
Fountain Codes and Covert Channels

Ewelina Marciniszyn

May 20, 2022

Bachelorarbeit im Bachelorstudiengang Informatik

Matrikelnummer: 9711961

Prüfer: Prof. Dr. Jörg Keller

FernUniversität in Hagen

Contents

1 Introduction 1

2 Covert Channel 3

3 Fountain Code 4
3.1 Header formats . 5

3.1.1 BV . 5
3.1.2 ENUM . 5
3.1.3 ENUMALL . 7

3.2 Decoding algorithm . 8
3.2.1 Gaussian Elimination . 8
3.2.2 LT Decoder . 9

3.3 Degree distributions . 11
3.3.1 Ideal soliton distribution . 11
3.3.2 Robust soliton distribution . 12
3.3.3 Sparse degree distributions . 12

3.4 Variations of Luby fountain codes . 17

4 Covert Channel in Fountain Code 19
4.1 Covert Channel in one header degree . 20

4.1.1 Approach . 20
4.1.2 Additional problems . 21
4.1.3 Detectability and efficiency . 23
4.1.4 Integral factors . 26
4.1.5 Packet loss in the channel . 30

4.2 Covert Channel in multiple degrees . 32
4.2.1 Using degrees 4, 8, 16 and 32 . 32
4.2.2 Using only degrees 8, 16 and 32 . 35
4.2.3 Degrees 4, 8, 16 and 32, with KS = 8 36

4.3 Half-Degree covert channel . 39
4.3.1 Basic approach . 39
4.3.2 Improvement by adding more secret packets 43

4.4 Comparison . 46

5 Implementation 48
5.1 Instructions . 48
5.2 Architecture . 48
5.3 Algorithms . 51

5.3.1 Distribution algorithm . 51
5.3.2 Binomial coefficients algorithm . 52
5.3.3 ENUM algorithm . 52

ii

5.3.4 Integral factors . 55

6 Conclusion 58

A Appendix: integral factors for KS = 8 into degrees of K = 64 61

B Appendix: USB stick content 62

iii

List of Symbols

K Number of source blocks in the fountain code
KS Number of source blocks in the covert fountain code
T Number of transmitted packets required to decode the message
TS Number of transmitted covert packets required to decode the secret message
ρ Probability distribution for degrees
d∗ The degrees where the covert fountain code is embedded
S The size of the secret message, in bit
bS The number of bit in the payload of the covert packets
pS The probability that the secret message can successfully be decoded
α The ratio of covert packets to overt packets
si A source block with index i

ti The i-th transmitted encoded packet

iv

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

1 Introduction

Digital fountain codes, introduced in [1], are a way of transmitting data over a one-way
communication channel, in a reliable way. The idea is that a message is encoded into
an endless stream of packets that each contain a somewhat random part of the message.
Once the receiver has received enough packets, the message can be decoded. The name
fountain code stems from the analogy with a water fountain, which sprays water droplets
in an endless stream, and a receiver can fill up a glass of water by collecting water droplets.
It does not matter which droplets, or packets, are received, as long as enough of them are
received in the end. The communication is one-way only, and any level of packet loss is
acceptable.

The way fountain codes work is that the message is split into K source blocks. Each
packet is then constructed by choosing a number of source blocks randomly (the number
of blocks that are chosen is called the degree) and XOR-ing them together. These packets
are sent over the communication channel. To reconstruct the original message the receiver
can reconstruct each single block by inverting the XOR operation, which can be achieved
by XOR-ing the received packets together in the correct way. The receiver can only know
which packets to XOR when it knowns which source blocks were used to create the packet.
So the sender also adds a header to the packet with this information.

In [6] it was shown that it is possible to embed a covert channel into a fountain code. This
creates a secret, hidden way of sending messages from a covert sender to a covert receiver.
An observer can not detect that any covert communication has taken place.

As the fountain code is one-way only, the covert receiver has no way of asking the covert
sender for a retransmission in case of packet loss. To solve this problem the secret message
that is transmitted in the covert channel is itself encoded as a fountain code. This deals
with packet loss by providing redundancy, just like a normal fountain code. It also opens
up the possibility of creating additional levels of fountain codes, secrets within secrets, as
mentioned in [6], but we will not explore that idea in this work. Instead we focus on the
first level of secrets only.

There is a downside of using a secret fountain code, which is that if the secret fountain
code does not transmit enough packets for the covert receiver to decode the secret message,
then the transmission of the secret will fail. This can happen when the normal receiver
stops listening to packets after receiving enough normal fountain code messages. In the
water analogy, the receiver will only collect water until the glass is full. If at that moment
a covert receiver has not received enough “special” water drops, then the secret will not
be decoded.

In this work we investigate the properties of the covert channel with secret fountain code
that was proposed in [6]. We look in particular at the size of the secret message and at
the chance of sucessfully transmitting a secret message over the covert channel. Then we
discuss several modifications of the original approach, to increase the secret message size,

1

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

the success rate, or both.

We also introduce a new method, which we call Half-Degree, that gives a larger secret
message size and a higher success rate than the original approach. We try to show this
theoretically, and we also present many simulated results for all methods.

A large part of this work was the creation of Java code to test the behaviour of a secret
fountain code embedded in a normal fountain code. The code was written in an Object-
Oriented approach, and has been supplied together with this paper.

In the rest of this paper we first explain the concepts of a covert channel (section 2) and
a fountain code (section 3) in more detail. We look in particular at the different types of
headers, Luby’s efficient decoding algorithm, and various distributions of degrees.

Then in section 4 we show how to embed a covert channel in a fountain code. We first
explain the original method from [6] where only one degree is used. We then extend
this method to multiple degrees and investigate different settings. Finally we introduce
our Half-Degree method, and compare all methods theoretically and with experimental
simulations.

Section 5 explains our implementation in Java via class diagrams, provides instructions
on how to run the code, and discusses the motivation behind certain architectural choices.
We also describe several algorithms that were used in the code.

We conclude this work with a final discussion and outlook to future work, section 6.

2

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

2 Covert Channel

Normal communication channels allow for the exchange of information (messages) between
two parties, a sender and a receiver. The existence of the channel is known to everyone.
The sender and receiver can hide the content of their messages via suitable forms of
encryption, however the fact that communication takes place is known to any observer with
access to the channel. An example is communication over Wi-Fi. As the communication
packets travel over the air, any third party can “listen in” and find out that communication
is happening. If the communication is not encrypted then the third party can even read
the message content.

A covert channel is a hidden communication channel that attempts to hide the fact that
communication is taking place. It does this by using methods that are not intended for
information transfer at all [7]. This means that an observer will not be aware of the
communication. For example, we could modify the bits in unimportant or unused parts of
the headers of TCP/IP packets. The covert sender and the covert receiver communicate
by interpreting these bits as secret messages. The observer does not suspect this, so is
unaware of the communication. Another example of a covert channel is the introduction
of artificial delays in the transmission of normal communication packets. The length of
the delays denotes bits and thus forms a secret message.

Covert channels can be desirable to some and undesirable to others. A corporate whistle-
blower or political dissident might want to exfiltrate information from within a high se-
curity network, and thus needs to use a covert channel to remain undetected. But the
network administrator or the government would like to prevent this, by detecting the use
of covert channels or by making certain that no covert channels can exist. For the example
with the unused headers of TCP/IP packets, the network administrator could add filters
that block packets that have non-0 bits in the unused headers. The network administrator
could also rewrite those bits to become 0, thus destroying any potential covert channel.
Many different covert channels and their countermeasures have been studied. See [15] or
[11] for a classification and for many more examples.

It is important to note that the covert sender and covert receiver must agree in advance
on which covert channel to use, and how to communicate over the covert channel. This
is not different from a normal (overt) sender and receiver who also must agree in advance
on the channel and protocol for communication to happen. For example, the agreement
could be to communicate over electrical wires using the TCP/IP protocol. In this work
we assume that there exists some way for the covert sender and covert receiver to come
to this common understanding, so that when we design a covert channel protocol we can
assume that both covert sender and covert receiver know exactly how the covert channel
works.

3

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

Figure 1: A message is split into equal-size source blocks, which are XOR-ed randomly to
form a fountain code. A fountain code packet consists of a header and a payload. The
header describes the content of the XOR-ed payload.

3 Fountain Code

When a message needs to be sent over a channel that does not allow two-way commu-
nication, data corruption or packet loss can be problematic. The receiver has no way to
ask the sender to retransmit a certain packet. A common solution is to include forward
error correction in the packets, for example by using Reed-Solomon error correcting codes.
Each packet is extended with a number of extra bits that help with restoring the parts
of the message that got lost or corrupted. The choice of how many extra bits to add is
made based on the expected error rate of the channel. However when the error rate is not
known, or when it fluctuates, then the choice of the number of extra bits will either be
too high, resulting in wasted bits, or too low, resulting in data loss.

Fountain codes [8, 10] offer an alternative to forward error correction, by creating a po-
tentially infinite stream of redundant data. The idea is that a message is first split into
K equal-sized source blocks of integer length. Padding should be added to the message
when its length is not a multiple of K. The source blocks are then randomly XOR-ed
together to form the payloads of the packets. These payloads are prefixed with a header,
describing which blocks were used in the XOR-ing. An unending stream of packets, each
created from different combinations of source blocks, is then submitted over the channel.
The receiver listens to the channel until enough packets have been received to reconstruct
the message. This is illustrated in figure 1.

To construct a transmitted packet t from a set of source blocks {si}, first a degree d is
chosen, with d ∈ [1 . . K]. The values of d are not chosen uniformly but instead follow a
certain probability distribution ρ(d). The choice of ρ influences the performance of the
fountain code, and many different distributions have been proposed [8, 5, 4, 12, 9]. After
d is chosen, a set of d integers is chosen uniformly without replacement from the set 1..K.
These are the indices of the source blocks that will be XOR-ed together.

For example, if we have K = 16 and d is chosen to be 4, and the source block indices

4

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

that are chosen are {3, 5, 11, 12}, then we will create the payload t = s3 ⊕ s5 ⊕ s11 ⊕ s12.
Another example is that when d = 1 then the payload will be just a single source block.
The degree distribution ρ determines how often each degree d is chosen.

3.1 Header formats

The payloads on their own do not contain enough information to reconstruct the original
source blocks. The receiver also needs to know, for each payload, which source blocks were
used in its creation. This information is transmitted as part of a header that is added
as a prefix to each payload, see figure 1. The combination of header and payload is the
transmitted packet. We want to keep the header short (in number of bits), to minimise
the overhead in each transmitted packet.

We discuss 3 different ways to construct the header: bitvector (BV), enumerate (ENUM),
and enumerate all (ENUMALL). In the following explanations we use the example of a
packet t = s2 ⊕ s7 ⊕ s8 ⊕ s13 with K = 16 to illustrate the header construction. Note that
in this paper the source block indices start counting at 1 and run until K, whereas in the
Java code we start counting at 0 and run until K − 1.

3.1.1 BV

This is the simplest header. It consists of K bits, representing the indices of the K source
blocks. Each of those bits has a value of 0 if the source block at this index is not used,
and a value of 1 if the source block is used in the transmitted packet.

In our example the source block indices are {2, 7, 8, 13}, so putting a binary 1 on those
positions gives the BV header 0100001100001000. Any given BV header can also easily
be converted back to a set of source block indices by finding the indices of the bits with
value 1.

3.1.2 ENUM

To create a packet of degree d, we need to choose d out of K source blocks. We can use
results from combinatorics to compute the number of different ways that d elements can
be selected out of K without replacement,

K(K − 1) · · · (K − d + 1)
d(d − 1) · · · 1 = K!

d!(K − d)! =
(

K

d

)
(1)

We can write down an ordered sequence of all the different unique combinations of d

source blocks and then assign a value n to each combination based on its position in the
sequence. The values of the enumeration range from 0 to

(K
d

)
− 1. The enumeration gives

an index number n for each header. For example for K = 16, d = 4 the first combination
is {1, 2, 3, 4}, followed by {1, 2, 3, 5}, {1, 2, 3, 6} and so on. These combinations correspond
to the index numbers 0, 1, 2 and so on. In section 5.3.3 we discuss an algorithm to convert

5

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

directly between any combination and its corresponding index number n, without needing
to construct the full ordered sequence.

