
Virtual Duplex Systems with Forward Error Correction on

Simultaneous Multithreaded Processors

Jörg Keller Peter Sobe
FernUniversität Hagen Universität zu Lübeck

LG Technische Informatik II Institut für Technische Informatik
Postfach 940 Ratzeburger Allee 160, Haus 33

58084 Hagen, Germany 23538 Lübeck, Germany
joerg.keller@fernuni-hagen.de sobe@iti.uni-luebeck.de

Abstract

Virtual Duplex Systems provide detection of and recovery
from transient as well as most permanent hardware faults.
In contrast to duplex systems, they do so by providing tem-
poral instead of structural redundancy: one time-shared in-
stead of two processors. Previous studies on virtual duplex
systems have focussed on either improving fault coverage
or reducing overhead. We build upon this work and in-
vestigate the positive influence of an underlying processor
hardware that supports multiple threads in hardware. Such
processor architectures are just entering the market. Our
findings are that those processors allow faster fault detec-
tion and recovery than conventional processors of the same
speed. Alternatively, a multithreaded processor can be run
at a lower frequency to provide the same detection and re-
covery rate as before.

1 Introduction

Duplication of processing activity is a proper technique to
detect faults of the underlying hardware. If software diver-
sity is employed, additionally design faults of the running
software can be covered. A particular form of such a du-
plication is a virtual duplex system, where the duplicity is
achieved by temporal redundancy. Virtual duplex systems
(VDS) were introduced in [EHN90] and have been in the
focus of research from then.

We assume a virtual duplex system (VDS) as e.g. defined
in [GK00]. It consists of three versions of a software with
identical functionalities. The versions show both design di-
versity and systematic diversity. This allows to cover tran-
sient as well as most permanent faults [Lov96]. A particular
feature of our approach is the use of threads for the ver-
sions. In order to reduce the overhead of multithreading on
a conventional microprocessor an emulated multithreading
[Grä02] is used. In contrast, for a hyperthreaded micropro-
cessor we employ a thread model that is supported by the
operating system (e.g. POSIX threads) in order to process
the two versions according to the hyperthreading abilities of
the processor.

We target applications that require detection of and re-
covery from faults, especially transient faults, while shut-
ting down to a fail-safe state and repair is not an option.

Examples are applications in space (albeit not for mission-
critical subsystems) and transportation. In the latter field,
virtual duplex systems (based on conventional processors
and on processes) are in commercial use for subways, e.g.
in Copenhagen.

The remainder of this paper is organized as follows. Sec-
tion 2 describes virtual duplex systems on conventional, and
multithreaded processors, respectively, and compares them.
Section 3 presents improvements on multithreaded proces-
sors, when taking into account knowledge about which ver-
sion is faulty. Section 4 presents related work and Section
5 summarizes.

2 Virtual Duplex System Implementation

2.1 VDS on a Single Processor

If we employ a conventional processor, the VDS software
is executed on a single processor in the following way (see
Figure 1(a)). Versions 1 and 2 proceed alternately in rounds.
After both versions have completed a round, the states of
both versions are compared, and only in the case of iden-
tity, processing proceeds. The proceeding versions can be
imagined as two threads scheduled round robin, with the
context switched when they reach the end of a round. We
assume that processing of a round for each version always
takes time

�
, i.e. a complete round will take time����� ���
	����������� ������������� �

(1)

where
� � ! �

is the time to compare the states, and
� ! �

is
the time for a context switch.

After every " rounds, the state is saved in the form of a
checkpoint. Now, if two differing states are detected at the
end of round # after the last checkpoint, where $&%'#�%(" ,
then version 3 is started with the state from that checkpoint
and executed for # rounds. Then a majority vote over three
available states allows to distinguish the faulty state, and
proceed with the two versions that have correct states. Cor-
rection thus takes time�)��� *+�
�,�-� # � ��� ��� � � .

(2)

Note that we here implicitly make the assumption that after
the occurrence of a fault, no further fault will occur for the
time of the error correction, as otherwise version 3 might
get faulty as well.

