
A System for Secure IP Telephone Conferences

Axel Treßel
T-Systems Enterprise Services GmbH

Security Solutions
Postfach 91 00

55541 Bad Kreuznach, Germany
axel.tressel@t-systems.com

Jörg Keller
FernUniversiẗat in Hagen
LG Paralleliẗat und VLSI

Postfach 940
58084 Hagen, Germany

joerg.keller@fernuni-hagen.de

Abstract

We present a system for secure telephone conferences
(stc) over the internet. The system ensures participant
authentication via x.509 certificates, such that every par-
ticipant of a conference is informed about every other
participant. Also, all signaling and media data are en-
crypted, to ensure confidentiality. The system builds upon
the open source telephone server asterisk and standard IP
softphones. Those software products are used unaltered.
Stc client and server processes reside with softphones and
server, respectively, to realize secure conferences. Experi-
ments with our prototype show that the additional network
and processor load is low, and that the system scales well
for more than 10 participants.

1. Introduction

Telephone conferences more and more take the place of
conventional business meetings. The reasons are manifold:
for example travel budgets for meetings may be shrinking,
or travel schedules of the participants cannot be synchro-
nized to meet in one place. In classical telephone confer-
ences, the authentication of participants is obtained by the
trust in the public telephone network, i.e. if a known tele-
phone number is dialed everyone trusts in the telephone
providers that the call is routed to the correct phone. Con-
fidentiality of the conference also relies on the providers.
Everyone assumes that the telephone providers are trust-
worthy themselves, and that their network is inaccessible to
eavesdroppers. This assumption does not necessarily hold.
Foreign intelligence services may have access to their local
provider’s network to perform industrial espionage. Rumor
has it that the president of a large German company used
cell phones with encryption to securely participate from
abroad in telephone conferences with the board, but one
by one those cell phones did not connect anymore. One is

tempted to assume that the eavesdroppers, realizing that the
phone call was encrypted, turned their attack into a denial-
of-service.

With the convergence of IP data networks and classi-
cal telephone service in Voice over IP (VoIP), the situation
changes to the worse. While long-distance telephone calls
over the internet are (almost) for free, on the other hand the
internet is not as secure as we believe our telephone network
to be. First, there are no unique telephone numbers in the in-
ternet. This necessitates user authentication. Second, eaves-
dropping is simple, as long as media data are not encrypted.
A simple tool likeethereal 1 suffices to see and record
the audio data stream. This necessitates strong encryption.
While the real time protocol (RTP), used to transmit audio
data in VoIP applications, has a secure companion protocol
SRTP, the latter is not supported by the majority of soft-
phones, and also does not include a key exchange. Hence,
there is a need to supplement VoIP with confidentiality and
strong authentication. We concentrate on IP telephone con-
ferences as they seem a relevant application, and because
their security carries over to peer-to-peer IP telephony.

We present a system for secure telephone conferencing
over IP networks. We build upon the open-source telephone
conference serverasterisk [7] and available softphones
like x-lite 2, which can remain unchanged. Our system
bridges between RTP and SRTP to prevent eavesdropping,
realizes secure key exchange for the latter protocol, en-
crypts also the signalling data, and provides user authen-
tication. The last is used to provide every participant of
the conference with a list of all authenticated participants,
thus preventing silent participants. The proposed scheme is
novel, as far as we know.

The remainder of this paper is organized as follows. In
Section 2 we briefly review the architecture of a VoIP con-
ference system, and the steps necessary to secure it. In Sec-

1www.ethereal.com
2www.xten.net



tion 3 we present our prototype implementation. In Section
4 we conclude and give an outlook onto further work.

2. Securing VoIP conferences

A VoIP connection consists of signalling and media data.
Both are transmitted over IP networks. Whether the VoIP
connection exists within an organization’s internal network,
or whether it also spans public networks, there are a num-
ber of threats. First and foremost, an attacker could eaves-
drop the communication, and confidentiality would be de-
stroyed. Second, an attacker could fake the identity of caller
or callee. While this may be difficult in a one-to-one com-
munication, it works well in conferences as long as the
attacker is silent. This constitutes an attack on both au-
thentication and confidentiality. Integrity is in danger, too,
as packets may be altered along the way. While altering
packets with speech data seems difficult and is more a kind
of denial of service (receiver cannot understand anything),
changing of signalling data could route a call to a differ-
ent callee, with consequences for identity and confidential-
ity. Finally, there are pure Denial of Service attacks. The
Seminar [1] gives an overview of recent threats. From this
we conclude that both media and signalling data are to be
encrypted to ensure confidential communication, and that
users have to be authenticated.