The ENUM header consists of a binary representation of the degree d followed by a binary
representation of the index number n, which we now explain in detail.

Degree number To encode the degree d we need to know how many bits to reserve. For
this the maximum degree dmax is considered, and the number of bits required to represent
dmax in binary is computed. There is no degree 0, so if we equate d = 1 with the binary
representation of 0, and d = dmax with the binary representation of dmax − 1, then the
number of bits required is b = ⌈log2 dmax⌉. For example, encoding d = 4 when dmax = 16
requires b = 4 bits and reads 0011. Table 1 shows all the possible degree numbers in
binary when dmax = 8.

degree bits degree bits
1 000 5 100
2 001 6 101
3 010 7 110
4 011 8 111

Table 1: Binary representation of the degree for the ENUM header, for dense degrees.

If not all degrees are present, for example if only degrees of powers of 2 are used (see
section 3.3.3 for sparse degrees), then a different mapping between degree number and
binary value can be created, needing less bits. For example, the degrees of powers of 2
up to dmax = 128 can be encoded in just 3 bits using the mapping shown in table 2. The
dense mode would require 7 bits.

degree bits degree bits
1 000 16 100
2 001 32 101
4 010 64 110
8 011 128 111

Table 2: Binary representation of the degree for the ENUM header, for sparse degrees.

Index number To convert n to binary we need to consider the highest value nmax to
determine the number of bits to reserve. For a given degree d, nmax =

(K
d

)
, so we should

reserve
⌈
log2

(K
d

)⌉
bits.

For our example,
(16

4
)

= 1820, requiring ⌈10.829 . . . ⌉ = 11 bits. The set {2, 7, 8, 13}
has n = 703 (see section 5.3.3 for a calculation). Written in 11-bit binary this gives
01011000000. Combined with the degree number 0011 (degree 4 in non-sparse mode) we
get the full header 001101011000000.

6

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

An important remark is that the length of the header depends on the degree. As seen,
degree 4 requires 11 bits. Degree 1 would only need

⌈
log2

(16
1
)⌉

= 4 bits, so the length of
the header is different. The receiver can dynamically figure out the length of the header
based on the degree number that is given as the first bits of the header. However it is
also possible to use the same fixed header length across all possible degrees, by reserving
enough bits for the highest possible n value. With K = 16 the maximum n is reached
at degree 8, being nmax =

(16
8
)

= 12870. This means that in this case up to 14 bits
are required to represent all possible values of n, and our example set {2, 7, 8, 13} will
have the binary encoding 00001011000000. Including the degree number as well gives
001100001011000000.

In the Java code we use the second approach, i.e. with the additional zeros. This keeps
the size of the transmitted packets consistent.

3.1.3 ENUMALL

This header format is similar to ENUM, but we do not start counting from zero for each
degree. Instead, the degrees are ordered in ascending order and all possible combinations
are enumerated for each degree without restarting from zero. The index number n is
then encoded in binary to form the header. Because each number n uniquely represents
a combination of any degree, the degree does not need to be explicitly specified in the
header.

Enough bits should be reserved for being able to write the highest value nmax. If all
degrees from 1 to K are used, this value is

K∑
i=1

(
K

i

)
= 2K , (2)

which means that K bits are needed, just like in BV mode.

Considering our example again, there are
(16

1
)

= 16 combinations for degree 1,
(16

2
)

= 120
for degree 2, and

(16
3
)

= 560 for degree 3, so the number n for the first combination in
degree 4, {1, 2, 3, 4}, equals 16 + 120 + 560 = 696. Previously we found that {2, 7, 8, 13}
has n = 703 for the ENUM header, so if we start counting from the degree 1 then this
gives n = 696 + 703 = 1399. Expressed in binary we get the header 0000010101110111.

The benefit of ENUMALL over BV and ENUM is that less bits are required when not all
degrees are used. If only degrees of powers of 2 are used, as will be the case in this paper,
then for dmax = 8 we would have a total of only

(16
1
)

+
(16

2
)

+
(16

4
)

+
(16

8
)

= 14826 values,
instead of 216 = 65536. So in that case 14 bit are enough to encode an ENUMALL header,
saving 2 bit.

7

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

3.2 Decoding algorithm

To reconstruct the original source blocks the receiver needs to XOR the received encoded
packets together in the correct way. For example, having received t1 = s3 ⊕s5 and t2 = s5,
the receiver can compute the source block s3 = t1 ⊕ t2. The hard part is to figure out
which received encoded packets need to be XOR-ed together. We discuss two different
algorithms: Gaussian Elimination (GE) and the decoder for LT codes.

3.2.1 Gaussian Elimination

In the Gaussian Elimination algorithm the indices in all received headers are first collected
into a matrix G, called the generator matrix [10], to create a transformation from the
source blocks to the encoded packets. The matrix G contains only the values 1 and 0,
where a 1 in row i and column j means that the source block sj was used in the creation
of transmitted packet ti, and 0 if it was not used. If we received T transmitted packets
and there are K source blocks, then G has size T × K. Writing as Gij the value of G at
row i and column j, the transmitted packet ti is then given by the formula

ti =
K⊕

j=1
Gijsj . (3)

By inverting G modulo 2 we can find an expression for s in function of t,

sj =
T⊕

i=1
G−1

ij ti. (4)

For example, if we have K = 4 and T = 4 and the received packets are t1 = s1 ⊕ s2 ⊕ s3,
t2 = s1 ⊕ s3, t3 = s2 ⊕ s4 and t4 = s2 ⊕ s3 ⊕ s4, then we write


t1

t2

t3

t4

 =


1 1 1 0
1 0 1 0
0 1 0 1
0 1 1 1




s1

s2

s3

s4

 (5)

Solving this system of equations modulo 2 gives


s1

s2

s3

s4

 =


0 1 1 1
1 1 0 0
0 0 1 1
1 1 1 0




t1

t2

t3

t4

 (6)

so that we compute the source blocks as s1 = t2 ⊕ t3 ⊕ t4, s2 = t1 ⊕ t2, s3 = t3 ⊕ t4 and
s4 = t1 ⊕ t2 ⊕ t3.

8

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

Matrix inversion is only possible for square matrices, and in general the number of rows T

will be greater than the number of columns K. For such non-square matrices the solution
of the system of equations (3) can be obtained via LU decomposition. The matrix G
is factorised into a lower triangular matrix L and an upper trianguler matrix U . The
factorization is done via Gaussian elimination, so this way of decoding a fountain code is
called Gaussian elimination (GE) [10].

Even with LU decomposition not all matrices G will be solvable, as G can be singular,
i.e. there are rows that are linearly dependent on the other rows. This corresponds to
the scenario where at least one of the received packets can be constructed from the other
received packets via XOR operations, and thus does not contribute any new information.
In that case the receiver will have to wait for additional packets that will hopefully add
new information and make the system of equations (3) solvable.

In [10] the probability that a random binary matrix of size K × K is invertible, where
each element of the matrix is either 1 or 0 with equal probability, was computed to be
(1 − 2−K)(1 − 2−K−1) · · · (1 − 1

4)(1 − 1
2). This comes to a probability of 0.289 for K larger

than 10. So this kind of fountain code transmission will only be solvable 28.9% of the
time after receiving K packets. Receiving an extra E packets, so that T = K + E, rapidly
increases the probability that the system can be solved. It was found that for any K the
probability that the receiver will not be able to decode the transmission when given E

extra packets, is bounded above by 2−E . So receiving just 10 extra packets already gives
a probability of about 0.999 that the transmission will succeed.

The upper bound of 2−E does not depend on the number of source blocks K. If we
measure the efficiency of the fountain code by the ratio ϵ of extra packets that needs to
be transmitted, T = (1 + ϵ)K, then we can make the fountain code arbitrarily efficient,
i.e. we can have very low values for ϵ by choosing high values for K.

The downside of the GE algorithm is that the time complexity of performing LU decom-
position for a square matrix with K rows and columns is O(K3). This can be acceptable
for small K, but becomes very computationally intensive for large K. Thus in practice a
different algorithm is used.

3.2.2 LT Decoder

The LT decoder proposed by Luby in [8] reduces the number of computations required for
decoding a fountain code, at the cost of increasing the number of extra packets E required.
The decoding algorithm works by only XOR-ing received packets with source blocks that
have already been extracted. Each time a new packet is received, XOR-ing removes the
known source blocks that were used in the creation of the received packet. If this XOR-ing
results in a single unknown source block remaining, then we add this new source block
to the list of known source blocks, and apply this new knowledge to previously received
packets. We stop when all source blocks are known.

9

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

In detailed steps the Java code works as follows:

1. Store each incoming encoded packet in a list of known packets.

2. If the encoded packet has degree d = 1, then simply extract the source block. Add
the source block to a list of known source blocks. No XOR operations are required.

3. If step 2 gave a previously unknown source block, then XOR this new source block
to each of the encoded packets in the list of known packets that have d > 1 and that
contain the new source block. The encoded packet thus loses the information of this
new source block, since si ⊕ si = 0. The set of the encoded packets that are affected
by this operation is called the ripple.

4. Process each packet in the ripple by checking its current degree. The operation from
step 3 reduced the degree of these encoded packets by one. If the ripple packet that
is currently under consideration now has d = 1 then go to step 2. Remove each
processed packet from the ripple.

5. The ripple is now empty.

a If some source blocks are still unknown then wait for a new incoming encoded
packet. Use XOR to remove known source blocks from this incoming encoded
packet and go to step 1.

b If all source blocks are known then we are done.

This algorithm is less complex than an LU decomposition and requires less computational
resources, but it must have enough low-degree packets in order to get started. The number
of additional packets E will also be bigger than for the LU decomposition method.

The example from the previous section (3.2.1) does not have any packets with d = 1, so
step 1 in the LT decoder never starts. No source blocks are decoded. However if we receive
a new packet, t5 = s1, then we know s1 and can perform the following operations:

1. Remove s1 from the packets that contain s1:

t′
1 = t1 ⊕ s1 = s1 ⊕ s2 ⊕ s3 ⊕ s1 = s2 ⊕ s3

t′
2 = t2 ⊕ s1 = s1 ⊕ s3 ⊕ s1 = s3

2. We now know s3 from t′
2, so we can now remove s3 from the other packets:

t′′
1 = t′

1 ⊕ s3 = s2 ⊕ s3 ⊕ s3 = s2

t′
3 = t3 ⊕ s3 = s3 ⊕ s4 ⊕ s3 = s4

t′
4 = t4 ⊕ s3 = s2 ⊕ s3 ⊕ s4 ⊕ s3 = s2 ⊕ s4

3. From t′′
1 we learn s2 and from t′

3 we get s4, so all source blocks are known and we
can stop.

10

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

3.3 Degree distributions

The LT Decoder algorithm relies on having enough packets of degree 1. However if only
packets of degree 1 are transmitted, then the receiver might have to wait a long time for
the last missing source block. As shown in [10], we can compute how many packets of
degree 1 we need to receive on average (if we only receive packets of degree 1) by noting
that each source block has a chance of 1

K to be chosen. Thus the probability that a
particular block has not been chosen yet after N packets, is(

1 − 1
K

)N

(7)

which approximates to e−N/K if N and K are high enough. It follows that the expected
number of missing blocks is Ke−N/K , because there are K blocks. To have no missing
blocks we want this number to be smaller than 1, so

Ke−N/K < 1 ⇒ ln
(
Ke−N/K

)
< ln 1

⇒ ln K + ln e−N/K < 0
⇒ −N/K < − ln K

⇒ N > K ln K (8)

For K = 64 we would need to transmit 266 packets, and for K = 1000 we would need over
6,907 packets of degree 1, which is a very high overhead. Including packets with degrees
higher than 1 improves this overhead, while still using the simple LT Decoder algorithm.

The probability of how often a certain degree is chosen to create a packet is determined
by the degree distribution, written as ρ(d). For example, ρ(4) = 0.256 means that degree
4 has a chance of 25.6% to be selected. The best distribution is the one that leads to the
lowest overhead while still using the LT Decoder algorithm. It depends on the number
of source blocks K and the set of allowed degrees (e.g. sparse or dense). Many papers
have focussed on optimizing this distribution in various scenarios [5, 12, 9] after Luby first
proposed the ideal and robust soliton distributions in [8].