THT2,round

T1,round T1,corr

V3 Ri

V3 Ri+1

V1 Ri+1

HT2,corrT

Fault DetectionEnd of Round

Context Switch

State Comparison

State Comp + Checkpoint

T1

T2

V1 R1 V1 R2 V1 Ri

V2 R1 V2 R2 V2 Ri

V3 R1 V3 Ri

V1 Ri+1 V2 Ri+1 V3 R1.5i+1

V1 R1

V2 R1

V1 R2

V2 Ri

V3 R1

t+c

0.5i rounds 0.5i rounds

maj. vote: V2 faulty

maj. vote: V2 faulty

V1 R1.5i+1

(a) Virtual Duplex System on a Conventional Microprocessor

(b) Virtual Duplex System on a Multithreaded Processor

Figure 1: Execution models of a virtual duplex system on different processor architectures

2.2 VDS on a Hyperthreaded Processor

Now, if we replace our conventional processor by a proces-
sor that supports simultaneous multithreading [TEL95] in
hardware, such as the Intel Pentium 4 with Hyperthreading
[Int02], we can execute two threads, each containing a par-
ticular version in parallel1 (see Figure 1(b)). Note that in a
simultaneous multithreaded processor, the threads have reg-
ister files and schedulers of their own, but share all other re-
sources of the processor, especially the function units. As in
any superscalar processor, the choice of the function unit is
transparent to the user, i.e. a faulty ALU cannot be switched
off.

Because of the improved processor utilization and the ab-
sence of a context switch one round will now take only

�0/21 3 � ���4	5�� �6����78� �0��� � �
(3)

with
�3:9 7 9 $. In the optimal case

7;�=< .?>
, the two

threads completely run in parallel. In the worst case
7@� $,

the threads are — apart from the context switch — as slow
as on the conventional processor. A value of

7A�B< . C�>
has

been reported for common applications [Wit02].
This means, that in the fault-free case, we have become

faster by a factor

D �,�4	��� � � ��� �,�4	���
� /21 3 � ���4	5�� (4)

� ����� �)�����)��� �
���E78� �0��� �

F $7
1The processor considered supports two threads in hardware. If only

one thread is active, the processor behaves like a conventional processor.

if
�G�4� �H! �

.
Now, after detection of a fault, we could in principle

proceed as on a conventional processor. Then however,
we would not gain any time (see footnote 1). Therefore,
we employ a slightly more complex scheme: While ver-
sion 3 is executed for # rounds on the first thread, we ex-
ecute IJ#
K �GL further rounds of versions 1 and 2 on the sec-
ond thread, without state comparisons (as shown in Figure
1(b)). (We only have to make one context switch because
of this!) Then we make state comparisons between version
3 and versions 1 and 2, respectively, to decide which of the
latter versions was faulty.

The correction will take time2

�0/21 3 � *+�
�,� ����� # �E7M� �)� ��� � � .
(5)

Then, we copy the state of the fault-free version of ver-
sions 1 and 2 to version 3 while saving the next checkpoint.
This means, that during correction we have also proceeded
for about #�K � more rounds. Copying the state should not
pose any problems because threads’ memory regions are not
protected against each other.

2.3 Comparison

Now we have to check in which cases
� /N1 3 � *+�4�4� 9�)��� *+�4�4� � � #
K � � ���)��� �,�4	��� , because if that equation holds,

we have gained also in the case of a fault. By substitution
of

� /21 3 � *+�4�,�
,
����� *+�4�4�

and
�)��� ���
	���

by the full expressions
we obtain

�O� # �E7P� �0� ��� � � 9 # � ��� ��� � � � � #�K � � ���Q����� ����������� � �
2To be exact, we would have to write RTS,U�VXWZY\[\]
^ instead of WJY .

which can be reduced to

��� # �E7P� � 9 # � ��� # ��� �)���E�)� #� � � �H.

Over the full range of
7

, the above relation is always true.
This means that a multithreaded processor in all cases sup-
ports a faster fault localization. The gain is

D *+�4�4� � � ��� *+�4�4� � � #
K � � ��� ��� ���4	5��� /N1H3 � *+�4�4� (6)

� # � �0� ��� � � � � #
K � � ���Q����� �)�����)��� � �
��� # ��78� �

� ��� # � �)� �Q� �`_3 � � � � � # � ���� # �E78� �
F $7

if
�G�4� � ! �

.
Note that our assumption of no further fault is applied

here to versions 1 and 2 as well during correction time.
However, this should not harm generality, because if a hard-
ware fault only showed as a transient fault in one version be-
fore its detection, it is to be assumed that systematic diver-
sity keeps the other version fault-free for some more time.

