrast, the proposed HTTP tar pit will block even
a massively distributed harvester within a short time by
inserting an exponentially growing amount of links to
itself into the harvester's webpages-to-visit list.

5 Combining HTTP- and SMTP-
tar-pit

Combined with a HTTP tar pit, a SMTP tar pit could
serve as a MTA for the addresses published by the
HTTP tar pit. Although the SMTP tar pit has virtually
no effect on the performance of a spammer's bulk
mailer, it would turn the HTTP tar pit even more effec-
tive by adding an additional level of invisibility to it.

5.1 Implementation

5.1.1 Modification of the HTTP tar pit

To combine the HTTP tar pit and a SMTP tar pit, the
existing HTTP tar pit has been modified to deliver
email addresses under certain domains. As those gener-
ated email addresses are shown to the harvester's
operator, they should look like real addresses consist-
ing of a first and a family name.

To achieve this, a list of first names and family names
has been collected from the web. From each of those
lists, 150 names were randomly selected. While run-
ning, the tar pit generates an email address by ran-
domly selecting a first and a family name, joining them
with a dot and appending one out of the configured
domain names.

To make it even harder to identify the tar pit, the
amount of links and email addresses published has
been changed to random, additional random text is
inserted and a few new domains have been registered.

5.1.2 Selection and adaption of an
existing SMTP tar pit

As SMTP tar pits are commonly used in the internet,
available tar pits were evaluated. One of the key
requirements was the ability to easily modify the
source code to later store collected emails in a data-
base. Other requirements included, but were not lim-
ited to, security considerations and compatibility to the

1: 220 mail.example.com ESMTP Postfix

2: EHLO

3: 250-mail.example.com

4: 250-PIPELINING

5: 250-SIZE 10240000

6: 250-VRFY

7: 250-ETRN

8: 250 8BITMIME

9: MAIL FROM:<user@example.org>

10: 250 Ok

11: RCPT TO:<someone@example.com>

12: 250 Ok

13: DATA

14: 354 End data with <CR><LF>.<CR><LF>

 ... Data section goes here ...

15: 250 Ok: queued as DD71B1051A3

Figure 2 An example SMTP-dialogue (client input
in italics)

existing platform without the need to install too much
additional software.

The most promising candidates were [REHWWWc],
[DON04a] and [GRO06]. [REHWWWc] required the
installation of Java on the tar pit and had only very few
configuration options. [DON04a] is a wrapper config-
ured to run between a local MTA and the internet. This
offers the opportunity to run the tar pit on a real MTA
delivering mail to real users. However, in the setup of
the existing tar pit, it would have required to install a
MTA. To avoid possible security risks introduced by
each additional line of code and due to the fact that the
wrapper is written in C with all the risks introduced by
C's memory management, the decision was to not use
it. Furthermore the wrapper requires an explicit black
list of IP addresses to trap in its tar pit, which would
increase the time and effort to configure it.

[GRO06] instead is written in Perl, which reduces the
risk of memory leaks and buffer overflows. Also, a
Perl interpreter was already been installed on the tar
pit, so no additional software was needed. Further-
more, the programme is very configurable, offering
almost all options needed. The well-documented
source code has then been reviewed for potential secu-
rity problems, where only a minor enhancement was to
be made.

By default, smtarpit refuses to accept mail with a 500-
SMTP-error-code after having wasted the bulkmailer's
time. This refusal might finally lead to bounce spam.
To avoid this, the tar pit has been modified to either
return a “temporarily unavailable” status or accept the
message, with a probability of acceptance of 70%. So
it is very likely that after some attempts a message
could be delivered – after only ten attempts, the prob-
ability reaches 99,9994%. The standard configuration
for sendmail e. g. would retry delivery for five days
every thirty minutes resulting in a non-delivery prob-
ability of 3.2 * 10-126. This is considered to be accept-
able.

5.2 Real world experiment

To test the efficiency of the combined HTTP and
SMTP tar pit, hidden links to the tar pit were published
in the internet in co-operation with some well fre-
quented webpages.

The HTTP tar pit already proved its efficiency: It kept
some harvesters returning for more than 20'000 visits,
blocking each of them up for one or more days. It is
very likely that their operator interrupted them because
no email addresses were delivered.

With the combined tar pit, this shortcoming has been
resolved: four weeks after the installation of the tar pit,
one harvester stayed for seven days and more than
401'000 visits. This is a daily average of 57'285 visits.
This harvester was run on a rented server at a Germany
based web service provider, who confirmed by phone
that he cancelled the hosting contract due to too many
spam complaints originating from this server's IP on
the same day the harvesting stopped.

By analysing the tar pit's log file by IP addresses, we
identified the next two of top three visiting IPs: The
second requested more than 94'400 pages within 24
hours, the third 32'197 pages. Both of them used
dynamic IP addresses, i.e. IPs that will change after a
maximum of 24 hours.

Looking at the top visiting harvesters' user agent, i.e.
the identification string a browser sends, we found one
of them to be quite unique and therefore supposed it to
be used only by one installation of the harvester. It
might however be that this user agent is specific for
this harvester and not for one specific installation of it.
So those numbers are less accurate than those based on
the IP, but, due to the usage of dynamic IPs we had to
identify something else to determine returning harvest-
ers after they changed IP.