3.3.1 Ideal soliton distribution

The LT Decoder algorithm needs only 1 packet of degree 1 to get started. Suppose that
the source block of this degree-1 packet is also used in a packet of degree 2. Then these
degree 1 and degree 2 packets can be XOR-ed to find another source block. If we also
have a degree 3 packet that contains the two source blocks that we have so far, then we
can XOR three packets together, and so on. In other words, the ripple is always 1.

The ideal soliton distribution is based on the expectation of a perfect ripple of size 1,

ρideal(d) =

1/K d = 1
1

d(d−1) d > 1
(9)

11

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

This is a distribution because ∑K
i=1 ρideal(i) = 1. In practice this distribution does not

lead to good (low) values for the overhead E, because small deviations from the expected
behaviour stop the chain of packets, i.e. the ripple becomes 0 and the decoder needs to
wait until a packet with the missing source block comes in.

3.3.2 Robust soliton distribution

To improve on the practical performance of the ideal soliton distribution, Luby proposed
the robust soliton distribution [8]. The degree probabilities of (9) are modified by adding
a function τ(d) and then renormalising,

ρrobust(d) = ρideal(d) + τ(d)∑K
i=1 ρideal(i) + τ(i)

. (10)

The function τ(d) is defined as

τ(d) =


1
d

R
K d = 1, 2, . . . , K/R − 1

1
d ln (R/δ) d = K/R

0 d > K/R

(11)

Here the value R represents the expected ripple size, i.e. the expected number of degree-1
checks that are available at any step in the decoding process. It is computed from K and
two additional parameters c and δ,

R = c ln (K/δ)
√

K. (12)

The c and δ parameters can be chosen to obtain either a low average overhead E but a
high variance of the overhead, or a high average overhead E with a low variance. See also
the experiments in [10].

Figure 2 shows the ideal solition distribution and an example of the robust soliton dis-
tribution for K = 64. The main differences are that the robust version has a relatively
high probability for degree 55, and also has a slightly higher probability for degree 1 than
the ideal solition distribution. Intuitively, the extra packets of degree 1 help the decoding
algorithm to get started, and the extra packets of degree 55 help the decoding algorithm
to finish, by providing information about the last missing source blocks.

3.3.3 Sparse degree distributions

The distributions presented by Luby have the property that when K can be taken arbi-
trarily high, then the relative overhead will go to zero. However in practice we often can
not make K arbitrarily high. In [5] it was shown that for low K values there exist better
distributions than either the ideal or the robust solition, where “better” means that the

12

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60

P
ro

b
a
b

ili
ty

Degree

(a) Ideal soliton distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60

P
ro

b
a
b

ili
ty

Degree

(b) Robust soliton distribution

Figure 2: The degree probabilities for the ideal and the robust solition distribution, for
K = 64. For the robust solition we used c = 0.03 and δ = 0.5.

K 16 [5] 64 [5] 16 [12] 64 [12]
ρ(1) 0.21 0.09 0.221 0.161
ρ(2) 0.47 0.49 0.457 0.4
ρ(4) 0.16 0.2 0.188 0.256
ρ(8) 0.16 0.13 0.134 0.101
ρ(16) - 0.02 - 0.045
ρ(32) - 0.07 - 0.037

Average T 22.5 81.9 22.6 82.7
Std σ̂(T) 4.2 7.7 4.4 9.1

Table 3: The degree distributions from Hyytia et al. [5] and Rossi et al. [12] for K = 16
and K = 64.

choice of distribution results in fewer packets that need to be transmitted (on average) to
successfully decode the fountain code message.

Optimal distributions for values of K lower than 10 were computed in [4]. It was also
discovered that distributions which are close to the optimal distribution have nearly iden-
tical overheads as the optimal distribution. In addition, if some degree probabilities are
set to zero so that not all degrees are used, i.e. creating a sparse degree distribution, then
it is still possible to find degree probability values for the non-zero degrees so that the
overhead is very close to optimal.

The benefit of using a sparse degree distribution is that we can use less bits in the header
to encode the degree that was used in the fountain code packet. We discussed the example
for sparse degrees of powers of 2 already in section 3.1.2. The use of only a sparse amount
of non-zero degrees makes it possible to perform a numerical optimization to find the

13

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

optimal degree distribution, even for larger K values. Optimal sparse distributions of
powers of 2 for K = 16, K = 32 and K = 64 were presented in Hyytia et al. [5] and in
Rossi et al. [12]. Table 3 shows their sparse degree distributions, as well as the average
and standard deviation of the number of packets T required to decode the fountain code
message.

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the message

Figure 3: Histogram of the number of packets required to decode the fountain code for
K = 64 and the optimal distribution from [12], as shown in table 3.

The average and standard deviation give only limited insight into the behaviour of the
fountain code for these distributions. In figure 3 we present a histogram created from
running 10,000 fountain codes with K = 64 and the optimal distribution from [12]. The
histogram shows how many times in the 10,000 simulations a certain number of packets
were required to decode the fountain code message. For example, in 585 out of the 10,000
simulations we needed to receive exactly 80 packets to decode the message. We see that
the histogram does not follow a normal distribution. There are no histogram entries for
fewer than 64 packets, and on the high end there is a long tail, meaning that occasionally
a large number of packets is needed to successfully decode the message. Values above 140
packets exist, but we have omitted them in the graph as they are not very common.

We can also interpret the found histogram itself as a packet probability distribution. For
example, from the histogram of figure 3 we can conclude that the probability that exactly
80 packets will be required is 585/10000 = 0.0585.

If we experimentally determine the packet probability distribution of the two different
degree distributions ρ in table 3, then we obtain the plot of figure 4. Even though the
degree distributions in [5] and [12] are quite different, for example ρ(4) = 0.2 in [5] and

14

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 60 70 80 90 100 110 120

P
ro

b
a
b
ili

ty

Packets needed to decode the message

Rossi et al.
Hyytia et al.

Figure 4: Comparison between the fountain code behaviour for K = 64 when using the
distribution of Rossi et al. [12] and Hyytia et al. [5].

ρ(4) = 0.256 in [12], the behaviour of the fountain code is very similar. Hyytia et al. has
a slightly higher concentration of packets near the peak than Rossi et al., and it happens
slightly less often that a large number of packets are needed. This is reflected in both the
average and standard deviation of Hyytia et al. being lower than those values of Rossi et
al. However the difference is very small, and in practice either of these distributions is a
good choice to use for a fountain code. We will continue to work with the distribution of
Rossi et al., even though it is a bit worse than Hyytia et al., because the degree distribution
in Rossi et al. favors the higher degrees, which is better for a covert channel (see next
chapter).

To conclude our experimental analysis of the sparse degree fountain codes, we look at how
the individual degrees are used for each amount of packets needed to decode the message.
For example, it could be that when more than 90 packets are required to decode the
message, that in this case there are relatively more packets of, say, degree 4 used. This
would have an impact on the analysis of covert channels in the next chapter. To test this,
we have repeated the experiment of figure 3 with 50,000 fountain code simulations, where
for each successful decoding we also remember the number of packets of each degree that
were used. Then we again combined the results into a histogram. This is shown in figure
5a. We see that the shape of the histogram of each individual degree follows the shape
of the overall histogram of figure 3. In other words, it is not the case that the actual
distribution ρ(d) of the degrees is very different when many fountain code packets are
required to decode the message.

To analyse this last statement in more detail, we compute the actual observed distribution
for each of the number of required packets, i.e. for each vertical line in figure 5a. The
distribution can be computed from the counts by simply dividing each count by the total

15

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 60 70 80 90 100 110 120

C
o
u
n
t

Packets

d=1
d=2
d=4
d=8

d=16
d=32

(a) Count of individual degrees. Degree 2 is highest because ρ(2) = 0.457.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 70 80 90 100 110 120

O
b
se

rv
e
d
 ρ

(d
)

Packets

d=1
d=2
d=4
d=8

d=16
d=32

(b) The observed ρ(d) computed from the counts in graph (a).

Figure 5: Result of 50,000 simulations of a K = 64 fountain code, focusing on how often the
various degrees are selected as a function of the number of packets required to successfully
decode the message.

count per packet. The results are shown in figure 5b. The solid lines are the observed
distributions, while the dashed horizontal lines were added to show the original ρ(d) from
table 3. We see that in the region between 75 and 90 packets the observed distribution
follows the original distribution very closely. However when the fountain code needs less
than 75 packets to finish, there are slightly more packets of degrees 2 and 4 used, and
less packets of degree 1, than the original distribution would make us expect. A similar
scenario happens when more than 90 packets are needed to finish.

Even though this analysis shows minor deviations from the original distribution in the
case of low or high packet values, the deviations are relatively small. We will ignore these
deviations in the rest of this paper, and assume that if a total of T packets are transmitted,
then an amount of ρ(d) × T of those packets is of degree d (on average), independent of
the actual value of T . For example, if 82 packets are needed, then on average 21 of those
will be of degree 4 when using the distribution from [12] for K = 64 where ρ(4) = 0.256.

16

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

3.4 Variations of Luby fountain codes

Many variations of fountain codes have been proposed. We will analyse covert channels
only for the fountain codes from Luby [8], but in this section we mention some additional
approaches to reduce the transmission overhead.

Raptor codes [13] are a variation of LT fountain codes, where each of the K source blocks
is modified to add information of the other source blocks to it, i.e. an outer code that
can restore erasures [10]. This way not all K source blocks need to be received before
the message can be decoded, because the missing blocks can be reconstructed from the
extra information that was added to each source block. For example, receiving 90%
of all augmented source blocks suffices to restore the remaining missing 10% of source
blocks. This means that less encoded packets will be needed, although each packet will be
larger. Another consequence is that Raptor codes can use a lower average degree number
(an average of d = 3 is mentioned in [10]), which reduces the encoding and decoding
complexity.

Further variations were made by observing that in LT codes the choice of source blocks is
made uniformly. Each source block is equally likely, at all times. In addition, the degree
distribution does not change.

Sorensen et al. [14] modifies the degree distribution depending on how many packets
were sent already. The sender keeps track of the number of transmitted packets, and
slowly modifies the degree distribution to favor higher degrees when many packets were
sent. Having higher degrees at the end of the transmission helps the decoder to figure
out the last remaining unknown source blocks. This leads to a lower overhead, as there
is less waste of sending low-degree packets when the decoder already knows most source
blocks and is waiting to receive the last few missing source blocks. The downside is that
if the communication channel has a high packet loss rate, then the sender will modify the
distribution too fast, because the sender can not know if a packet failed to arrive. This
could lead to even higher overheads than without this modification.

This modification has no impact on the covert channel. As we will see, higher degrees are
actually better for the covert channel, so it is likely that the method of [14] will lead to a
higher success rate for the secret transmission.

Work by Hayajneh et al. [3] has investigated improvements to the fountain code perfor-
mance by having the sender remember which source blocks it already sent. Unsent source
blocks are temporarily given a higher probability to be selected. This way the sender helps
the receiver, by wasting less packets sending information that the receiver already knows.
The downside is again that packet loss is not known by the sender and can not be pre-
dicted. The sender will think that the receiver already knows a certain source block, while
actually that packet was lost in transmission. This will again cause higher overheads.

Another downside, from our point of view of trying to embed a covert channel, is that
the proposal of [3] makes the sampling of source blocks no longer uniform. As our covert

17

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

channel relies on random source block choices, a protocol that does not sample randomly
will break our covert channel.

18

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

4 Covert Channel in Fountain Code

The main idea for having a covert channel in a fountain code, as first presented in [6], is
to modify the choices of the source blocks when constructing encoded packets. Instead of
choosing the source blocks randomly, they are chosen in such a way that the information
contained in the header of the encoded packet can be interpreted as a secret message.

As a conceptual example, let us transmit a secret message inside a fountain code with K =
16. For simplicity we only use degree 1, and we transmit the secret text “test”. We first
convert the text to numbers by counting the position of the letter in the alphabet, giving
(20, 5, 19, 20). Converting the numbers to 5-bit binary gives 10100|00101|10011|10100.
The header of the fountain code has

(16
1
)

options, which equates to log2
(16

1
)

= 4 bit. So we
split the bitstring into groups of 4 bits, 1010|0001|0110|0111|0100, and convert back to
numbers, giving (10, 1, 6, 7, 4). This tells us that we should send five fountain code packets
containing the source blocks 10, 1, 6, 7, and 4, in that order. The encoded packets consist
of a prefix (the header) describing the source block number, followed by the fountain code
payload. The payload does not matter for the covert receiver, but the header does. The
covert receiver extracts the numbers from the consecutive headers and runs the presented
process in reverse, obtaining the secret message “test”.

