
Scalability Analysis for Conservative Simulation of Logical Circuits

J�org Keller

FB Informatik� FernUniversit�at�GHS Hagen� Postfach ���� �	�	� Hagen� Germany�

Tel
 ��������	����� FAX ��������	���	� email Joerg�Keller�FernUni�Hagen�de

Thomas Rauber

Institut f�ur Informatik� Universit�at Halle�Wittenberg� ����� Halle �Saale�� Germany

Tel
 ��������������� FAX ��������������� email rauber�informatik�uni�halle�de

Bernd Rederlechner

Telekom Entwicklungszentrum S�udwest� Neugrabenweg �� ���� Saarbr�ucken� Germany

Tel
 �����	���������� FAX �����	���������� email Bernd�Rederlechner�ezsw�telekom�de

principal author for contact� J�org Keller

Abstract

We investigate conservative parallel discrete event simulations for logical circuits on shared�

memory multiprocessors� For a �rst estimation of the possible speedup� we extend the critical path

analysis technique by partitioning strategies� To incorporate overhead due to the management of

data structures� we use a simulation on an ideal parallel machine �PRAM�� This simulation can be

directly executed on the SB�PRAM prototype� yielding both an implementation and a basis for data

structure optimizations� One of the major tools to achieve these optimizations is the SB�PRAM�s

hardware support for parallel pre�x operations� Our reimplementation of the PTHOR program on

the SB�PRAM yields substantially higher speedups than before�

Keywords� discrete event simulation� conservative parallel simulation� parallel data structures� crit�

ical path analysis� shared�memory multiprocessor� PRAM

Most of this work was done while the authors were working at Universit�at des Saarlandes� Computer Science Dept��

Saarbr�ucken� Germany� This work was supported by the German Science Foundation �DFG� under SFB ��	 TP D	�

J� Keller was supported by a DFG fellowship� A preliminary version of this paper appeared in Proc� �
th Workshop on

Parallel and Distributed Simulation �PADS����

Correspondence and requests for reprints should be sent to J�org Keller� FernUniversit�at�GHS Hagen� FB Informatik�

LG Technische Informatik II� ��
�	 Hagen� Germany�

� INTRODUCTION

Large�scale shared�memory multiprocessors are likely to play an important role in parallel computing in

the future� because they o�er a much simpler programming model than traditional distributed�memory

machines� Many of today	s shared�memory machines are cache�based machines which show good per�

formance for regular applications with appropriate locality but which fail to get good speedups for ir�

regular applications with a lot of non�local memory accesses� Typical examples of such applications are

particle�based simulations like MP
D ���� routing algorithms like LocusRoute ���� and discrete�event

simulations like PTHOR ����� In this article� we consider the execution of discrete�event simulations

for logical circuits on shared�memory machines� We try to answer the question which performance we

can hope to get on an ideal machine on which the locality of memory accesses can be neglected but for

which the overhead for the management of data structures still takes e�ect� As execution platform� we

use the SB�PRAM which has a uniform memory�access time and behaves like a PRAM machine as it

is used in theoretical computer science for the analysis of the complexity of algorithms�

We consider the PTHOR algorithm for the parallel simulation of logical circuits� which uses a con�

servative approach� The PTHOR simulator is based on the sequential THOR simulator and has �rst

been considered for a parallel implementation on the Stanford Dash by Soul�e ����� Soul�e investigates

the performance of the PTHOR simulator for three platforms� an ideal multiprocessor simulator called

Tango ���� an Encore Multimax with �� processors� and the Stanford Dash with �� processors�

For a systematic analysis of the attainable speedup� we start with a critical path analysis of PTHOR

on the benchmark circuits� which also takes into consideration the partitioning of the LPs among the

processors� We extend the partitioning strategies investigated by Lin in ���� from static partitioning

strategies to dynamic strategies and stealing strategies� Although this technique yields an upper bound

on the speedup for the di�erent benchmark circuits� it does not take into account the overhead for data

structures� This can be done by running PTHOR on the SB�PRAM� As the complete SB�PRAM is

under construction� we use a simulator that performs a cycle�by�cycle simulation of the actual machine�

Thus� the simulator delivers the exact runtime of the real hardware� The accuracy of the simulated

runtimes is con�rmed by comparisons with measured program runtimes on the available prototype�

Starting with the existing PTHOR implementation from the SPLASH� benchmark suite ���� we

show how the maximum attainable speedup can be increased by several changes in the data structures�

including the data structures for the LPs and the memory management� When there are more LPs

than processors� the work must be properly partitioned among the processors� We compare a dynamic

partitioning scheme using a centralized FIFO queue with a stealing scheme that uses a local queue

for each processor� We also show that the use of NULL�messages can result in a large increase of the

speedup� depending on the benchmark circuit� The result is an implementation of the PTHOR simulator

on the SB�PRAM for which the overhead for the management of data structures is considerably smaller

than in the original implementation� Depending on the input circuit� the obtained speedup values even

come close to the bound from critical path analysis�

The rest of the paper is organized as follows� Section � brie�y introduces to parallel discrete event

simulation� Section
 sketches the execution platform used� Section presents the critical path analysis�

Section � investigates the performance characteristics of the original PTHOR simulator� Section �

presents the improvements we added and discusses their e�ects� Sect� � summarizes the results�

� PARALLEL DISCRETE EVENT SIMULATION

A model for discrete event simulation assumes that the system being simulated only changes state at

discrete points in time� For the simulation� the system is modeled as a collection of logical processes

�LPs� that communicate via timestamped messages� For circuit simulations� typical LPs at varying

levels of abstraction are transistors� NAND gates� �ip�ops� multipliers� etc�� and their interconnections

���� The state of the simulated model changes upon the occurrence of events� such as the change in

output value of an individual gate� An event e may be scheduled by a certain number of other events�

if these determine the occurrence of e�

The approaches to a parallel execution of discrete�event simulations �PDES� can be distinguished

into centralized�time algorithms and distributed�time algorithms� In centralized�time algorithms� a

global clock is used and the simulation is executed synchronously� In distributed�time algorithms� each

processors has its own clock and the simulation is executed asynchronously� Distributed�time algorithms

can be further distinguished into conservative and optimistic approaches� The approaches di�er in the

way they deal with causality errors caused by the distributed simulation� see ��
� for a good overview�

The conservative method ���� ��� forces an LP to block until it is safe to simulate an event� i�e�� the

events are simulated in strict timestamp order� This may lead to deadlocks that have to be recognized

and resolved� In the optimistic approaches �
� ���� there is no such restriction� i�e�� an LP can execute

events in the order in which they arrive� If this leads to a simulation that is not in timestamp order�

a roll back to a safe state has to be performed and the e�ect of messages which should not have been

send must be eliminated by appropriate anti�messages�

The limiting factor for a centralized�time algorithm is that the simulation steps proceed in lockstep

fashion� waiting for the slowest event to �nish ���� This can greatly slow down the simulation� if there

are widely varying event times�

Bailey shows in �� by a theoretical analysis that the execution time of the conservative asynchronous

strategy is a lower bound to the synchronous strategy and that with unit�delay timing� the execution

times of the synchronous and asynchronous strategies are equal� The analysis is performed under the

assumption that an unlimited number of processors are available and that the inputs to a circuit remain

�xed during the simulation� These assumptions are relaxed by Baker in ��� by allowing an arbitrary

number of external inputs for each circuit� with each input experiencing di�erent numbers of events at

di�erent simulation times� Under these conditions� a relative comparison of the synchronous and con�

servative asynchronous simulation execution times shows that the conservative asynchronous simulation

may execute faster� In particular� the best�case execution times are the same for the synchronous and

conservative asynchronous simulation� but the requirements for achieving the minimum time are quite

strict� The worst�case execution time of the conservative asynchronous simulation will usually be less

than that of the synchronous simulation�

In ����� a parallel� centralized�time logic simulator is discussed� In this practical work� none of both

algorithms achieve the best results for all benchmark�circuits�

Supported by the theoretical results above� we decided to research conservative asynchronous simu�

lation and neglect synchronous schemes� The algorithm used in PTHOR o�ers various possibilities for

optimization� with the hope of preserving the bene�ts of asynchronous simulation�

� EXECUTION PLATFORM

Most of today	s shared�memory machines are cache�based machines� i�e�� they still use a physically

distributed memory but each processor is equipped with a one�level cache or a two�level cache�hierarchy�

The cache coherence is provided by the hardware� The memory access time of these machines is not

uniform but depends on the physical location of the data being accessed� For this reason� they are

called nonuniform memory access time �NUMA� machines� These machines rely on the locality of most

applications and try to hide the memory latency by caching� Examples of NUMA machines are the

KSR��� ��� from Kendall Square Research� the Stanford Dash ����� and the SPP���� from Convex �����

Besides cache�based shared�memory machines� uniform memory access time �UMA� machines have

been developed for which the memory access time is independent from the physical location of the data�

Examples of such machines are bus�based shared�memory machines like the Multimax ��� from Encore

Computer Corp�� the C��� J��� and T�� series from Cray Research ���� and the SGI Challenge from

Silicon Graphics� The disadvantage of bus�based systems is that they usually can only provide a small

number of processors�

The SB�PRAM which is currently under construction at the University of Saarbr�ucken is an UMA

machine that provides a shared address space with a fast memory access time ���� The latency of the

network between the processors and the memory modules is hidden by pipelining of processors� i�e��

each physical processor simulates a number of virtual processors� Thus� a write operation to the global

memory by a virtual processor takes the same time as an arithmetic operation� independently of the

memory location that is addressed� A read operation is also as fast as an arithmetic operation� but

the result is available in the next but one instruction� Concurrent accesses to a single memory cell

are allowed and combined� making the SB�PRAM behave like the CRCW �CRCW�concurrent read�

concurrent write� PRAM model known from theoretical computer science�

Besides the usual load and store operations to access memory cells� the SB�PRAM also o�ers mul�

tipre�x instructions which enable several processors to perform pre�x operations on a memory cell in

parallel� As an example� we sketch the execution of a multipre�x addition MPADD� Let p�� � � � � pn be

the executing processors where each processor pi contributes a local value oi� Let s be a shared memory

cell with value o� If p�� � � � � pn execute the MPADD operation synchronously� i�e�� each processor pi

executes MPADD s� oi� then after the operation� processor pj holds the jth pre�x sum o�
Pj��

i�� oi � s

contains the sum o�
Pn

i�� oi � The multipre�x operations MPMAX� MPOR� and MPAND work similar�

A multipre�x operation is as fast as a read operation� independently of the number of participating

processors� It is even possible that di�erent groups of processors perform separate multipre�x operations

in parallel� The multipre�x operations can be used for an e�cient implementation of synchronization

mechanisms �such as barriers without serialization ���� and for the implementation of various parallel

data structures for task management like priority queues or FIFO queues ��
�� Because of its memory

structure� the SB�PRAM is an ideal machine for the execution of irregular applications� In addition

to running an application on the SB�PRAM� the machine can also be used to study the properties of

a parallel program under ideal conditions� yielding a prediction of the maximum speedup that can be

attained on other machines�

The current prototype provides the user with ��� PRAM processors� the complete prototype will

provide ��� processors� Program runs were executed on a cycle�by�cycle simulator� accuracy was

con�rmed by comparisons with runs on the actual prototype�

� CRITICAL PATH ANALYSIS

Not all events occurring while simulating a circuit can be executed in parallel� The result of an event e

can only be computed correctly if

�� all events preceding e on the same LP are executed�

�� the results of all events scheduling e are known to e�

��� Event Precedence Graphs

Consider the set of the events that occur during the simulation of a �xed experiment on a �xed model�

From the above constraints� we can derive a partial order on this set� called �causality � The representa�

tion of this order as a directed graph G � �V�E� is called �event precedence graph �EPG�� introduced

independently by Berry and Je�erson ��� and Livny ����� V is the set of events� �e�� e�� is an edge i�� e�

schedules e� or e� is the last event before e� on the same LP� The weight function � � V � R�
� assigns

to each event the runtime to execute it� This de�nition can be made independent of the underlying

machine by de�ning ��e� as a function on the indegree of e� We call an event e� dependent on e� i��

there exists a path in G from e� to e��

Only events that are independent from each other can be executed in parallel� Hence� the EPG serves

to compute a lower bound on the simulation	s runtime� We assume that every LP is simulated on its

own processor� Then� because of constraint �� it can never happen that more than one event e is ready

for execution on one processor� This unique event e can be executed as soon as constraint � is satis�ed�

Obviously� events e with indegree � can be executed immediately after the simulation starts�

If START�e� and END�e� denote the times when the execution of event e ideally starts and �nishes�

then

END�e� � START�e� � ��e� �

START�e� �

�����
����

max
�e��e��E

END�e�� indeg�e� � �

� otherwise�

This recurrence equation is well de�ned because EPGs are acyclic� To compute END� one sorts the

vertices topologically and evaluates them in this order� The time

Tcrit � max
e�V

END�e� � ���

is the runtime of an ideal simulation on a parallel machine with an arbitrary number of processors�

Tcrit is a lower bound on the parallel runtime of every conservative simulation strategy ����� It is even

a lower bound on optimistic strategies with aggressive cancellation �����

The path de�ning the maximum in ��� is called critical path� Note that there may be several critical

paths in an EPG�

The EPG also serves to compute a lower bound on the sequential runtime by

Tseq �
X
e�V

��e� �

So far� the computed runtimes ignore any computational overhead in addition to causality� If we

assume that the overhead in a parallel simulation is greater than in a sequential simulation� then the

quotient Scrit � Tseq�Tcrit de�nes an upper bound on the possible speedup for a particular experiment�

This overhead assumption is supported by the observation that normally all data structures from

the sequential program are needed in the parallel version as well� The parallel program might need

additional data structures to support information exchange between LPs�

��� Partitioning Strategies

For large circuits� real parallel machines do not have enough processors to assign each LP to a di�erent

processor� Hence� the LPs must be partitioned between the available processors�

On distributed memory multicomputers� a commonly used partitioning scheme is static partitioning�

Every processor is assigned a �xed set of LPs� the sets are disjoint� Examples for static partitioning are

cyclic distribution �LPi is executed on processor i mod p�� blockwise distribution �processor i executes

LPin�p�� to LP�i���n�p�� and random distribution �each processor is assigned n�p LPs in a random

fashion�� If the numbering of LPs in the input data �le is arbitrary� then any distribution resembles

random partitioning�

There are a number of heuristic approaches to �nd better static partitionings ��� ��� ��� ���� However�

we did not consider those approaches� They mostly try to optimize communication costs which is not

necessary as we use shared�memory machines�

On a shared memory multiprocessor� all processors have access to the data of every LP� Hence� an

obvious strategy would be to have a central FIFO queue for LPs that are ready for execution� An idle

processor simply picks the �rst queue element� We call this strategy dynamic� The standard method to

�nd out when an LP becomes ready for execution is presented in Subsect� ���� The disadvantage of a

central FIFO queue is the possible serialization overhead due to concurrent access of multiple processors�

This overhead can be eliminated by a serialization�free parallel data structure on the SB�PRAM �see

Subsect� �����

Often however� shared memory multiprocessors need some locality in data referencing to exploit their

caches and hence to obtain appropriate memory bandwidth� To achieve locality� the PTHOR program

of the SPLASH� benchmark suite ��� uses a so called stealing strategy � basically� this is a static strategy

with local task queues for LPs that are ready for execution� In cases where the load is not balanced�

an idle processor can �steal an LP that is ready for execution but is assigned to another processor�

The stealing strategy exploits locality as long as processors are busy and requires remote access only

for load balancing when the processor is idle anyway�

In all these strategies� it may happen that a processor must choose between several LPs that are

ready for execution� This can happen because either more than one LP assigned to a processor is ready�

or because more than p LPs are ready in the central FIFO queue� In PTHOR� the processor chooses the

LP that has been ready for execution for the longest time� This is easy to implement� Another popular

method is to choose the LP with the smallest timestamp� This method leads to additional overhead

because it requires that LPs that are ready to run are kept sorted according to their timestamps�

To get realistic runtime predictions Tcrit�p� depending on the number of processors p� it is necessary

to model the partitioning strategy used in the critical path analysis� Note that these runtimes cannot

be shorter than Tcrit� All delays due to causality apply for both Tcrit and Tcrit�p�� and partitioning

could introduce additional delays� The inclusion of partitioning strategies in critical path analysis was

�rst mentioned by Lin ����� but he only uses a static strategy�

To include one of the above partitioning strategies in critical path analysis� we assume that the

number of available processors p is �xed� We maintain a timer c�i� for each processor i� which speci�es

the computation time performed by i� If this processor executes an event e� the timer is increased by

��e�� As before� we evaluate the function END on the nodes of the EPG in topological order� For an

event e executed on processor i� let cold�i� denote the value of c�i� before the execution of e� Then

END�e� � START ��e� � ��e� �

START ��e� � max �cold�i��START�e�� �

START�e� is de�ned as above� The execution time consumed by simulating e is taken into account by

updating c�i� to

c�i� � END�e� �

The di�erent partitioning strategies lead to di�erent assignments of LPs �and their events� to pro�

cessors and hence to di�erent results for Tcrit�p��

Note that the topological sort does not give a unique total order on the vertices� e�g� all vertices with

indegree � could serve as the �rst node� Therefore we maintain a priority queue of all events that are

ready for execution� The priority is the time when the events became ready� Removing the event with

the smallest ready time ensures correct modeling�

��� Experiments

We computed the EPGs for three circuits delivered with the PTHOR simulator from the SPLASH�

benchmark suite ����

� DASH models the cache coherency controller of the DASH multiprocessor ���� and represents