Based on its user agent, the harvester that counted for
94'400 visits within 24 hours from one IP is supposed
to have spent a total of more than 537'000 visits in 20
days, this is a daily average of 26'850 visits.

Those results went far beyond the expectations we had
when combining the SMTP and HTTP tar pit to
increase the HTTP tar pits efficiency: We accounted
for 20 times as many visits to the tar pit than on a
standalone HTTP tar pit.

The SMTP tar pit also attracted some spammers:
Within four weeks, we counted approximately 3000
connection attempts. Compared to the HTTP tar pit's
numbers, this looks rather inefficient, but it is in good
accordance to our theories: During one SMTP session,
all messages from one client to this server might be
transferred. Therefore much fewer connections are
required for SMTP than for HTTP. We also found our
theories concerning tar pit aware bulkmailers [EGG06]
to be correct: Most connections lasted for less than a
second.

Considering those two facts, the SMTP tar pit per-
formed well and served its purpose to further obfuscate
the HTTP tar pit.

6 Conclusion

Combining a HTTP tar pit with a SMTP tar pit
increases the efficiency of the tar pit because the
operator of a harvester might watch his harvester
sucessfully collecting email addresses. This increases
the time the harvester stayed in the tar pit. In our test
setup, harvesters were caught for up to three weeks and
spent 20 times more visits than to a simple HTTP tar
pit.

Due to the huge amount of tar pitted email addresses
the spammer collected, a welcome side effect is the
delay of a later spam run by the SMTP tar pit, although
this effect is reduced due to more and more tar pit
aware bulkmailers.

The combination of both tar pits had a clear impact on
the efficiency of the HTTP tar pit. The SMTP tar pit
does not serve as first line of defense, as most other
SMTP tar pits currently do, but supports the HTTP tar
pit. Thereby the disadvantages inherent to the system
of a SMTP tar pit have been overcome.

Furthermore, both tar pits were programmed with a
focus on security, therefore both should not increase
the risk of break ins into the tar pit server. A well
documented configuration and installation process
offers the possibility to easily implement the combined
tar pit by any system administrator.

References
[CRA05] Crane, Aaron, mod_rewrite as Business

Logic: A Case Study of The Register
presented at , Stuttgart, 2005

[DON04a] Donnerhacke, Lutz, Teergrubing
Wrapperonline at http://www.iks-
jena.de/mitarb/lutz/usenet/antispam.html,
2004

[EGG05a] Eggendorfer, Tobias, Methoden der
präventiven Spambekämpfung im
Internet, Masterthesis at Fernuniversität
in Hagen, München, Hagen, 2005

[EGG05c] Eggendorfer, Tobias, Spam proof
homepage design. Methods and results
of an ongoing study presented at ,
Stuttgart, 2005

[EGG05m] Eggendorfer, Tobias; Keller, Jörg,
Preventing Spam by Dynamically
Obfuscating Email-Addresses presented
at CNIS 2005, Phoenix, 2005

[EGG05o] Eggendorfer, Tobias, Stopping
Spammers' Harvesters using a HTTP tar

pit presented at AUUG 2005, Sydney,
2005

[EGG06] Eggendorfer, Tobias, Comparing SMTP
and HTTP tar pits in their efficiency as
an anti-spam-measure presented at Spam
Conference 2006, Cambridge, MA, 2006

[GAN05] Gansterer, Wilfried et. al., Anti-spam
methods - state of the artin: , Institute of
Distributed and Multimedia Systems,
University of Vienna, 2005

[GRO06] Grosse, Paul, SMTarPit v0.6.0online at
http://www.fresh.files2.serveftp.net/smta
rpit/index.html, 2006

[HEM03] Hemenway, Kevin, Calishain, Tara,
Spidering Hacks. 100 Industrial-Strength
Tips & Tools, O'Reilly, Sebastopol,
2003

[LIoA] Li, Kang et al., Resisting Spam Delivery
by TCP Dampingin: , University of
Georgia, Athens, GA, o. A.

[REHWWWc] Rehbein, Daniel,
Mailvernichter. Ein einfacher
Mailserveronline at http://www.bahnhof-
hamburg.de/mailserver.html, 2006

[RFC0821] Postel, Jonathan B., Simple Mail
Transfer Protocolonline at
http://www.ietf.org/rfc/rfc0821.txt (u.a.),
1982

[TAN02] Tanenbaum, Andrew S., Moderne
Betriebssysteme, Pearson Studium,
München, 2002

[TOF05] Toftum, Mads, Apache mod_rewrite,
the Swiss Army Knife of URL
manipulation presented at , Stuttgart,
2005

[W3CAPPB] W3C, W3C Recommendations.
Appendix B: Performance,
Implementation and Designonline at
http://w3.org/TR/REC-
html40/appendix/notes.html, o. A.

	1 Current anti spam measures
	1.1 Reactive methods
	1.2 Modifying SMTP
	1.3 Preventing harvesters

	2 Tar pits
	2.1 HTTP Tar Pit Requirements
	2.2 Do not catch good spiders
	2.3 Generate different links pointing to the same file
	2.4 Avoid Denial of Service

	3 Optimisation of the tar pit
	4 SMTP tar pit
	5 Combining HTTP- and SMTP-tar-pit
	5.1 Implementation
	5.1.1 Modification of the HTTP tar pit
	5.1.2 Selection and adaption of an existing SMTP tar pit

	5.2 Real world experiment

	6 Conclusion