The procedure in the above example illustrates how the header of encoded packets could
be used to create a covert channel, but it has numerous practical problems that need to
be solved:

1. The choice of random source blocks follows a uniform distribution. So the choice
of well-chosen source blocks should also follow a uniform distribution, otherwise it
would be possible for an observer to notice that something strange is going on in
this fountain code and detect the covert channel.

2. The header should still make sense as a header when degrees higher than 1 are used.
A source block should not occur multiple times in a header, e.g. the choice {2, 2, 4, 5}
is not valid.

3. The secret message transmission should still work when there is packet loss, when
there is no return channel, or when there is out-of-order arrival of packets.

4. The secret message should have a high probability pS to be successfully decoded.

5. It should be possible for the size S (in bit) of the secret message to be large.

Problems 1, 2 and 3 were solved in [6] by embedding a secret fountain code in the header
of the normal fountain code. We will first present their approach in section 4.1. Then we
investigate solutions to problems 4 and 5. We will first modify the approach from [6] in
section 4.2 and then propose a new way of embedding the covert channel in section 4.3,
followed by a comparison in section 4.4.

19

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

4.1 Covert Channel in one header degree

4.1.1 Approach

In [6] a covert channel was created in the headers of packets of a single degree d∗. The
covert degree d∗ is chosen in advance and known by both the covert sender and the
covert receiver. With K source blocks there are

(K
d∗
)

valid possibilities for the header
of degree d∗. If no covert channel is used then the source blocks in each header are
chosen uniformly without replacement. This implies that the

(K
d∗
)

different headers are
also uniformly distributed. The covert channel should maintain this property.

The bits of a secret message are in general not uniformly distributed. For example in
the secret message “this is a secret” some letters occur more frequently than other
letters. This can cause a non-uniform distribution of the headers. One solution is to first
encrypt the secret message, e.g. using AES encryption. A good encryption ensures that
frequency analysis can not be used to break the encryption, implying that each byte will
occur with the same probability after encryption. Encryption solves problem 1.

Problem 2 can be solved by viewing all the different possible headers as unique symbols
with a certain base. Only those symbols can be used in the transmission. A binary mes-
sage, which is in fact a series of symbols {0, 1} with base 2, is first converted to a series of
symbols with base

(K
d

)
. Each symbol then corresponds to a header. For example the foun-

tain code of K = 16 has 1820 possible headers in degree d∗ = 4. The message “secret”, en-
coded in 8-bit ASCII, is 01110011|01100101|01100011|01110010|01100101|01110100
base 2. Interpreting this sequence of bits as a big decimal number gives 126879297332596
base 10. This can be converted to base 1820 by writing the number as 11×18204 +1026×
18203 + 620 × 18202 + 833 × 1820 + 536. So the message “secret” is encoded as the five
symbols {11, 1026, 620, 833, 536} base 1820. These five symbols could be embedded as five
headers of consecutive fountain code packets of degree d∗ = 4. For example to obtain a
header with the symbol 11 we must select the source blocks {1, 2, 3, 15} (assuming the
fountain code uses ENUM mode). This solves problem 2.

Figure 6: Embedding a secret fountain code in a covert channel of a normal fountain code.

Solving the third problem is more difficult, because the properties of the channel (unknown
amount of packet loss, one-way communication only, possible out-of-order packet arrival)
are what originally motivated the use of a fountain code. The solution of [6] is to also send
the secret message itself with a fountain code. The secret message is split into KS secret
source blocks which are XOR-ed together and prefixed with a secret header, creating a
secret encoded packet. The bits of the secret encoded packet are then interpreted as a
symbol base

(K
d∗
)

and used as a header of the original, overt fountain code. The covert

20

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

receiver then applies the LT decoding algorithm on the received headers, and needs to wait
until enough secret encoded packets have been received to reconstruct the secret message.
Figure 6 illustrates this.

4.1.2 Additional problems

The use of a covert fountain code solves the problems created by an unreliable com-
munication channel, but it creates a new problem because fountain codes are based on
probabilities. The normal, overt fountain code will eventually finish successfully, because
the receiver will continue listening until enough encoded packets have been received to
decode the message. However the covert fountain code does not have this luxury. When
the normal, i.e. overt receiver stops listening, no more covert packets will be obtained by
the covert receiver. If through bad luck the covert receiver did not obtain enough covert
packets, or is unable to decode the secret from the received covert packets, then the covert
transmission will fail.

We define as pS the probability that the covert transmission succeeds, i.e. that the covert
receiver gets enough secret packets to successfully decode the secret message. Although
our argument in the previous paragraph shows that pS is always lower than 1, we should
try to design the covert fountain code so that pS is close to 1. This is problem 4 in the
list.

Not all normal fountain code headers will contain a covert packet. For example, headers
of degree 1 do not have enough available bits to embed a secret encoded packet. Only
a subset of the T packets that are transmitted in the normal fountain code will contain
packets from the covert fountain code. We introduce a factor α to describe the ratio of
covert packets to normal packets. The expected number of transmitted covert fountain
code packets TS , given an expected number of transmitted overt packets T , is then

TS = αT (13)

The use of a covert fountain code also adds overhead due to the need for secret headers,
see figure 6. This means that not all available bits of the overt header can be used as
secret payload. The covert fountain code limits the size of the secret message further,
via the choice of the number of secret source blocks KS . This is problem 5. Each secret
payload is a combination of secret source blocks, so if we write as bS the number of bits
of the secret payload (which is also the number of bits of each secret source block), then
the size S of the secret message is

S = bSKS (14)

To illustrate problems 4 and 5, we look at the particular example of K = 64 that was
analysed in [6], with optimal sparse distribution ρ from [12]. The degree d∗ = 4 was
chosen to contain the covert channel, with ρ(4) = 0.256. So the covert fountain code has
log2

(64
4
)

≈ 19.28 bit available for the covert data, consisting of a secret header plus a secret

21

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

Figure 7: Using only degree d∗ = 4 to embed the covert fountain code, as in the example
of [6]. The secret packet consists of a secret header and a (small) secret payload. The blue
part of the header is the integral factor.

payload. A covert fountain code with KS = 16 with sparse degrees 1, 2, 4 and 8 was used.
The header of the covert fountain code was encoded using a variant of ENUMALL with
integral factors, which we explain in detail in the next section. The covert header was
sized at 16 bit, leaving bS = 3 bit available for the payload. Using these values in equation
(14) gives S = 48 bit. This may be sufficient for certain applications, but it seems very
constrained. Figure 7 illustrates this example.

To form an idea of the success rate pS for this example we look at equation (13). All
normal packets of degree 4 will have a covert packet, so

TS = ρ(d∗)T = 0.256T (15)

In other words, α = 0.256.

Is TS large enough to decode the secret? From table 3 we read the expected values for T
for the distribution used in [6], which is the distribution presented in [12]. The expected
number of transmitted packets for K = 64 and K = 16 are

T64 = 82.7, T16 = 22.6 (16)

The covert channel contains a (secret) fountain code with K = 16, so we can use equation
(15) to estimate how many secret packets TS we expect to receive, given that we expect to
get T64 = 82.7 normal packets. This gives an expected value of TS = 0.256 × 82.7 = 21.2
secret packets. This is smaller than T16, so it is not unlikely that we will sometimes be
unable to decode the secret message before the normal fountain code terminates.

We verified this theoretical analysis via a simulation, shown in figure 8. A secret fountain
code of KS = 16 with secret message “SECRET” (6 bytes = 48 bit long) was embedded
in the headers of degree 4 of a normal fountain code of K = 64. When running 10,000
simulations with different random seeds, the secret message was decoded only 4368 times,
giving pS = 0.4368.

In this experiment with 10,000 simulations the average number of normal fountain code
packets that were required was 82.6959, with a standard deviation of σ = 9.14. This
corresponds very well to the value of T64 = 82.7 from table 3 that we expect to get when

22

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the normal message

Secret message not complete
Secret message complete

Figure 8: Stacked bar chart showing how often the secret message transmission succeeds,
created from 10,000 simulations. In each simulation the secret message is either completely
transmitted or not. In 4368 simulations the secret transmission was successful. In the other
5632 simulations the normal fountain code finished before the secret fountain code.

there is no covert channel present, and thus shows that the addition of the covert channel
does not impact the normal fountain code (this was achieved by using integral factors, see
the next sections).

4.1.3 Detectability and efficiency

There are two additional complications of using a (secret) fountain code in the covert
channel rather than a direct embedding of the secret message:

• There are more different possibilities for the headers of the normal fountain code
than there are different possibilities for the secret packets. This means that some
headers of the normal fountain code might never get used.

• The headers of the secret fountain code packets do not follow a uniform distribution.
For example in KS = 16 a certain header of degree 1 will happen more often than a
certain header of degree 8. The reason is not because ρ(1) may be bigger than ρ(8),
but because there are much fewer different headers of degree 1 than there are of
degree 8. E.g. there are

(16
1
)

= 16 headers of degree 1, so each header of degree 1 has
a chance of ρ(1)/16 = 1.38% to be selected. However there are

(16
8
)

= 12870 headers
of degree 8, so each header of degree 8 has a chance of only ρ(8)/12870 = 0.001% to
be selected.

These complications have two effects. First, it makes the normal fountain code less efficient
because not all source block combinations will be used, and second, it could expose the
covert channel to detection. The solution is to introduce integral factors. Before we

23

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 60 70 80 90 100 110 120 130 140

P
ro

b
a
b
ili

ty

Packets needed to decode the normal message

Normal (without covert channel)
With cov. channel, no integral factors

With cov. channel with integral factors

Figure 9: Comparison showing the effect of (not) using integral factors when embedding
a covert fountain code inside a normal fountain code. Each probability distribution is
created from the histogram of 10,000 fountain code simulations.

describe integral factors in the next section, we can ask whether these issues are really
that important to justify using integral factors.

Efficiency When a covert channel is embedded in the normal fountain code at degree
d = 4 without the use of integral factors, the normal fountain code will need to transmit
more packets (on average) to finish. This is shown in figure 9 using a simulation of 10,000
experiments with and without integral factors, for a normal fountain code of K = 64 and
a secret fountain code of KS = 16. The average number of packets needed to decode the
normal fountain code message is normally T 64 = 82.7, but when the headers of degree d = 4
are modified by a covert channel, without using integral factors, this number increases to
T 64 = 89.9.

The reason is that there are
(64

4
)

= 635376 different unique combinations of 4 source blocks
out of 64 total source blocks. However the secret fountain code only has 14826 different
headers, and a payload size of bS = 3, giving each header 8 possible payloads. We use
only 14826 × 8 = 118608 unique combinations out of the total number of 635376 unique
combinations, leaving 635376 − 118608 = 516768 combinations unused. In addition, the
used combinations will be the low ENUM values. These correspond to the first source
blocks only. In other words, higher source blocks will be much less likely to occur in the
normal fountain code packets of degree 4, which means that the receiver will need to wait
longer for those particular blocks.

Interestingly the probability pS of successfully transmitting the secret message is higher
when no integral factors are used. It is now pS = 0.5566 instead of 0.4368. The reason is
simply that there are on average more normal fountain code packets available, and thus
also more covert packets, because the normal fountain code is less efficient. We could in
theory design a normal fountain code that is very inefficient, to make the probability pS

arbitrarily close to 1. However a very inefficient normal fountain code is not desirable for

24

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

the normal sender and receiver. In addition, a normal fountain code that operates below
the expected optimal efficiency level of T = 82.7 packets could look suspicious, although
many observations of different fountain code messages would be required to notice this
inefficient behaviour. However an observer has more ways to inspect the normal fountain
code than just counting the total number of sent or received packets. In the next paragraph
we show that observing a single fountain code is already enough to detect a covert channel
that does not use integral factors.