����� gate equivalents organized in ����� LPs�

� H�FRISC is a small RISC processor generated by a synthesis tool� It represents ����� gate equiv�

alents organized in ����� LPs�

� Multiplier implements a multiplier of two ���bit numbers� It also represents ����� gate equivalents

organized in ����� LPs�

We use the input vectors that are delivered with the PTHOR program� We use the unit delay model�

i�e�� each gate and each register has a delay of �� We simulate ���� time units� We computed the

speedup bound Scrit and bounds

Scrit�p� �
Tseq

Tcrit�p�
�

where p � �i� i � �� � � � � ��� for the three partitioning strategies� For the static and stealing strategies�

we use a cyclic distribution� The curves are shown in Fig� �� ��

Fig��The speedup bounds Scrit�p� with partitioning reach the maximum speedup Scrit already for small

numbers of processors� The dynamic partitioning strategy outperforms the other two in theory� For

small processor numbers �p � ���� the stealing strategy behaves like the static strategy� for larger

processor numbers it approaches the dynamic strategy� As the static strategy performs worst� we do

not consider it in the sequel�

Second� note that causality restricts the available parallelism severely� The DASH circuit� also the

largest one� obtains the worst speedup bound with ���� Soul�e ���� estimates the inherent parallelism by

counting the number of LP�evaluations for each timestep and computing the average over the di�erent

timestep�results� With ��� evaluations� the DASH circuit shows a much better result than H�FRISC and

Multiplier with the same average of ��� evaluations� The numbers neglect the in�uences of causality

and granularity on the inherent parallelism� This fact as well as the later presented practical results

favor our estimation method�

Especially the causality has a strong in�uence on the parallelism� This might result from the form of

the LPs� The DASH circuit has LPs with up to � inputs� In contrast� the H�FRISC and the Multiplier

circuits have LPs with up to �� and � inputs� respectively� The more inputs an LP has� the more it

can depend on events occurring on other LPs� The events that schedule an event on an LP with many

inputs might �nish at vastly di�erent computation times� As a conservative simulation must wait for

the last of these events to �nish� the delays due to causality can be large� So� it might be wise to split

large LPs into smaller units with fewer inputs�

In contrast to this� Soul�e ���� proposes to combine LPs to larger units called �globbed elements to

get a larger granularity of the single tasks and so to increase the speedup� As this increases the number

of inputs per LP� the bene�ts due to larger granularity get lost by parallelism degradation� Our results

strongly discourage this proposal�

We also investigated the granularity of the LP execution times as a possible source of speedup degra�

dation� On the SB�PRAM the execution time of an LP is proportional to the number of instructions�

Figure � shows the distribution of the LP execution times� ��

Fig��First� a single LP needs at most ��� instructions on the SB�PRAM� Thus it does not seem useful to

parallelize the execution of LPs� Second� the variance in the execution time is not very large� If we

replace the execution time of each LP in an EPG by the average execution time over all LPs of this

EPG� then the maximum speedup Scrit only increases between �! and ��!� Hence� the di�erence in

execution time cannot explain a large speedup degradation�

� PTHOR

A widely used algorithm for circuit simulations on parallel machines is the Chandy�Misra�Bryant al�

gorithm �CMB� ���� ���� This algorithm is a conservative approach� We will �rst review the PTHOR

program ����� which is an implementation of CMB on the Stanford Dash machine and distributed as

part of the SPLASH� benchmark suite ����

Granularity has a strong in�uence on centralized�time algorithms� The runtime of each round is

bound by the longest task� The asynchronous CMB algorithm is potentially able to simulate events

of other simulation timesteps in parallel while a lengthy event runs on one processor� Our granularity

measurements show that lengthy tasks exist in the simulation of our benchmark circuits�

Finally� the overhead of synchronization for each simulation�time step in synchronous simulation is

inevitable� Every element in our benchmark circuits has a non�zero delay and no events are cancelled�

so at most one deadlock per simulation�timestep can occur in CMB� With our optimizations discussed

later� deadlock resolution runs only slightly slower on the SB�PRAM than a synchronization� So� every

timestep without deadlock can help to avoid overhead that must occur in centralized�time simulation�

��� Description

PTHOR partitions the LPs of the simulated circuit with the stealing strategy sketched in Subsect� ���

It uses a cyclic distribution of LPs to processors� There is a message channel between LP i and LP j

if an input of component j in the simulated circuit is connected to an output of component i� If LP i

computes a change of the output signal that occurs at simulated time t� then this output is put into a

message with timestamp t� All LPs connected with LP i get a copy of this message in their appropriate

input bu�ers�

Each processor maintains an activation list that contains all of its LPs for which new messages have

arrived� If LP i sends a message to another LP j� it generates an entry for LP j in the activation list

of the processor to which LP j is assigned�

An event e can only be simulated if all necessary inputs are present in the input bu�ers� An idle

processor j tries to get an LP from its activation list� If its own list is empty� then it tries to steal an

LP from another activation list� If the chosen LP has all necessary inputs� j can simulate one or several

events from that LP correctly� In either case� this LP is removed from the activation list� It will be

entered again if some new input message arrives�

It can thus happen that all activation lists become empty although some events could be simulated�

Such a situation is called deadlock� The CMB algorithm tolerates deadlocks� because it is able to detect

and to resolve all of them� Deadlock detection can be implemented on a shared memory multiprocessor

by maintaining a shared counter which is initially set to zero� A processor whose activation list becomes

empty �and does not succeed in stealing� increases the counter� It decrements the counter again if it

�nds a new event to simulate� A deadlock has occurred if the counter equals the number of available

processors�

To resolve the deadlock� one has to �nd at least one event that can be simulated� To do this� we

search for a message m with the minimum timestamp "t� Chandy and Misra prove that all events that

occur at time "t �and hence have m as input� can be simulated �����

��� Performance

Figure
 shows the speedups for the benchmark circuits on three machines� with processor numbers ��

Fig��ranging from � to ���� Only on the SB�PRAM we obtain a speedup larger than �� The diagrams

show absolute speedups� the sequential runtime is not the runtime of the parallel program with one

processor� Instead� it is the runtime of the fastest sequential implementation we were able to develop�

For the circuits� the same models and the same implementations were used in the sequential and the

parallel case� Only the parts for administrating messages� scheduling LPs and memory management

were replaced for the di�erent sequential and parallel measurements� These parts of our sequential

simulator had to be optimized� In a sequential simulator� the events must be executed in increasing

timestamp order� Thus� in contrast to parallel asynchronous schemes� the sequential queue not only