Signalling in VoIP uses either ITU-T’s H.323 [2] or
IETF’s SIP3 [3] protocols. As we see the latter as more
widely deployed because of its simpler structure, we will
concentrate on this protocol. SIP runs on UDP and not on
TCP. This has to be taken into account when securing SIP
connections. According to the RFC 3261, securing can be
realized by S/MIME, by SSL/TLS, which however assumes
a TCP connection, or by IPSec, which is possible for UDP
and TCP connections. As S/MIME still has some problems
with inter operability and key management, we concentrate
on the latter two protocols. Both TLS and IPSec allow au-
thentication of the communication partners by X.509 cer-
tificates.

Certificates are digital documents that contain a user’s
name and other identification features, together with the
user’s public key or a hash thereof. Certificates are digitally
signed by the certification authority (CA) where the user
has registered his key. For authentication, user A can send
a short messagem to user B. User B encrypts this message
with his private key, and sends back the encrypted message
m′ together with his certificate. Alternatively, user A may
already possess B’s certificate. User A decrypts the mes-
sagem′ with the public key from the certificate, and if the
result ism again, knows that the user B owns the private
key corresponding to the public key in the certificate. If the

3Session Initiation Protocol

certificate is valid, i.e. if the digital signature of the CA is
correct, and the certificate has not been revoked by the CA,
then user B is authenticated.

Certificates have the advantage that many organizations
already have built a Public Key Infrastructure (PKI) for their
employees, including certification authority, certificate re-
vokation, and the like. Thus, certificates are already pro-
vided for in many organizations. X.509 version 3 certifi-
cates (see e.g. [6]) are the current de facto standard for cer-
tificates, therefore we will assume them. As RFC 3261 only
mentions IPSec in passing, and leaves many details open,
we decided to use TLS.

Media data are transmitted using the Real Time Proto-
col (RTP) [4] together with the Real Time Control Protocol
(RTCP). Both protocols have secure companion protocols
SRTP and SRTCP [5]. Those protocols allow symmetric en-
cryption and authentication of packets on the basis of AES
and SHA-1, respectively. However, the exchange of the se-
cret key is not part of the protocol and has to be handled
separately. For the key exchange, we decided to use the
Diffie-Hellman key exchange routine. While this procedure
is the standard for exchanging a session key between two
communication partners A and B without transmitting the
key itself, it can be attacked by a man-in-the-middle attack
(see e.g. [6]), where the attacker intercepts all packets be-
tween A and B, and plays B’s role when communicating
with A, and vice versa. A normal measure to prevent such
interception is to first establish a secure channel between A
and B, for example by transmitting all messages related to
the key exchange over a secure TLS connection. As such a
connection is already necessary for the signalling data, the
additional overhead is minimal.

3. Prototype system

We have realized the security features derived in the pre-
vious section in a prototype system called stc (secure tele-
phone conference). We decided to use the x-lite softphone,
and the asterisk telephone server. The latter has the advan-
tage that is has a script interface, the asterisk gateway in-
terface (AGI), which allows to couple the server with other
applications.

For our system, we first decided that we wanted a central
server, although direct connections between all conference
participants are possible to transmit media data. However,
with n participants, each participant would have to maintain
n−1 connections, leading to an increase in bandwidth, com-
plicating the key exchange, and necessitating to mix then
speech signals. As the central server decrypts all signalling
and media data, it must be trustworthy, and particularly pro-
tected.

As we want to use the telephone server and the soft-
phone unaltered, we couple each with a piece of the stc



Figure 1. Prototype architecture.

software. Figure 1 depicts the architecture of the proto-
type. The central server on top, with a Linux operating
system, contains the asterisk telephone server, and the stc
server software. Both are coupled via the AGI. The clients
at the bottom, running with the Windows operating system,
each contain a softphone and the stc client software. Aster-
isk and the softphones communicate with their correspond-
ing stc software counterparts via SIP, RTP, and RTCP. They
do not know that any encryption is taking place. The stc
server communicates with the stc clients only via TLS and
SRTP/SRTCP. Thus, signalling and media data are unen-
crypted only within computers, and are always encrypted
when travelling on the network.

Figure 2 depicts the structure of the stc client software.
It consists of two threads. One is responsible for the user
interface, and the other deals with the network and the soft-
phone. It first initiates a TLS connection to the stc server,
and both parties are authenticated via X.509 certificates.
Then the Diffie-Hellman key exchange is performed. Now
the stc client opens a UDP port towards the softphone and
accepts SIP messages. It forwards those messages through
the TLS connection to the server, and SIP messages arriv-
ing from the server to the softphone. If the stc client notices
that the softphone initiates a VoIP connection, it opens RTP
and RTCP connections towards the softphone and SRTP and
SRTCP connections towards the server. Packets arrriving
via RTP are encrypted and forwarded via SRTP, and vice
versa. The TLS connection is also used to transmit the cer-

Figure 2. Structure of the stc client software.