Detectability Keeping with the example from the previous section where K = 64, the
header at d∗ = 4 has

(64
4
)

= 635376 unique combinations of 4 source blocks. We will call
a unique combination a symbol. A symbol is written in binary using one of the header
representations of section 3.1. It does not matter which header representation is chosen,
as we can simply continue thinking in symbols. In binary, we need log2 655376 = 19.28
bit to write down all unique symbols. So the header will use 20 bit as we can not write
fractional bits, but not all 220 different values of 20 bit will be used.

Each of the 635376 symbols can represent a unique encoded secret packet, where a secret
packet is the combination of a secret header and a secret payload. Supposing that the
payload size bS = 3, then every unique secret header can have 23 = 8 different payloads,
depending on the content of the secret message. Every secret header thus requires space
for 8 payloads, so it follows that there are 635376/8 = 79422 spaces for the headers. We
call these spaces the header symbols. An observer expects that all 635376 symbols, and
thus all 79422 header symbols, will occur with equal probability.

In our example with KS = 16 there can be 16 + 120 + 1820 + 12870 = 14826 different
secret headers, and there are 79422 header symbols available to use. If we map the 14826
secret headers onto the first 14826 header symbols in a direct one-to-one mapping, then
the sender will only send normal fountain code packets (of degree 4) that have one of
those 14826 headers. The remaining 64596 header symbols of degree 4 will never occur in
the normal fountain code. This is certainly suspicious if the observer can see a very large
number of transmitted packets, however in our example we expect to send only TS = 21.2
secret packets. So what is the likelihood that an observer will actually notice the fact that
a block of header symbols are never used if only about 20 samples are given?

To estimate this, we note that the observer can collect the received header symbols and
can expect these to be sampled from a uniform distribution. The observer can perform
a goodness of fit calculation to detect whether the actual, observed distribution in fact
follows a uniform distribution. A common way of testing goodness of fit is Pearson’s χ2

test, however this is not a good choice in this case because of the low number of samples.
A more appropriate goodness of fit test is the Kolmogorov-Smirnov test. Alternatives are
the Cramér-von Mises criterion and the Anderson-Darling test, but we do not explore
these further.

The Kolmogorov-Smirnov test compares the cumulative distribution function (CDF) of the

25

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

α 0.001 0.01 0.02 0.05 0.1
D20,α 0.42085 0.35240 0.32866 0.29407 0.26473

Table 4: Critical values of Dn,α for n = 20, copied from [17].

observed distribution to the CDF of the expected distribution. When the two CDF are
very different, then it is likely that the observations do not follow the expected distribution.
To perform the Kolmogorov-Smirnov test we first find the value of the largest difference
between both CDF. Writing the expected CDF as F (x) and the observed CDF as Fn(x),
where n denotes the number of samples and x is the random variable, then the Kolmogorov-
Smirnov statistic Dn is

Dn = max
x

|Fn(x) − F (x)| (17)

The value of Dn must then be compared to the Kolmogorov distribution to see if its value
is not larger than what we expect it to be. This is easiest by using tabulated critical values
Dn,α for a chosen critical value α. The relation between Dn and Dn,α is that if the observed
distribution is in fact sampled from the expected distribution, then P (Dn ≤ Dn,α) = 1−α,
see [16]. In other words, if Dn > Dn,α then we can be quite certain (with the “certainness”
depending on the choice of α) that the observed distribution does not follow the expected
distribution.

Table 4 shows an extract from the table of [17] for various critical values D20,α. We copy
only the n = 20 values because we will run tests only for n = 20. If a simulation results
in a D20 value that is higher than the listed D20,α value for a certain choice of α, then
Kolmogorov-Smirnov rejects the hypothesis that the observed distribution matches the
expected distribution.

We run simulations where we take n = 20 samples in three different ways: uniformly, via
degree distribution, and using integral factors (introduced in the next section). We plot the
resulting CDF for each of the three tests in figure 10. The first 2 plots, (a) and (b), have
a value of D20 that is much larger than D20,α for even the highest confidence level α from
table 4. In (a) we have 0.825 > 0.42085 and in (b) we have 0.891 > 0.42085. An observer
will conclude with a very high level of certainty that in (a) and (b) the fountain code
does not behave as expected. Only in test (c) will the observer think that everything is
normal. Of course this experiment is only a single fountain code simulation, but repeating
the test with different random seeds gives similar results. This shows that integral factors
are necessary when embedding a covert channel, even when only a single fountain code
message is transmitted.

4.1.4 Integral factors

As shown in the previous section, integral factors are a necessary addition to the secret
fountain code to prevent an observer from easily detecting the covert channel. We will

26

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

C
D

F

x

Observed CDF F20(x)
Expected CDF F(x)

(a) Taking uniform samples between 0 and 14826 gives D20 = 0.825.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

C
D

F

x

Observed CDF F20(x)
Expected CDF F(x)

(b) Using the degree distribution ρ(d) from table 5 gives D20 = 0.891.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000

C
D

F

x

Observed CDF F20(x)
Expected CDF F(x)

(c) Applying integral factors and degree distribution ρ∗(d) from table 5 gives D20 = 0.214

Figure 10: Simulations where 20 secret packets are transmitted when there are 79422
header symbols available, for three different sampling approaches. In (a) and (b) the
observed CDF looks very different from the expected CDF, and the Kolmogorov-Smirnov
test will reject the hypothesis that the 20 samples were selected from a uniform distribution
between 0 and 79422. An observer will conclude that the fountain code behaves strangely.
In (c) the Kolmogorov-Smirnov test will not reject this hypothesis, and an observer will
not suspect a covert channel.

describe the integral factors by considering the same example as before in section 4.1.2.

Each symbol is equally likely to occur in a normal random fountain code, i.e. without
a covert channel. So we should make certain that after creating a covert channel, each
symbol still occurs with probability of e.g. 1 / 635376.

27

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

d ρ(d) #headers
(16

d

)
header probability fd ρ∗(d)

1 0.221 16 0.0138125 1059 0.213
2 0.457 120 0.0038083 292 0.441
4 0.188 1820 0.0001033 8 0.183
8 0.134 12870 0.0000104 1 0.163

Table 5: Integral factors to make each header symbol equally likely, for embedding a
KS = 16 covert channel fountain code into a K = 64 overt fountain code in degree d∗ = 4,
with the amount of header symbols H = 79422.

In the covert fountain code of size KS there are
(KS

d

)
different headers for a certain degree

d. Each header has a payload of bS bit added to it, to form an encoded packet. In our
example with KS = 16 and bS = 3, there are (16 + 120 + 1820 + 12870) × 23 = 14826 × 8
different encoded packets.

The set of all encoded secret packets should be mapped to all available symbols of the
normal fountain code. We typically have more symbols available than there are secret
packets. So each secret packet should be mapped to one or more symbols, but each
symbol corresponds to only one secret packet.

In general, with 7→ meaning mapping, the number of symbols mapped is

2bS
∑

d

(
KS

d

)
7→
(

K

d∗

)
. (18)

We know that all payloads are equally likely to occur (from solving problem 1), so we
can divide both sides of (18) by 2bS , the number of different payloads per header. This
simplifies the formula, as now the right hand side of (18) takes the meaning of number of
available header symbols as we introduced earlier. We can write this value as H, so

H = 1
2bS

(
K

d∗

)
(19)

and the mapping is then more simply written as

∑
d

(
KS

d

)
7→ H. (20)

In our example, we need to map 14826 secret headers onto 79422 header symbols.

As mentioned before, the secret headers do not all occur with the same probability. A
single header of a degree with probability ρ(d) happens with a probability of ρ(d)/

(KS
d

)
.

Table 5 shows values for KS = 16.

We introduce integral factors fd for each degree, which has the effect of mapping each
single header onto fd different symbols with equal probability. This means that for a

28

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

Figure 11: The effect of the choice of payload size bS on the space available for the integral
factors in the header of d∗ = 4 using K = 64.

given header each of the fd mapped symbol has a chance of 1/fd to be chosen. We want
each symbol choice to be equally likely across all degrees, so

ρ(d)(KS
d

) 1
fd

= 1
H

(21)

Additional constraints on fd are that only integer values are allowed, fd ∈ N and fd ≥ 1.
We also should not map onto more header symbols than we have available, i.e. in our
example 16f1 + 120f2 + 1820f4 + 12870f8 ≤ 79422. From these considerations we can
compute the values for fd. In section 5.3.4 we present an algorithm to compute fd.

Due to the constraints on fd the target probability of 1 / 79422 can not be matched
exactly. We can however modify the secret degree distribution ρ(d) slightly as well by
solving equation (21) for ρ(d), giving the modified secret degree distribution ρ∗(d) as

ρ∗(d) =
(KS

d

)
fd

H
(22)

With ρ∗(d) we achieve a near-perfect probability matching. The change from ρ(d) to ρ∗(d)
has a small impact on the performance of the secret fountain code, but ensures that all
symbols occur with equal probability. Table 5 gives the resulting fd for our example, as
well as the ρ∗(d) to achieve the target probability exactly.

When the integral factors alone do not provide a good match to the target probabilities
then ρ∗(d) might be very different from the optimal ρ(d). A non-optimal secret degree
distribution results in a higher average number TS of secret packets that need to be
transmitted before the covert receiver can decode the secret message. In other words, pS

will be lower.

The choice of bS = 3 bit in our example (taken from [6]) was made as a compromise
between good integral factors and a reasonable size S of the secret message. Other choices
for bS are possible. Figure 11 shows the impact of this choice visually.

Decreasing bS to 2 bit gives 158844 available header symbols for the mapping, but decreases
the secret message size to just 2 × 16 = 32 bit. Increasing bS to 4 bit increases the secret
message size to 64 bit, but gives only 39711 header symbols. In table 6 we show the
integral factors for the cases of bS from 1 bit to 5 bit as well as the modified ρ∗(d). The
fd values were found using the algorithm of section 5.3.4.

29

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

bS = 5 bS = 4 bS = 3 bS = 2 bS = 1
H = 19855 H = 39711 H = 79422 H = 158844 H = 317688

d ρ(d) fd ρ∗(d) fd ρ∗(d) fd ρ∗(d) fd ρ∗(d) fd ρ∗(d)
1 0.221 105 0.085 436 0.176 1059 0.213 2119 0.213 4463 0.225
2 0.457 29 0.175 120 0.363 292 0.441 584 0.441 1230 0.465
4 0.188 1 0.092 3 0.137 8 0.183 16 0.183 33 0.189
8 0.134 1 0.648 1 0.324 1 0.163 2 0.163 3 0.121

Table 6: An expanded version of the integral factors fd from table 5 for different payload
sizes bS and number of header symbols H. The integral factors fd map 14826 headers onto
H header symbols. Notice how ρ∗(d) approaches the original ρ(d) for higher values of H.

Figure 12 shows the impact of the non-optimal ρ∗(d) distributions on the number of
fountain code packets that need to be transmitted before the message can be decoded.
The choice of bS = 3 gives almost the same shape as bS = 1 or as the optimal distribution.
On the other hand, bS = 4 already is slightly worse, but could perhaps still give acceptable
outcomes and has a higher secret message size S. However the additional packets that
are required to successfully decode the secret message will have an impact on the success
rate of any secret fountain code that uses this distribution. The normal fountain code,
which uses an optimal distribution, will not send more packets just to accomodate the
secret fountain code. From this observation it is clear that bS = 5 is not a good choice.
The distribution ρ∗(d) is now far from optimal, and the large number of extra packets will
make it unlikely that enough secret fountain code packets will be transmitted before the
normal fountain code finishes.

bS 1 2 3 4 5
pS 0.4551 0.4371 0.4368 0.3227 0.0177
T 82.96 82.87 82.69 82.94 83.00

Table 7: Success rates for various choices of bS in the header of d∗ = 4 using K = 64. The
presence of the covert channel does not impact the normal fountain code, as T is always
close to the expected value of 82.7.

We experimentally determine the values for pS by running 10,000 simulations similar to
the one from figure 8 for each choice of bS . The results are shown in table 7, and confirm
what we anticipated from looking only at the required number of packets in figure 12. A
secret payload size of bS = 5 has a success rate of only 1.77% and should thus not be used,
whereas values of bS = 3 and lower are still reasonable. We also show the success rate of
the secret message in histogram-form in figure 13.