3 Using Knowledge about Faults

If we have evidence that a particular version, e.g. version
2, is most likely to be the faulty one3, we could execute #
rounds of the other version, in our example version 1, in
parallel to executing # rounds of version 3. If we guessed
correctly, we have made much more progress. Otherwise,
we pay a penalty.

3.1 Correct selection of the fault free version

Here we have to check for
��/N1H3 � *+�
�,� 9 � ��� *+�4�,� � # �� ��� ���4	5��

. Obviously, the condition is always true. The gain
is obtained as

Dba _dc*+�4�4� � ����� *+�4�4� � # �e�)��� �,�4	����0/N1H3 � *+�4�4� (7)

� # � �)� ��� � � � # �f�\����� �������)��� � ���� # �E7M� �)� ��� � �
� g � # � �0� �\� � # � � � � � ��� # � ���� # ��7M� ��� ��� � �
F g����7 .

3.2 Incorrect selection of the fault free version

The criterion changes to
� /21 3 � *+�
�,� 9 �)��� *+�4�,�

. In the best
case, a hyperthreaded system performs equally to a VDS
system on a single processor (

7h� �3). The loss is

ikj _ml�l*+�4�,� � �)��� *+�4�,�
�0/N1H3 � *+�
�,� (8)

3E.g. in the case of a crash fault.

� # � ��� ��� � �
��� # �E7P� �0� ��� � �

F $��7 .
In the best case, the hyperthreaded processor loses noth-

ing against the conventional processor, in the worst case it
loses a factor of two.

3.3 Expected Gain

If n is the probability of a correct guess of the faulty version,
then the gain isD � *+�4�4� � n � D a _dc*+�4�4� � � $poqn � �5i j _Xl
l*+�4�4�

(9)

F � n � $�r7 .
We first note that

D � *+�
�,� � � n � $��7 s $7
if n:s < . >

. Notice that n �t< .?>
corresponds to a random

guess. Hence, if we do not make intentionally false guesses,
this improvement will on average perform better in the case
of a fault than the previous one. We also see that for n:s7 o < . > , the gain is at least one. In the best case

7u�v< .?>
, we

always gain no matter how bad our guesses are. Even in the
worst case

7v� $, we gain for nws < .?>
. Notice again thatn �x< .?>

corresponds to a random guess. For n �B< .zyr>
, the

gain is $. � > K 7 . Thus this schema on average is 25% faster
than the previous one.

For reasons of fairness, we note that in the conventional
VDS, we may stretch the assumption of no further fault to
the point that after the majority vote, we execute version 3
for another # rounds without context switch, and copy its
state to the other fault-free version while saving the next
checkpoint.

However, replacing
� ��� ���
	���

by
�

in equation (7) does
not change much as we assumed so far that

�G�
� � ! �
. Even

when we put in exact figures, the change will be not more
than a few percent at the best.

4 Related Work

Much insight related to conventional process duplication
can be used for VDS as well. For instance the effect of var-
ied check intervals and checkpoint periods to reliability has
been studied in [ZB97]. Shorter test intervals improve reli-
ability, because the likeliness of two processes affected by
a fault is decreased. In an environment of expensive stable
storage access and inexpensive information transfer among
processes it is advised to compare states more often than
saving checkpoints. As proposed, VDS follows that way by
using short rounds and longer checkpoint intervals.

For recovery of duplex based systems — also appropriate
for VDS — the following ways have been described:

Rollback- both processes/versions are set back to the state
of the last checkpoint and the processing interval is re-
tried. If then two equal states are reached, the process-
ing is continued.

Stop and retry- if a comparison mismatches, both
processes/variants are stopped while a third pro-
cess/variant computes a third status for the mismatch-
ing round. Then the fault free processes are identi-
fied by a 2-out-of-3 decision and their state is used to
continue duplex processing. An algorithm for process
duplication using stop-and-retry recovery in computer
networks, especially with focus on message transfer,
has been given in [VP92].

Roll-forward checkpoint schemes - can be seen as an
extension of stop-and-retry exploiting parallelism of
the system. While the third variant is executed, pro-
cesses/variants 1 and 2 continue processing on the re-
maining hardware. A near variant has been described
in [PV94, PSV94].