Figure 3. Structure of the stc server software.

tificate data of all conference participants to each stc client.
Figure 3 depicts the structure of the stc server software.

It consists of several processes: one for each connection,
and one for the coordination of all other processes. The
server software works similarly to the client software, with
the addition that the stc server software is coupled to the
asterisk server. The asterisk server informs the stc server
when a conference is started. Then the participant data is
forwarded to all clients.

The stc server software was written in C and compiled
with the GNU C compiler. The stc client software was writ-
ten in C++ and compiled with Microsoft Visual Studio. We
used the OpenSSL library for the TLS functions and the lib-
srtp for the encryption of the media data.

Figure 4 displays a screen shot of the user interface of the
stc client software. The green light on the right side and the
status line on the bottom indicate that a secure connection
to the stc server has been established. The configuration
button can be used to select the X.509 certificates, the stc
server’s IP address, and similar parameters. The window in
the center displays all conference participants according to



Figure 4. User interface of the stc client soft-
ware.

data in their certificates. When a secure connection is es-
tablished upon start of the client software, a particular con-
ference can be chosen as usual by dialling the number of
the asterisk conference room on the softphone. Thus, the
stc software is completely transparent for the softphone and
the asterisk server.

The software was tested in practice. When we tried to
eavesdrop on the encrypted connections, we were not able
to hear anything beyond noise, no matter which of the avail-
able speech codecs we used. Thus, the speech data is re-
ally encrypted. As the encryption is done with the AES
algorithm, which is a symmetric encryption algorithm us-
ing 128-bit keys, chosen by NIST as the successor of the
DES standard, eavesdropping would require to break into
this algorithm. Thus, the communication can be considered
confidential.

The stc client software only consumes a small amount of
memory and processor performance (less than 1% proces-
sor power) even on a notebook. We were not able to notice
any change in the audio quality when switching form unen-
crypted VoIP communication to the stc system.

When measuring server performance, we concentrated
on load originating from established connections, as authen-
tication and other additional tasks only happen upon initiat-
ing a connection to the server. The stc server software was
run on a Toshiba Tecra S2 notebook with an Intel Pentium-
M 750 centrino-processor at 1.86 GHz and 2 GB of RAM.
Running asterisk and stc server with 4 clients, both the pro-
cessor load and the memory consumption were less than
10%. Thus we conclude that the system could be run with
more than 20 clients on such a platform.

4. Conclusions

We have presented a system for secure telephone confer-
ences over insecure IP networks. The system extends the
usual softphone — asterisk server combination by a client
and a server software. The system has been tested in prac-
tice and found to work satisfactorily. The software is even
able to work in environments where network address trans-
lation (NAT) is performed.

Yet, handling two software products (softphone and stc
client) may be disturbing for the average user. Therefore,
one may think to integrate the stc client and the softphone
by using a software development kit available from several
softphone producers. Another step could be to integrate the
stc client into an IP telephone device. As those often contain
an embedded linux system, such an extension is possible but
would require access to the source code of the phone. Fi-
nally, the system could be extended to also securely connect
to phones via ISDN or GSM.

References

[1] Information Systems Audit and Control Association
(ISACA). Voice over IP security — after hour seminar, May
2005. http://www.isaca.ch/files/AHSVoIP Sec.pdf.

[2] International Telecommunications Union (ITU-T). Rec-
ommendation H.323 — packet-based multimedia commu-
nications system, July 2003. http://www.itu.int/rec/T-REC-
H.323-200307-I/en.

[3] Internet Engineering Task Force. RFC 3261 — SIP: Session
initiation protocol, 2002. http://www.ietf.org/rfc/rfc3261.txt.

[4] Internet Engineering Task Force. RFC 3550 — RTP:
A transport protocol for real-time applications, 2003.
http://www.ietf.org/rfc/rfc3550.txt.

[5] Internet Engineering Task Force. RFC 3711 — the
secure real-time transport protocol (SRTP), 2004.
http://www.ietf.org/rfc/rfc3711.txt.

[6] B. Schneier.Applied Cryptography. Wiley, 2nd edition, 1996.
[7] J. VanMeggelen, J. Smith, and L. Madsen.Asterisk. The Fu-

ture of Telephony. O’Reilly Media, 2005.