4.1.5 Packet loss in the channel

In all of the above discussion we have assumed that the channel over which the packets
are transmitted has a 100% success rate, i.e. all packets always arrive. In practice this is

30

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 10 20 30 40 50 60 70 80

P
ro

b
a
b
ili

ty

Packets

optimal
bS=1

bS=2,3
bS=4
bS=5

Figure 12: The number of packets required to decode the fountain code message of K = 16,
for the distributions ρ∗(d) given in table 6. A total of 10,000 experiments were run for
each bS value. Each experiment gave a single packet count. These counts were then
collected in a histogram, after which the histogram values were divided by 10,000 to give
the probability that the number of packets on the x-axis are needed to decode the fountain
code message.

usually not the case. In fact, one of the main reasons to use fountain codes is to deal with
channels that have an unpredictable loss rate. The question now is whether the covert
channel will be impacted by this unpredictable packet loss.

We have tested this by simulating a channel with packet loss. Each time the sender creates
a fountain code packet and attempts to transmit it over the channel, there is a chance
that the packet will be lost and thus the receiver will not receive it. The fountain code
packets contain secret fountain code packets in the covert channel at d∗ = 4. We test loss
chances of 0%, 10%, 20% and 90%.

The results show that the covert channel is not impacted. The normal fountain code
requires additional packets to be sent, but the normal receiver still needs to receive on
average 82.7 packets in order to decode the normal fountain code message. In other words,
the normal receiver will continue to wait for packets until it can decode the message. Those
82.7 packets (on average) contain the covert channel with the information about the secret
message. Because the covert channel has a secret fountain code in it, the same principle
applies there. It does not matter that some packets are dropped, as long as eventually
enough packets arrive at the receiver and the covert receiver.

Because this test shows that it does not matter what the packet loss rate is from the
point of view of the covert channel, we will leave the packet loss rate at 0% in the rest of
this work. This speeds up the simulations, as generating fountain code packets and then

31

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120

C
o
u
n
t

Packets needed to decode the normal message

Histogram of normal fountain code
Success for bS=1
Success for bS=2
Success for bS=3
Success for bS=4
Success for bS=5

Figure 13: Histogram of how often the secret message was successfully decoded for different
choices of bS , when embedding a secret fountain code of KS = 16 into degree d∗ = 4 of a
normal fountain code of K = 64.

simply discarding them wastes some computation time.

4.2 Covert Channel in multiple degrees

The approach presented in [6] to embed a covert channel in a fountain code has a success
rate pS of 43.68% for a secret message size S of 48 bit. We wish to increase both the size
S of the secret message and the probability pS that the secret transmission is successful.
In this section we will investigate different modifications of the original approach that was
presented in [6].

4.2.1 Using degrees 4, 8, 16 and 32

Figure 14: Using degrees d∗ = {4, 8, 16, 32} for embedding the secret fountain code.

As a first step we try to use more degrees than just d∗ = 4 to embed packets of the secret
fountain code. Table 8 shows the number of available bits in the normal fountain code
header for different degrees. Packets of the secret fountain code with KS = 16 and bS = 3
take up 16.86 bit (not counting integral factors), so they fit well within normal fountain
code headers of degree 4, 8, 16 and 32. This means that we can also use the degrees above
4 to embed a covert channel. Only the headers of degrees 1 and 2 are not large enough to
contain an encoded packet of 16.86 bit. We show this visually in figure 14.

32

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

d ρ(d) ENUM bits fits covert packet of 16.86 bit
1 0.161 6.00 no
2 0.4 10.98 no
4 0.256 19.28 yes
8 0.101 32.04 yes
16 0.045 48.80 yes
32 0.037 60.67 yes

Table 8: Degree distribution for K = 64 and the number of bits in the ENUM header,
calculated using log2

(K
d

)
. All headers except degrees 1 and 2 have enough space to store

a covert packet of 16.86 bit.

The difference between 16.86 bit and the actual number of bit available in the header is
filled up by the integral factors. As a reminder, we need to use all the available header
symbols. We can not simply round down to the nearest whole number of bits. For example,
degree 8 has

(64
8
)

= 4426165368 different combinations of source blocks, and the covert
channel should be able to generate all of them. Rounding down to 32 bit instead of 32.04
bit would give only 4294967296 different combinations, so that 131198072 combinations
would never be used, degrading the performance of the normal fountain code.

We have already computed the integral factors for degree 4. To compute the integral
factors for the higher degrees we again use the algorithm from section 5.3.4. The resulting
values are shown in table 9.

d fd for degree 8 fd for degree 16 fd for degree 32
1 7641972 843472289867 3164140118346202
2 2107017 232559177356 872405450427883
4 57150 6307902759 23663004017666
8 5761 635806231 2385116888950

Table 9: Integral factors for bS = 3 into degrees 8, 16 and 32. The numbers get very large.

The integral factors are much higher than before, because the degrees of 8 and above have
a lot more header symbols available. In the Java code we use the BigInteger type to
store these values exactly, as the values are too large for an int or a long, and a float
or double would lead to a loss of precision. These integral factors lead to a very close
approximation of the optimal degree distribution for KS = 16. So instead of having to use
a modified secret degree distribution ρ∗(d) as for d∗ = 4 from table 6, we can now simply
use the optimal degree distribution ρ(d) for a fountain code with KS = 16 from table 3.
In other words, for d∗ = {8, 16, 32} we have ρ∗(d) = ρ(d).

Using multiple degrees to store secret packets increases the factor α from equation (13),
giving

α = 0.256 + 0.101 + 0.045 + 0.037 = 0.439

33

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

This α is almost two times higher than only using degree d∗ = 4. Using the values for
T from equation (16) we compute the expected number of transmitted covert packets as
TS = 0.439 × 82.7 = 36.3, which is higher than the average required amount of T16 = 22.6
to decode the secret message.

Adjusting the Java code to incorporate these changes, and repeating the experiment with
10,000 simulations, gives a success rate of pS = 97.47% to decode the secret message. The
number of required packets for the normal fountain code is on average T = 82.7 during
the simulations, showing that using additional degrees for the covert channel in this way
does not impact the normal fountain code.

 0

 100

 200

 300

 400

 500

 600

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the normal message

Secret message not complete
Secret message complete

Figure 15: Stacked bar chart showing when the secret message transmission succeeded
when using degrees 4, 8, 16 and 32 for the covert channel. Out of 10,000 simulations there
were 9,747 successes.

Figure 15 is similar to figure 8 from before and shows where the secret messages succeed
and where they fail. The figure shows that the covert channel now has a high chance of
success, which is a positive improvement. However the size S did not change, i.e. we are
still limited to a secret message of only 48 bit.

Additional packets in degrees 16 and 32 The headers of degrees 16 and 32 have
enough bit available to store more than one covert packet. In the header of degree 16,
with 48.80 bit space, we could store two covert packets of 16.86 bit and still have room for
integral factors. The header of degree 32 could even store three covert packets. We can
compute the value of α as

α = 1 × 0.256 + 1 × 0.101 + 2 × 0.045 + 3 × 0.037 = 0.558

This further increase in α gives an expected number of transmitted covert packets of
TS = 0.558 × 82.7 = 46.1, which means that in this case pS will be very close to 1.

34

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

We do not simulate this idea here, as pS was already close to 1 and adding additional
packets does not increase the secret message size S, because the secret payload size bS

stays the same. We will however come back to this idea later in this paper.

4.2.2 Using only degrees 8, 16 and 32

Using all the degrees of 4 and higher improves pS substantially, but it does not increase
the secret size S. Since equation (14) tells us that S = bSKS , we can either increase the
number of secret source blocks KS or increase the number of bits bS of the secret payload
in order to increase S. In the section on integral factors, 4.1.4, we found that bS = 3
bit is the best we can do while keeping reasonable integral factors. Choosing KS = 32
is also not an option, as then the header of the secret fountain code becomes too large:∑

d={1,2,4,8,16} log2
(32

d

)
= 29.2 bit, which does not fit in the header of d∗ = 4. So it seems

that neither increasing bS nor increasing KS is possible for d∗ = 4.

Figure 16: Using only degrees d∗ = {8, 16, 32} for embedding the secret fountain code.

If we choose d∗ = {8, 16, 32} however, then we have 32.04 bit available in degree 8 (see
table 8). For a KS = 16 secret fountain code we can now choose bS = 16 and still have
enough header symbols available for the secret fountain code headers. This gives a secret
message size of S = 16 × 16 = 256 bit, which is more than the original S = 48 bit. Figure
16 shows the effect.

The downside is that α decreases. Our secret packets are now about 32 bit long so we can
not put multiple packets in the higher degree numbers, giving α = 1 × 0.101 + 1 × 0.045 +
1 × 0.037 = 0.183.

d fd for degree 8 ρ∗(d) for degree 8 fd for degree 16 fd for degree 32
1 850 0.201 102962928 386247573044
2 236 0.419 28388573 106494805960
4 7 0.189 770008 2888550295
8 1 0.191 77613 291151964

Table 10: Integral factors for d∗ = {8, 16, 32} with bS = 16. We have omitted the ρ∗(d)
for degrees 16 and 32, as it is identical to the ideal distribution ρ(d) for KS = 16.

The lower α has a negative impact on pS . To run simulations we again need to calculate
appropriate integral factors. They are shown in table 10 for bS = 16. Figure 17 shows the
results. The probability of success is very low, at pS = 9.65%.

35

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the normal message

Secret message not complete
Secret message complete

Figure 17: Stacked bar chart showing when the secret message transmission succeeded
when using degrees 8, 16 and 32 for the covert channel, with a payload size of bS = 16.
Out of 10,000 simulations only 965 succeeded.

4.2.3 Degrees 4, 8, 16 and 32, with KS = 8

The modifications of the previous two sections increase either S or pS , but not both.
However they give confidence that something can be done as a middle ground. A solution
is counter-intuitively to decrease KS to 8, and keeping d∗ = {4, 8, 16, 32}. When KS = 8
we use only secret degrees 1, 2 and 4. The size of the secret header is smaller, and thus there
is more space available for the secret payload. For KS = 8 there are

(8
1
)

+
(8

2
)

+
(8

4
)

= 106
different headers, requiring log2(106) = 6.7 bit in ENUMALL mode. For d∗ = 4 there
are 19.28 bit in the normal fountain code header, so if we reserve between 7 to 10 bit for
the header (to account for integral factors) then this leaves between 12 to 9 bit for the
payload. The secret message size is then either S = 96, S = 88, S = 80 or S = 72 bit.
The exact choice depends on the pS results from the simulation, as smaller headers lead
to worse integral factors and thus a worse performance of the secret fountain code. Figure
18 shows this idea.

Unfortunately neither [12] nor [5] provide optimised sparse degree distributions for K = 8,
so we do not know yet which degree probabilities to use in the secret fountain code.
However a dense distribution for K = 8 was presented in [4] in Table III. We can use this
dense distribution to derive two candidate sparse distributions as follows:

1. Either discard the dense distribution values for degrees not equal to 1, 2 or 4 and
then renormalise the remaining values.

2. Or compute the sparse degree probability values by summing the given dense distri-
bution values in the groups (1), (2, 3) and (4, 5, 6, 7, 8).

The resulting distributions for these methods are shown in table 11, together with the op-

36

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

Figure 18: Using degrees d∗ = {4, 8, 16, 32} with KS = 8 gives smaller headers and thus
more space for the payload. In this figure we use bS = 10.

[4] method 1 method 2
ρ(1) 0.268 0.312 0.268
ρ(2) 0.491 0.572 0.576
ρ(3) 0.085 - -
ρ(4) 0.099 0.116 0.156
ρ(5) 0.013 - -
ρ(6) 0.027 - -
ρ(7) 0.010 - -
ρ(8) 0.007 - -
T 11.565 12.157 11.865
σ - 3.599 3.335

Table 11: Sparse degree distributions for K = 8, derived from the optimised dense distri-
bution in [4], Table III, with two different methods.

timal dense distribution of [4]. We determine the overhead for the new sparse distributions
experimentally by running 50,000 fountain codes (without covert channel) and computing
the average and standard deviation of the required number of fountain code packets to
decode the message. These results are also shown in table 11. We see that the difference in
the average T between the optimal dense distribution of [4], and our not-optimised sparse
distribution of the second method is small. We conclude that our probability values for
the sparse degree distribution of method 2 are close to the optimum, so we can use these
for the secret fountain code with KS = 8.

bS = 9 bS = 10 bS = 11 bS = 12
H = 1240 H = 620 H = 310 H = 155

d
(8

d

)
ρ(d) fd ρ∗(d) fd ρ∗(d) fd ρ∗(d) fd ρ∗(d)

1 8 0.268 41 0.264 23 0.297 9 0.232 3 0.155
2 28 0.576 25 0.564 13 0.587 6 0.542 2 0.361
4 70 0.156 3 0.172 1 0.116 1 0.226 1 0.484

Table 12: Integral factors fd and modified ρ∗(d) for different payload sizes bS , for a secret
fountain code with KS = 8 into degree d∗ = 4 of a normal fountain code with K = 64.