As proposed in this paper, VDS on a hyperthreaded pro-
cessor follows the concept of roll-forward checkpointing
schemes. Until now, recovery schemes in general have been
applied exclusively to real duplex systems. In the context of
VDS only fault detection and a fail safe stopping is common
practice. Continuation of processing after recovery can be
seen as a new aspect using VDS that allows to continue pro-
cessing at least in occurrence of transient faults.

5 Summary

A virtual duplex system is an appropriate technique to tol-
erate faults by temporal redundancy. Two processes/threads
are executed in short time slices one after another. Us-
ing modern microprocessors with the ability to execute two
threads in parallel in a super-scalar way, one can shift time
redundancy to spatial redundancy. We have evaluated the
gain by using a hyperthreaded processor architecture for
such a VDS and shown that even in the case that a pro-
cessor does not exhibit the double performance by 2-way
hyperthreading, we get a gain for the normal processing and
the error correction phases too.

Alternatively, if we are already satisfied with the VDS
performance, we could employ a multithreaded processor
with a clock frequency reduced by a factor of at least $GK 7 ,
assuming that performance scales linear with clock fre-
quency. This would account for lower cost, lower power
consumption and lower heat dissipation.

So far, there is no experimental data for guessing n . How-
ever, assuming that the prediction correctness is close to 1
for crash faults, and

< . >
(random choice) for other faults,n is clearly larger than

< .?>
, where the exact value depends

on the fraction of crash faults among all faults. Moreover,
if we consider space missions where the duration is long
and the frequency of transient faults is much higher than on
earth, there may even be the possibility to gather a fault his-
tory and to predict the faulty version in a manner similar to
branch prediction in microprocessors [FKS04].

References

[EHN90] K. Echtle, B. Hinz, and T. Nikolov. On Hardware
Fault Diagnosis by Diverse Software. In Pro-

ceedings of the 13th International Conference on
Fault-Tolerant Systems and Diagnostics, pages
362–367. Bulgarian Academy of Science, Sofia,
1990.

[FKS04] B. Fechner, J. Keller, and P. Sobe. Performance
estimation of virtual duplex systems on simul-
taneous multithreaded processors. Informatik-
Bericht 307, FernUniversität Hagen, January
2004.

[GK00] A. Grävinghoff and J. Keller. Fine-Grained
Multithreading on the CRAY T3E. In High-
Performance Computing in Science and Engi-
neering, LNCS, pages 447–456. Springer Verlag,
2000.

[Grä02] A. Grävinghoff. On the Realization of Fine-
Grained Multithreading in Software. PhD thesis.
University Hagen, Germany, 2002.

[Int02] Intel. Hyper-threading technology on the intel
xeon processor family of servers. white paper.
2002.

[Lov96] T. Lovrić. Fault Detection by Systematic Diver-
sity in Time-Redundant Computing Systems with
Design Diversity, and Their Evaluation by Fault
Injection (in German). PhD thesis, Univ. Essen,
Germany, 1996.

[PSV94] D.K. Pradhan, D.D. Sharma, and N.H. Vaidya.
Roll–Forward Checkpointing Schemes. In
M. Banatre and P.A. Lee, editors, Hardware and
Softwarearchitectures for Fault–Tolerance, num-
ber 774 in Lecture Notes in Computer Science.
Springer, 1994.

[PV94] D.K. Pradhan and N.H. Vaidya. Roll–Forward
Checkpointing Scheme: A Novel Fault–Tolerant
Architecture. IEEE Transactions on Computers,
43(10), October 1994.

[TEL95] D. Tullsen, S. Eggers, and H. Levy. Simultane-
ous Multithreading: Maximizing On-Chip Paral-
lelism. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture,
pages 392–402, 1995.

[VP92] N.H. Vaidya and D.K. Pradhan. A Fault-
Tolerance Scheme for a System of Duplicated
Communicating Processes. In Proceedings of the
IEEE Workshop on Fault Tolerant Parallel and
Distributed Systems, pages 98–104, July 1992.

[Wit02] M. Withopf. Virtual tandem: Hyperthreading in
the new pentium 4 with 3 GHz (in German). c’t,
24:120ff, 2002.

[ZB97] A. Ziv and J. Bruck. Performance Optimiza-
tion of Checkpointing Schemes with Task Du-
plication. IEEE Transactions on Computers,
46(12):1381–1386, December 1997.