Table �� Slowdown factors

Benchmark DASH H�FRISC Multiplier

SB�PRAM �PTHOR� ��� �� ��

Dash �PTHOR� �
�� ��� ���

SB�PRAM �Reimpl��
�� ��� ���

schedules the LPs but also has to restore the timestamp order� To perform this task� all messages are

held in a priority queue� For the SB�PRAM� we implemented several di�erent data structures like binary

heap� �bonacci heaps and calendar queues� We found out that splay�trees ���� give the best runtime

results for our application� Besides many small optimizations� an e�cient memory management was

realized�

Note that the parallel program on one processor is much slower than the sequential program on one

processor of the same machine� The quotient between these two runtimes is called slowdown factor�

Table � shows the slowdown factors for the three benchmark circuits on the SB�PRAM and the Dash

machine� The latter are taken from ����� For Dash and Multimax� we used relative speedups from ����

and the above slowdown factors to compute absolute speedups��

The source code of the centralized�time simulator is not delivered with the SPLASH� benchmarks�

So� runtime results for comparison on the SB�PRAM are not available�

The performance of PTHOR su�ers from serialization� Serialization occurs during concurrent access

to the shared counter for deadlock detection�

The access to the counter is protected by a lock� Figure shows the total number of accesses to the ��

Fig��shared counter and the fraction of accesses that were not directly granted� The time to access a lock is

one instruction in both the Dash and the SB�PRAM� as both machines provide hardware support for

read�modify�write operations�

Serialization is also caused by the computation of the minimum timestamp during deadlock resolution�

This computation needs a loop over all processors and barrier synchronizations before and after the loop�

The barriers are also implemented by locks� The upper curves of Fig� � show the average number of ��

Fig��instructions needed to resolve a deadlock in PTHOR on the SB�PRAM� The lower curves show the

corresponding numbers for the reimplementation �see next Section��

� REIMPLEMENTATION

Our reimplementation avoids the serializations mentioned above� We also improved the memory man�

agement and the realization of channels between LPs� As mentioned in Sect� �� the multipre�x operation

serves to compute global sums and global minima in a small constant number of instructions� Figure

� shows the average number of instructions needed for deadlock resolution on the SB�PRAM using

multipre�x�

	�� Memory Management

During the simulation� one has to manage tens of thousands of small list elements for message queues�

activation lists etc� PTHOR never recycles elements� it even keeps those elements that are not in use

anymore� This is a waste of memory resources and leads to unnecessary shared memory allocations�

Furthermore� extracting list elements from the allocated memory leads to serialization because locks

are used�

In the reimplementation� each processor maintains a so called freelist� After a processor has executed

an event� some of the involved list elements might not be needed anymore� Then� the processor adds

these to its own freelist� If a processor wants to allocate a list element� it �rst tries to obtain one from

its freelist� If its freelist is empty� then it obtains a list element from an allocated shared memory block�

If a block containing l list elements is allocated� a shared counter c is initialized to l� A so called

R�pointer is set to the beginning of the memory block� To obtain a list element from that block� a

processor decreases the counter c with the help of multipre�x� This allows a concurrent access of multiple

processors without serialization� The result r of the pre�x operation gives the number of remaining list

elements� If r � � the memory block is exhausted� The processor that obtains value � then allocates a

new memory block� all processors that received values less or equal to zero then repeat the allocation

with the new block�

If a processor receives r � �� it can cut o� a list element from the memory block� To do this� it

increases the R�pointer of this block by the size of a list element with the help of multipre�x� The value

the processor obtains then determines the position of the list element� Figure � shows �ve processors

that try to allocate a list element� Processor � �nds an element in its freelist� the other four processors ��

Fig�	must allocate from a shared memory block with c � �� After the multipre�x operation� c � ��� and

processor i receives value
 � i� Thus� processors � and � get list elements from the current memory

block� Processor
 receives the value � and allocates a new block� from which processors
 and allocate

their list elements�

	�� Channel Queues

The realization of a channel is performed with a FIFO queue where one LP writes a message and all

LPs connected to this channel read the message� As it is not clear when all LPs have read a message�

PTHOR keeps all messages in these queues� We attach a shared counter to each message in the queue�

The counter is initialized to the number of LPs connected to this channel� Each LP reading a message

decreases its counter with the help of multipre�x� If the counter has reached zero� the processor accessing

the message removes it from the queue and puts it into its freelist� We call this queue organization

single�in multiple�out queue �SIMO�� It needs no locks� Figure � shows a SIMO queue where LP � writes

and LPs � to read� The uppermost two messages have not yet been read by any LPand hence have ��

Fig�
counters with values � The next two messages have been read by LP � and LPs � and � respectively�

and thus have counters with values
 and �� LP � has just read the lowermost message and thus

decreased the message	s counter to zero� The message now is removed from the queue�

	�� LNE Lists

To resolve deadlocks� one has to inspect all LPs that satisfy the following conditions�

� At the beginning of the deadlock� the LP still has messages in its input bu�ers�

� the LP has processed at least one message�

To speed up deadlock resolution� we maintain a data structure containing only the LPs satisfying the

above conditions�

When a processor fetches an LP i from its activation list� it �rst checks this LP	s input bu�ers and

possibly simulates one or several safe events� In either case� this ends by checking the input bu�ers

without �nding a safe event� During the test� the above conditions can be checked with little additional

overhead� Also� the minimal timestamp of the messages in LP i	s input bu�ers can be computed� This

value is called the LNE time of LP i �LNE�least next event�� It is an upper bound on the time of the

next event on this LP�

If we know the LNE times of all LPs which still have messages in their input bu�ers during a deadlock

phase� then we only must compute the minimum "t of all LNE times� All events that occur at time "t can

be simulated �see end of Sect� ����� To obtain a faster deadlock resolution� we maintain a list of LNE

times�

� After the last test of LP i 	s input bu�ers� the computed LNE time is added to the LNE list� This

means that either a reference to LP i containing the LNE time is added to the list� or that the

LNE time of LP i is updated if a reference to LP i is already present�

� If the bu�ers of an LP get empty� its reference is removed from the LNE list�

If we employ a static or stealing partitioning strategy� each processor j maintains a partial LNE list

containing references to LPs that are assigned to j� If we employ a stealing strategy� several processors

might write into one partial list� Then the partial lists must be protected by locks� However� as stealing

happens seldomly� the number of collisions will be low� If we employ a dynamic strategy� each processor

maintains the partial LNE list of all LPs that would have been assigned to it in a static partitioning

strategy� The lists are also protected by locks�

To �nd the minimum timestamp "t� each processor �rst runs over its own partial LNE list sequentially�

Then "t is computed by a global minimum over all processors� If the load is balanced� then each processor

spends a similar amount of time to compute the local minimum� The global minimum is done with a

multipre�x operation in constant time�

Figure � shows the partial LNE list of processor �� when a stealing strategy is employed� Processor ��

Fig��� has stolen LP

 from processor �� has just computed the LNE time of LP

 to ��� and has inserted

a reference to LP

 at the beginning of the list� Processor
 has stolen LP �� from processor �� The

bu�ers of LP �� have become empty� therefore processor
 removes the reference to LP �� from the list�

	�� Performance

Figure � shows the absolute speedups of PTHOR and the reimplementation on the SB�PRAM� The ��

Fig��speedups of the reimplementation are much better than the PTHOR speedups� For the DASH bench�

mark� the speedup reaches the critical path bound� For H�FRISC and Multiplier there is still a gap

between the bound from critical path analysis and the actual speedup� Experiments that try to tighten

this gap are discussed in Subsect� ����

The runtime of the reimplementation can be split into four phases�

�� Simulation of logical processes�

�� bu�er tests� generation of messages and handling of SIMO� LNE and global activation lists�

� Waiting�

� Deadlock resolution�

Figure �� shows the portions of these phases on the runtime for di�erent numbers of processors� The ��

Fig��portions are averaged over all processors� The �gure clearly shows that for larger processor numbers�

most time is spent in phase
 �waiting�� Hence� the small speedups for larger processor numbers do

not result from increased overhead� Optimizations could try to have the processors do something useful

during the waiting times� However� it is not obvious how to achieve this without increasing the runtimes

of the other phases�

	�� NULL
Messages and Dynamic Partitioning

First� we incorporate the concept of NULL�messages� In PTHOR� a message m is only sent when an

LP i changes one of its outputs� In conservative simulation� m can be consumed when no messages

with smaller timestamps arrive over this channel� The channel clock shows the timestamp of the last

message sent over this channel� Deadlocks occur due to clocks not incremented far enough because of

messages not sent� To prevent this� so called NULL�messages containing only a timestamp help to give

better guarantees� Chandy and Misra show that deadlocks can be avoided completely if all events send

all possible NULL�messages �����

On distributed memory machines� the �ood of NULL�messages can cause more overhead than the

deadlock avoidance method� Therefore� one only sends part of the NULL�messages to avoid part of

the deadlocks ��
�� On shared memory machines� messages need not be sent explicitly� Every event

can access each channel data structure in global memory� Therefore� instead of sending a message�

one can update every channel clock directly� This removes most of the overhead of message passing

�queue organization etc�� and makes NULL�messages a useful tool� To avoid deadlocks completely�

every update of a channel clock must be followed by the activation of all LPs connected to this channel�

Figure �� shows the speedup curves with and without NULL�messages for the Multiplier circuit� The ��

Fig���use of NULL�messages almost doubles the speedup�

The situation is di�erent for the H�FRISC circuit� Here� the use of NULL�messages results in an

increase of activations by a factor of �� The speedup drops by a factor of � to �� depending on the

number of processors� The reason lies in the di�erent structures of the circuits� WhileMultiplier is purely

combinatorial� H�FRISC contains cycles between registers� In these cycles� often several NULL�messages

are sent �and hence activations happen� before an event can be simulated�

Baker and Mahmoody ��� also present an algorithm that optimizes the use of NULL�messages� They

report an increase by a factor of three in combinatorial circuits taken from the ISCAS suite� However�

the performance of their algorithm on sequential circuits is unknown to us�

Second� we tried to use the dynamic partitioning strategy as an alternative to stealing� To do this�

one needs a shared FIFO queue as a global activation list� This list is accessed by all processors and

hence need not lead to serialization� With the help of multipre�x� one can implement a FIFO queue

that processes inserts or deletions of an arbitrary number of processors in a small constant number of

instructions ��
��

Figure �� shows the speedups on H�FRISC for both strategies� The curves for the Multiplier circuit ��

Fig���

look similar� In contrast to theory� the dynamic strategy is not superior to stealing� A reason for this

is that more than ��! of all activations are satis�ed from the processors	 local activation lists� even for

large processor numbers� However� the dynamic strategy leads to a simpler program code� Note that

the di�erence between the two curves is even increasing� This results from a constant runtime overhead

while accessing the central FIFO queue�

� CONCLUSIONS

Our results show that critical path analysis permits good speedup predictions if partitioning strategies

are included� For the benchmark circuits� the SB�PRAM comes close to the maximum speedup� allowing

more accurate predictions� As a consequence of using a single framework� the tool for critical path

analysis also yields an e�cient implementation�

For the prediction� we consider absolute speedup values� This is important to evaluate the use of

parallel machines in practice as relative speedups are up to �� times higher than the absolute ones�

To make parallel simulators competitive� it might be worth investigating whether the slowdown factors

from sequential to parallel can be made smaller�

Experiments with the benchmark circuits reveal that the maximum speedup is strongly dependent

on the circuit	s structure� Of particular importance are the length of the cycles and the number of

inputs per LP� Our results strongly suggest to keep the number of inputs per LP low� if necessary by

decomposing one LP into several smaller ones�

We presented several new serialization�free parallel data structures which seem to have a large impact

on the programs performance� The e�ciency of these data structures is based upon the use of parallel

pre�x operations�

The Dash machine supports so called fetch#op operations which are parallel increment�decrement�

Hence� SIMO queues and improved deadlock detection could be implemented on the Dash as well�

However� the Dash	s fetch#op still leads to serialization� Memory management and improved deadlock

resolution require parallel pre�x sum and maximum with integers� respectively� and thus cannot be used

on the Dash�

References

	
� F� Abolhassan� R� Drefenstedt� J� Keller� W�J� Paul� and D� Scheerer� �On the physical design of PRAMs�

Computer Journal� Vol� ��� No� �� pp� �������� December
����

	�� G� Almasi and A� Gottlieb� �Highly Parallel Computing� Redwood City� CA�Benjamin�Cummings� �nd

edition�
����

	�� H� Avril and C� Tropper� �Clustered time warp and logic simulation� Proc� �th Workshop on Parallel and

Distributed Simulation� Lake Placid� NY� June
���� pp�

��

��

	�� M� L� Bailey� �A time based model for investigating parallel logic�level simulation� IEEE Transactions on

Computer�Aided Design� Vol�

� pp� �
������
����

	�� M� L� Bailey� J�V� Briner Jr�� and R�D� Chamberlain� �Parallel Logic Simulation of VLSI Systems� ACM

Computing Reviews� Vol� ��� No� �� pp� ��������
����

	�� W� I� Baker� J� Herath� A� Jayasumana� and A� Mahmood� �A logic simulation engine based on a modi�ed

data �ow architecture� Proc� IEEE International Conf� on Computer Aided Design ICCAD���� Santa Clara�

CA� November
���� pp� ��������

	�� W� I� Baker and A� Mahmood� �An analysis of parallel synchronous and conservative asynchronous logic sim�

ulation schemes� Proc� �th IEEE Symposium on Parallel and Distributed Processing� Dallas� TX� December

���� pp� ������

	�� O� Berry and D� Je�erson� �Critical path analysis of distributed simulation� Proc� ��	
 SCS Multiconference

on Distributed Simulation� San Diego� CA� January
���� pp� ������

	�� A� Boukerche and C� Tropper� �A Static Partitioning and Mapping Algorithm for Conservative Parallel

Simulations� Proc� 	th Workshop on Parallel and Distributed Simulation� Edinburgh� Scotland� UK� July

���� pp�
���
���

	
�� R� E� Bryant� �Simulation of packet communications architecture computer systems� Technical Report

MIT�LCS�TR�
��� Massachusetts Institute of Technology�
����

	

� K� M� Chandy and J� Misra� �Deadlock absence proofs for networks of communicating processes� Informa�

tion Processing Letters� Vol� ��� pp�
���
��� November
����

	
�� K� M� Chandy and J� Misra� �Asynchronous distributed simulation via a sequence of parallel computations�

Communications of the ACM� Vol� ��� No�

� pp�
������� April
��
�

	
�� R� M� Fujimoto� �Parallel discrete event simulation� Communications of the ACM� Vol� ��� No�
�� pp�

������ October
����

	
�� T� Gr�un� T� Rauber� and J� R�ohrig� �The programming environment of the SB�PRAM� Proc� �th

IASTED�ISMM Int�l Conf� on Parallel and Distributed Computing and Systems� Washington D�C�� October

����

	
�� M� A� Gunter� �Understanding supercritical speedup� Proc� of ��� Winter Simulation Conference� Los

Angeles� CA� December
���� pp� �
����

	
�� D� R� Je�erson� �Virtual time� ACM Transactions on Programming Languages and Systems� Vol� �� No� ��

pp� ��������
����

	
�� D� Je�erson and P� Reiher� �Supercritical speedup� Proc� of ��th Annual Simulation Symposium� New

Orleans� LA� April
��
� pp�
���
���

	
�� K� L� Kapp� T� C� Hartrum� and T� S� Wailes� �An improved cost function for static partitioning of parallel

circuit simulations using a conservative synchronization protocol� Proc� �th Workshop on Parallel and

Distributed Simulation� Lake Placid� NY� June
���� pp� ������

	
�� P� Konas and P��C� Yew� �Partitioning for synchronous parallel simulation� Proc� �th Workshop on Parallel

and Distributed Simulation� Lake Placid� NY� June
���� pp�
�
�
���

	��� D� Lenoski� J� Laudon� K� Gharachorloo� W��D� Weber� A� Gupta� J� Hennessy� M� Horowitz� and M� S�

Lam� �The Stanford DASH multiprocessor� IEEE Computer� Vol� ��� No� �� pp� ������ March
����

	�
� Y��B� Lin� �Parallelism analyzers for parallel discrete event simulation� ACM Transactions on Modeling

and Computer Simulation� Vol� �� No� �� pp� �������� July
����

	��� M� Livny� �A study of parallelism in distributed simulation� Proc� of ��	
 SCS Multiconference on Dis�

tributed Simulation� San Diego� CA� January
���� pp� ������

	��� J� R�ohrig� �Implementation of the P� Runtime Library on the SB�PRAM �in German�� Master�s Thesis�

Universit�at des Saarlandes�
����

	��� J� P� Singh� W��D� Weber� and A� Gupta� �SPLASH� Stanford Parallel Applications for Shared�Memory�

Computer Architecture News� Vol� ��� No�
� pp� �����
����

	��� D� D� Sleator and R� E� Tarjan� �Self�adjusting binary search trees� Journal of the ACM� Vol� ��� No� ��

pp� ��������
����

	��� L� Soul�e� �Parallel Logic Simulation� An Evaluation of Centralized�Time and Distributed�Time Algorithms�

PhD thesis� Stanford University� June
����

	��� C� Sporrer and H� Bauer� �Corolla partitioning for distributed logic simulation of VLSI�circuits Proc� �th

Workshop on Parallel and Distributed Simulation� San Diego� CA� May
���� pp� ������

	��� T� Sterling� D� Savarese� P� Merkey� and K� Olson� �An Enpirical Study of the Convex SPP�
��� Hierarchical

Shared�Memory System� Proc� International Conf� on Parallel Architectures and Compilation Techniques

PACT ��
� Limassol� Cyprus� June
����

Biographies

J�org Keller received his Masters degree and PhD in computer science from University Saarbr�ucken in
��� and

���� respectively� Since
���� he is professor for computer engineering at the FernUniversit�at �Open University�

Hagen� Germany� His research interests are parallel architectures� hardware design� and parallel algorithms and

data structures�

Thomas Rauber received his Masters degree and PhD in computer science from University Saarbr�ucken in
���

and
���� respectively� Since
���� he is professor for practical computer science at the Martin�Luther�University

of Halle�Wittenberg� Germany� His research interests are parallelizing compilers� performance prediction and

modeling of parallel machines� discrete event simulation� and irregular applications on shared�memory machines�

Bernd Rederlechner received a Masters degree in computer science from University Saarbr�ucken in
���� The

presented article summarizes the results from his master�s thesis� He currently works for the german Telekom

AG �Entwicklungszentrum S�ud�West� Saarbr�ucken� Germany� as a software developer� His research interests now

focus on object�oriented software design� network management� GUI�design and parallel multigrid algorithms�

Figure Caption List

Figure �� Speedup bounds for di�erent partitioning�

Figure �� Granularity of LP execution times�

Figure
� Absolute speedups of PTHOR on the Dash�� Multimax� and SB�PRAM�Multiprocessor�

Figure � Lock contention on SB�PRAM�

Figure �� Duration of deadlock resolution on SB�PRAM�

Figure �� Memory management of list elements�

Figure �� Single�In Multiple�Out queue�

Figure �� Partial LNE list of processor ��

Figure �� Absolute speedups before and after reimplementation on the SB�PRAM�

Figure ��� Portions of phases on execution time�

Figure ��� Use of NULL�messages�

Figure ��� Absolute speedups for dynamic and stealing partitioning�

1

2

4

8

16

1 4 16 64 256 1024 4096

S
pe

ed
up

DASH

7.48

linear
max. speedup

dynamic
stealing

static

1

2

4

8

16

32

64

1 4 16 64 256 1024 4096

H-FRISC

48.45

linear
max. speedup

dynamic
stealing

static

1

4

16

64

256

1024

1 4 16 64 256 1024 4096
Processors

Multiplier

525.89

linear
max. speedup

dynamic
stealing

static

Figure �� Speedup bounds for di�erent partitioning strategies

DASH

�

��

��

��

��

��

��

��

	�

�

���

��
��

to
�

��
��
�

�

to
�

��
��

�

to
�

��
��

�

to
	

��
��

	

a
ls
�

��
��
�

�

to

�
��

to
�

�
�

�

�

to
�

��

�

to
�

��
��

�

to
�

!

H�FRISC

�

��

��

��

��

��

��

��

	�

�

���

��
�

to
�

��
��

�

to
�

��
��

�

to
�

��
��

�

to
	

��
��

	

a
ls
�

��
�

�

to

��
��
�

to
�

��
��
�

�

to
�

��
��

�

to
�

��
��

�

to
�

!

Multiplier

�

��

��

��

��

��

��

��

	�

�

���

��
�

to
�

��
�

�

to
�

��
��

�

to
�

��
��

�

to
	

��
��

	

a
ls
�

��
��

�

to

�

�

�

to
�

��
��
�

�

to
�

��
��

�

to
�

�
�

�

to
�

!

No� of instructions

Figure �� Granularity of LP execution times

0.125

0.25

0.5

1

2

4

2 4 8 16 32 64 128

ab
s.

 S
pe

ed
up

DASH

crit. path
SB-PRAM

Dash
Multimax

0.125

0.25

0.5

1

2

4

2 4 8 16 32 64 128
Processors

H-FRISC

crit. path
SB-PRAM

Dash
Multimax

0.125

0.25

0.5

1

2

4

2 4 8 16 32 64 128

Multiplier

crit. path
SB-PRAM

Dash
Multimax

Figure
� Absolute speedups of PTHOR on the Dash�� Multimax� and SB�PRAM�Multiprocessor�

10000

100000

1e+06

1e+07

2 4 8 16 32 64 128

N
o.

 o
f a

cc
es

se
s

Processors

DASH
H-FRISC
Multiplier

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128

%
 c

on
te

nt
io

ns

Processors

DASH
H-FRISC
Multiplier

Figure � Lock contention on SB�PRAM

100

1000

10000

2 4 8 16 32 64 128

N
o.

 o
f I

ns
tr

uc
tio

ns

Processors

DASH (Pthor)
H-FRISC (Pthor)
Multiplier (Pthor)
DASH (Reimpl.)

H-FRISC (Reimpl.)
Multiplier (Reimpl.)

Figure �� Duration of deadlock resolution on SB�PRAM

R-pointer
new

proc 1 proc 2 proc 3 proc 4

2 1 0 -1

Memory request proc 3

proc 1 proc 2

proc 3 proc 4

Freelists: proc 0 proc 1 proc 2 proc 3 proc 4

Multiprefix

R-
pointer

on counter:

for
proc 0

for for

for for

Figure �� Memory management of list elements

LP 0

0

2

3

4

4

LP 1 LP 2 LP 3 LP 4

Figure �� Single�In Multiple�Out queue

proc 1

LP 33 LP 5 LP 11 LP 17

LNE: 20 25 21 27

Figure �� Partial LNE list of processor �

0.5

1

2

4

8

2 4 8 16 32 64 128 256 512

ab
so

lu
te

 S
pe

ed
up

DASH

crit. path
reimplementation

PTHOR

0.5

1

2

4

8

16

32

64

2 4 8 16 32 64 128 256 512
Prozessors

H-FRISC

crit. path
reimplementation

PTHOR

1

4

16

64

256

2 4 8 16 32 64 128 256 512

Multiplier

crit. path
reimplementation

PTHOR

Figure �� Absolute speedups before and after reimplementation on the SB�PRAM

Buffer tests and
other overhead

Waiting Deadlocks
of logical processes

Processors

100

70

Simulation

50

30

20

10

40

80

90

2 4 8 16 32 64 128 256 512

Multiplier%

60

100

70

60

50

30

20

10

40

80

90

%

2 4 8 16 32 64 128 256
Processors

DASH

Processors

100

70

60

50

30

20

10

40

80

90

%

2 4 8 16 32 64 128 256 512

H-FRISC

Figure ��� Portions of phases on execution time

1

4

16

64

256

2 4 8 16 32 64 128 256 512

ab
so

lu
te

 S
pe

ed
up

Prozessors

Multiplier

crit. path
reimplementation
NULL-messages

Figure ��� Use of NULL�messages

0.5

1

2

4

8

16

32

64

2 4 8 16 32 64 128 256 512

ab
so

lu
te

 S
pe

ed
up

Processors

H-FRISC

crit. path
stealing
dynamic

Figure ��� Absolute speedups for dynamic and stealing partitioning