In order to simulate this secret fountain code and decide which bS value is best, we also
need integral factors. Table 12 shows our computation for bS ranging from 9 to 12, similar

37

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

to table 6 from before. This table only shows the integral factors for embedding the secret
fountain code packets into normal fountain code degree d∗ = 4. We also use normal
fountain code degrees 8, 16 and 32, which also need integral factors for each choice of bS .
We have listed these in appendix A.

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the normal message

Secret message not complete
Secret message complete

Figure 19: Stacked bar chart showing when the secret message transmission succeeded for
the method with KS = 8 and bS = 9. In 10,000 simulations there were 9,995 successes.

Simulations give a very high success rate of pS = 99.95% for the secret message transmis-
sion. Figure 19 shows the histogram of successes for bS = 9. The histograms for higher
values of bS look almost identical. Even for bS = 12, which has a ρ∗(d) distribution that
is very different from the optimal one, the success rate is still pS = 99.95%.

An explanation for this high success rate is that the number of transmitted secret packets is
on average TS = αT64 = 36.3, while only 11.86 secret packets are required on average (see
table 11) to decode the secret message when using ρ(d) values that are close to optimal.
Still, even in this very favourable setup it happened 5 times in 10,000 simulations that the
secret transmission failed.

The simulations show that both S and pS are higher when using KS = 8 compared to
using KS = 16. One idea could be to go even further, to KS = 4, in the hope of further
improvements. However we can reject this quickly by noting that the value of bS will not
grow very much, while KS halves. The reason that we cannot at least double bS is that
the total number of available bits in the normal fountain code at d∗ = 4 remains 19.28,
which we need to divide between the secret header and the secret payload. So even if we
could make bS = 15, this still only gives S = 15 × 4 = 60 bit which is worse than what we
found for KS = 8.

A final remark about this method is that we still can not use the headers of degree 2. These
happen often since ρ(2) = 0.4 and have about 10 bit of space in the header. Attempting

38

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

to put a covert fountain code packet of KS = 8 into the header of d∗ = 2 leaves only 1 or
2 bit for the payload, so leads to a very small S.

4.3 Half-Degree covert channel

4.3.1 Basic approach

In the methods that we have discussed so far, the degree of the secret packet is chosen
randomly according to a secret degree distribution. Any secret degree can be used in each
normal header. The secret headers must encode this secret degree choice, and must also
be able to encode the secret source block indices for the highest possible secret degree. So
even for a secret packet of degree 1 we still need to reserve a lot of bits. By removing the
flexibility to store any secret degree in each overt degree, we could spare more bits for the
secret payload and potentially get better results.

(a) KS = 16, bS = 5

(b) KS = 32, bS = 5

Figure 20: The Half-Degree method for two choices of KS . The number written inside the
secret header is the (fixed) secret degree that the covert sender and covert receiver agree
on in advance. The secret header size is no longer always the same, but now depends on
the value of the secret degree. The overt degree 32 in KS = 16 does not have a covert
channel, because secret degree 16 does not occur when KS = 16.

We propose a method which we call Half-Degree, where each overt degree starting from
2 contains secret fountain code packets from a degree that is half the overt degree. In
other words, if the normal fountain code creates a packet of degree 2, then we will embed
a secret packet of degree 1. An overt packet of degree 4 gets a secret packet of degree 2,
and so on. This is illustrated in figure 20, for both KS = 16 and KS = 32. We will only
consider those two KS values. Higher KS have a low chance of success pS , and lower KS

have a smaller secret message size.

Removing the choice of secret degree does not remove the need for integral factors, as
figure 20 clearly shows. The combination of secret payload and secret header does not
fill the available space. However the integral factors are now much simpler to determine
and to implement. For each overt degree there are

(K
d

)
spaces, and the Half-Degree covert

channel can create
(Ks

d/2
)

different combinations, each of which can have 2bS different secret

39

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

d ρ(d) secret d ρ∗(d) for KS = 16 ρ∗(d) for KS = 32
1 0.161 - - -
2 0.4 1 0.499 0.477
4 0.256 2 0.319 0.305
8 0.101 4 0.126 0.120
16 0.045 8 0.056 0.054
32 0.037 16 - 0.044

Table 13: Actual degree distribution for Half-Degree secret fountain code for various KS .
The left columns show the distribution values for the normal fountain code. The ρ∗(d)
are the actual distribution of the degrees of the secret fountain code, as received by the
covert receiver, and are calculated by renormalising the ρ(d) values.

payloads. So the integral factor that maps all the possible secret packets onto the available
normal header spaces is

fd =
(

K

d

)/
2bS

(
Ks

d/2

)
. (23)

Using the Half-Degree method for a secret payload size of bS = 5, as shown in figure 20,
gives a secret message size of S = 80 bit when KS = 16, and S = 160 bit when KS = 32.
We could use a higher bS value by reducing the space for the integral factors, but as we
will see in the simulations this has a negative effect on the normal fountain code. Even
bS = 5 already has a negative effect.

Before we look at the experimental results, we can discuss what we expect from a theoret-
ical point of view. As we use all overt degrees except for d = 1, the factor α is much higher
now. For KS = 16 we have α = 0.802 and for KS = 32 we have α = 0.839. However the
secret degree distribution is far from optimal, because it depends on the degree distribu-
tion of the normal fountain code. We can no longer choose the secret degree probabilities
to minimise the number of required secret packets. Table 13 lists the computed probability
values for the secret degrees. These are the secret degree probability values that will occur
in practice, forced by the degree distribution of the normal fountain code.

The non-optimal secret degree distribution increases the average number TS of packets
that need to be transmitted to successfully decode the secret. Earlier we found that the
overt fountain code of K = 64 will have T = 82.7. We can thus expect that αT = 69.4
packets contain information about the secret for KS = 32. This is unlikely to be enough
when KS = 64 (so we do not consider this choice for KS), but might be sufficient when
KS = 32 or KS = 16.

To test these ideas experimentally we have run 10,000 simulations for both KS = 16 and
KS = 32, for sizes bS of 3, 4 and 5. The results are shown in table 14 and figures 21
and 22. When KS = 16 the secret message is successfully transmitted with a very high
probability, similar to the KS = 8 approach from the previous section, i.e. when not using

40

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

KS = 16 KS = 32
bS 3 4 5 3 4 5
pS 0.998 0.9993 0.9994 0.9208 0.9348 0.9745
T 84.76 87.44 94.65 84.85 88.51 102.29
σ 9.13 9.76 11.07 9.50 10.09 12.83

Table 14: Success rate for Half-Degree method for various KS and bS , and the negative
impact on the normal fountain code.

Half-Degree. For KS = 32 the success rate is above 90%, which is also not bad considering
the larger size of the secret message.

However this method has a negative impact on the normal fountain code. The average
number of transmitted normal fountain code packets T , also listed in table 14, increases
when bS increases. Further increases of bS have an even bigger negative impact on the
normal fountain code. Interestingly, the increase in transmitted normal packets causes pS

to increase as well. As the normal fountain code behaves worse, more secret packets are
transmitted, which helps to decode the secret message. That is why the value of pS for
KS = 32 is higher when bS = 5 than when bS = 3.

 0

 100

 200

 300

 400

 500

 600

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the message

K=64
bS=3
bS=4
bS=5

Figure 21: Histogram of the number of packets needed to decode the normal fountain
code message, when embedding a Half-Degree covert channel with KS = 16 and various
bS . Higher bS have a more negative impact on the normal fountain code behaviour.

Figures 21 and 22 compare the behaviour of the transmitted packets to the ideal behaviour
for K = 64 when no covert channel is embedded. A value of bS = 3 might still be
acceptable, but higher values for bS have the risk of raising suspicion in an observer,
especially if the observer can see multiple full fountain code transmissions. The covert
channel should not adversely impact the normal fountain code, so the choices bS = 4 and

41

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the message

K=64
bS=3 total

bS=3 success
bS=4 total

bS=4 success
bS=5 total

bS=5 success

Figure 22: The same as figure 21 but for KS = 32. Also shown in dashed lines are the
counts for the successfull transmissions of the secret, as pS is now not close to 1 anymore.

bS = 5 are not recommended. However if we limit ourselves to using bS = 3, then the
secret message size is only S = 48 for KS = 16, which is worse than what we were able to
achieve in the previous section. So it would seem that we have not made any improvement
by introducing the Half-Degree method, despite no longer needing to encode the value of
the secret degree.

In order to find a solution we note that the cause for the deterioration of the normal
fountain code lies in what goes on in the normal header of degree 2. The secret header
is variable but the secret payload is not. Even though 2bS different combinations are
possible for the secret payload, in practice not all these combinations will occur, as the
secret message is fixed at the start of the fountain code. So for KS = 16 there will be only(16

1
)

= 16 different secret payloads that happen at secret degree 1.

Worse, each secret payload is coupled to a single secret header, so the number of unique
secret packets of degree 1 will be very small. If bS = 5 and KS = 16 (requiring 4 bit for the
secret header of degree 1) then the 5 + 4 = 9 bit that are taken by the secret packet will
only have 16 different values instead of 29 = 512 different values. The integral factors add
some more freedom, but degree 2 of the normal fountain code only has 11 bit available,
leaving only 2 bit for the integral factor. This means that the total number of different
combinations in the normal fountain code header of degree 2 will be not larger than 64,
as opposed to

(64
2
)

= 2016 possible combinations when no covert channel is present.

The low number of used normal source block combinations will cause the normal fountain
code to often send identical packets in normal degree 2, which does not help the normal
receiver. The normal receiver will thus need to receive more packets before it can decode
the normal message. We did not have this problem before, as there were typically enough

42

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

bits in the normal header that were not used by the secret payload, thus allowing enough
different combinations of normal source blocks.

Note that the normal fountain code works fine if there are enough source block combina-
tions available, even if a covert channel reduces this amount from the maximum available
amount. No extra packets are needed as long as the receiver will, with high likelihood,
always receive different packets. The trick is thus to design a covert channel that does not
reduce the number of available source block combinations too much.

4.3.2 Improvement by adding more secret packets

A solution to the problem of insufficient choice in degree 2 when embedding a covert
channel is to simply not use degree 2 in the Half-Degree method. This solves one problem
but creates another, because we now no longer send secret packets of degree 1, so the LT
decoding never starts. However we do have extra space available in the headers of higher
degrees, which we are currently using only for the integral factors. So by making a puzzle
of secret packets, we can also send secret packets of degree 1.

(a) bS = 7

(b) bS = 8

Figure 23: Puzzle for KS = 16. The secret packets of the Half-Degree are augmented by
secret packets of degree 1 everywhere there is space available in the normal header.

In figure 23 we show what we mean, for puzzles with KS = 16 using bS = 7 and bS = 8.
The header of normal degree 8 contains the secret packet of degree 4, and also has an
extra secret packet of degree 1. Normal degree 16 has space for two extra secret packets
of degree 1. Normal degree 32 was not used in KS = 16, so we fill this with five secret
packets of degree 1. We also force these five packets to be created from different secret
source blocks, as it does not make sense to send the same secret packet multiple times if
we can avoid it.

We can compute the value of α as before, giving α = 1 × 0.256 + 2 × 0.101 + 3 × 0.045 +
5 × 0.037 = 0.778.

We can make a similar puzzle for KS = 32. The secret headers are bigger now, which
leaves less space to add packets of degree 1, see figure 24. To fit enough secret packets we
reduce the secret payload size to bS = 5. We also present a slight variation, by changing

43

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

(a) Filling the extra space with packets of degree 1.

(b) Filling the extra space with packets of both degree 1 and degree 2.

Figure 24: Puzzle for KS = 32 and bS = 5.

one of the degree 1 packets to a degree 2 packet. The idea is that this might improve the
secret fountain code success rate, as the actual secret degree distribution is now closer to
optimal. In both cases we have α = 1 × 0.256 + 2 × 0.101 + 3 × 0.045 + 3 × 0.037 = 0.704.

Combining multiple secret packets into a single header We have not yet embed-
ded two or more secret packets into a single normal fountain code header, so we should
first describe how to do this in practice. A simple approach would be to divide the bits
of the normal header into groups based on the number of bits that each secret packet
requires. This is possible when a secret packet takes up an integer number of bits, as
is the case in the secret packets of degree 1 for KS = 16 and KS = 32. In the case of
KS = 16 the secret header needs exactly log2

(16
1
)

= 4 bit, and in the case of KS = 32 the
secret header needs exactly 5 bit. The secret payload is of course also an integer number
of bit, so the total secret packet fits exactly into an integer number of bit. This means
that we could for example say that bits 10 to 20 of the normal header of degree 32 are
reserved for a secret packet of degree 1.

A more flexible approach for embedding multiple secret packets into a single normal foun-
tain code header, that also works when the secret packet does not fit exactly into an
integer number of bits, is to think of the secret packets as big decimal numbers instead
of as bitstrings. This is the approach that we have implemented in the Java code. Each
secret packet is first converted to a decimal number, and then all the decimal numbers
are combined via multiplication and addition. Suppose that we have two secret packets,
A and B, both of degree 2 in a KS = 16 secret fountain code, and both with a payload
size of bS = 5. This means that the secret packets will have a secret header value between
0 and

(16
2
)

and a secret payload value between 0 and 25. The secret packet consisting
of both secret header and secret payload will thus have a decimal value between 0 and(16

2
)

× 25 = 3840. The value 3840 does not fit exactly into an integer number of bits, so
the simple approach from the previous paragraph does not apply.

To combine secret packets A and B into a single decimal value, where B takes on values

44

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

between 0 and 3840, we compute

x = A × 3840 + B. (24)

We then multiply x with an integral factor, like before, to fill all the available spaces in
the normal fountain code header. This final value is then used as the normal fountain
code header. The receiver can extract A and B from the received x value by computing
A = ⌊x/3840⌋ and B = x mod 3840. This multiplication approach is very flexible as the
degree of the secret packet does not matter. It is also safe, as all the available space in
the normal header is used, so an observer will not notice any abnormal behaviour in the
normal fountain code. Finally, the multiplication approach is easy to extend to scenarios
where there are more than 2 secrets packets, potentially of different degrees, that need to
be combined, as is for example the case in normal degree 32 in figure 24.

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the message

K=64
bS=7
bS=8

Figure 25: Comparison between a fountain code of K = 64 that does not have a covert
channel, and the fountain code with covert channel using the improved Half-Degree method
with KS = 16 for either bS = 7 or bS = 8. The number of packets required to decode
the message is not impacted by the presence of the covert channel. The secret message is
transmitted with a success rate of almost 100%.

Simulations We run 10,000 simulated fountain codes, for each of the scenarios discussed
above. The results for KS = 16 for both bS = 7 and bS = 8 are shown in figure 25. The
normal fountain code is now no longer negatively affected by the existence of the covert
channel, thus redeeming the Half-Degree method. The success rate of the secret message
is pS = 0.9961 for bS = 7, and is pS = 0.9961 (the same) for bS = 8. Reserving less space
for the integral factors does not negatively impact the performance in this case, because
there are enough free bits left in the normal header, even when bS = 8. This shows that
the improved Half-Degree method with KS = 16 and bS = 8, giving a secret message size
of S = 128 bit, achieves a success rate of 99.61%.

The simulation results for the puzzles with KS = 32 and bS = 5 are shown in figure 26.
The normal fountain code is again no longer negatively impacted. The success rate is

45

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

 0

 100

 200

 300

 400

 500

 600

 700

 60 70 80 90 100 110 120 130 140

C
o
u
n
t

Packets needed to decode the message

K=64
bS=5 A

bS=5 A success
bS=5 B

bS=5 B success

Figure 26: Similar to figure 25 but now with KS = 32. Only bS = 5 is tested, but both
variations of the puzzle from figure 24 are shown. The dashed lines show the success rate
of the secret message, as it is no longer close to 100%.

pS = 0.7959 for the first puzzle (figure 24 (a)), and pS = 0.8234 for the second puzzle,
where the single degree 1 secret packet was replaced with a degree 2 secret packet (figure
24 (b)). This experiment shows that it is possible to transmit a secret message of size
S = 32 × 5 = 160 bit with a reasonably high success chance of 82.34%.

4.4 Comparison

In the previous sections we have analysed many different ways of embedding a covert
fountain code in the headers of a normal fountain code. Table 15 summarises all these
results and compares them for the parameters that we are most interested in, namely the
secret message size S and the secret transmission success chance pS . The parameter T is
included to show the impact that embedding the covert fountain code has on the normal
fountain code. A value close to 82.7 indicates that there is no impact. We have included
the results for the unmodified Half-Degree method for completeness, however the negative
impact on the normal fountain code is quite large and this could expose the existence of
the covert channel. The improved Half-Degree method works better in any case, achieving
higher values for S compared to the non-improved version of the Half-Degree method.

If a small secret message of up to 96 bit should be sent, then the method from [6] with
KS = 8 behaves best, giving a success rate of almost 100%. Larger secret messages can
be sent with the improved Half-Degree method, either with KS = 16 for 128 bit messages,
or with KS = 32 for 160 bit messages. However the KS = 32 method suffers from a lower
success rate, so overall the improved Half-Degree method with KS = 16 provides the best
balance of S and pS .

Further improvements are perhaps possible by continuing with the idea of the improved
Half-Degree method and creating different puzzles. As long as the covert sender and
covert receiver both know how the fountain code headers are structured, any combination

46

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

Method KS bS S (bit) degrees α pS T

[6] 16 3 48 4 0.256 0.4368 82.696
[6] with more degrees 16 3 48 4, 8, 16, 32 0.439 0.9747 82.915
[6] with d∗ = {8, 16, 32} 16 16 256 8, 16, 32 0.183 0.0965 82.811
[6] with KS = 8 8 12 96 4, 8, 16, 32 0.439 0.9995 84.234
Half-degree 16 5 80 2, 4, 8, 16 0.802 0.9994 94.65
Half-degree 32 4 128 2, 4, 8, 16, 32 0.839 0.9348 88.51
Half-degree improved 16 8 128 4, 8, 16, 32 0.778 0.9961 83.791
Half-degree improved 32 5 160 4, 8, 16, 32 0.704 0.8234 82.920

Table 15: Comparison between different methods to use a fountain code (of various KS)
as a covert channel inside a fountain code with a fixed K = 64. High S and pS values
are better, while keeping T close to 82.7 to avoid making the normal fountain code less
efficient.

of secret packets inside normal headers can work. A triple trade-off exists between the
choice of KS , the choice of bS , and the impact on the normal fountain code, which can
make determining the overall best puzzle very challenging.

47

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

5 Implementation

We have created Java code that implements fountain codes with optional embedding of
a covert fountain code. The Java code has been structured using an Object-Oriented
approach. We have created a total of 26 classes to perform all the simulations that were
described in the previous sections. In this section we will explain how the classes form a
coherent whole, and how to get started with compiling and running them. This should
hopefully allow other people to easily verify the results that we obtained.

5.1 Instructions

We have used Java 8 with Eclipse 2021-09, version 4.21.0. Only standard Java libraries
were used (JRE System Library JavaSE-1.8), so no external libraries need to be down-
loaded or installed to run the code. All classes are part of the same package, called
“fountaincode”. So it should be very straightforward to add all Java code files to an
Eclipse project to compile and run the code.

The entrypoint to the code is the Test.java file. The Java function public static
void main in Test.java lists all the tests that can be run. By default all tests will run
in sequence. This might take a while and requires a lot of computation power, so we
recommend to comment out all the tests that should not be run, and perhaps only run a
single test at a time.

Running a test will generate an output text file with a name like results_***.txt. Each
test will generate a differently named results file, to avoid overwriting results from other
tests. For most tests the output written to the results files is the histogram data that we
used to create the plots shown in this work. They include computations of T , σ and pS

at the top of each file.

Tests can be modified by changing the parameters in the Test.java class. One useful
value is the variable numberOfExperiments. The precision of the resulting histogram will
be higher if a large number of experiments are run. We have used a value of 10,000 for
almost all experiments, but to run the tests faster, or to confirm that the tests work, a
lower value can be used.

On our machine, an Acer Swift laptop with an AMD Ryzen 5 4500U CPU with 8GB
RAM running Windows 10 64-bit, a single run of 10,000 simulations took between 5 to 10
minutes to complete, depending on the complexity of the test.

5.2 Architecture

As the implementation of the Java code was a core part of this work, we go into some
detail of how the code is structured. We first present a high-level overview of the classes
and how they work together, and then dive deeper into each class. An overview of our
architecture is shown in figure 27.

48

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

Figure 27: Simplified architecture diagram for the fountain code and covert channel im-
plementation. See the text for a description.

Central to everything are the Sender, Receiver and Channel classes. A Channel object
is constructed by passing a reference to a Sender and a Receiver. The Channel has a
function called sendPacket that asks the Sender for a fountain code packet, and then
gives this packet to the Receiver. A packet itself is a Java String object consisting
of only the characters 0 and 1. This way of passing the packet ensures that no other
information can leak from the Sender to the Receiver by accident. The Channel can also
decide to discard this packet with a certain configured probability, to simulate packet loss.
The Receiver then receives this packet and applies the LT decoding algorithm. All the
test functions in the Test class call the sendPacket function in a loop, which runs until
the Receiver has successfully decoded the (normal) fountain code message.

For the covert channel, the main idea is that a covert sender is first of all still a normal
sender. Without normal fountain code packets there can be no secret message. So a covert
sender must have all the functions necessary to create normal fountain code packets, like
a normal sender. For this reason all covert senders extend from Sender.

The special thing about a covert sender is that it will no longer choose the (normal)
source blocks randomly. Instead, the source blocks will be chosen so that the header
that is created will be a secret fountain code packet. It does this by overriding the
selectPackets function. Inside the selectPackets function the covert sender will set
the source block indices non-randomly. To know which source blocks to select it needs
to know secret packets from the secret fountain code. To generate these secret fountain
code packets a covert sender owns an extra Sender object as a private attribute, which
creates secret fountain code packets from the secret message. There are thus two objects
of type Sender involved: the covert sender itself, since it extends from Sender to create
the (modified) normal fountain code packets, and the Sender object that is owned by the
covert sender, to create the secret fountain code packets that are used to determine the
source block indices to use.

To group the different types of covert senders, and to also make it clear to the orchestration

49

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

functions in Test that the given Sender object can be a covert sender, all covert senders
implement the interface CovertSender. Note that this structure also can allow multi-level
covert channels [2]. To achieve multi-level covert channels a special kind of covert sender
should be created which owns an object of type CovertSender instead of owning an object
of type Sender.

We used a similar setup for the receiver. Each covert receiver extends from Receiver, and
overrides the function decode. First the received packet will be given to the parent class
Receiver, to perform the normal fountain code decoding. Then, instead of stopping, like a
normal Receiver would, the covert receiver also extracts the normal header and interprets
it as a secret fountain code packet. It gives this secret fountain code packet to an extra
object of type Receiver, owned as a private attribute, which will attempt to decode the
secret message. The interface CovertReceiver is similar to CovertSender in that it groups
all the covert receivers together. It also exposes the private Receiver object, so that the
test function can check whether the secret message has been successfully decoded or not.

This symmetrical setup of Sender and Receiver makes it hopefully easier to understand
the code. The following covert sender and receiver pairs are provided:

• CovertSenderDegree4 and CovertReceiverDegree4: the approach from [6] with a
covert channel in just d∗ = 4. This was covered in section 4.1.

• CovertSenderMoreDegrees and CovertReceiverMoreDegrees: the approach from
[6] with more degrees, i.e. d∗ = {4, 8, 16, 32}. This was covered in section 4.2.1.

• CovertSenderHigherDegrees and CovertReceiverHigherDegrees: the approach
from [6] with only higher degrees, i.e. d∗ = {8, 16, 32}. This was covered in section
4.2.2.

• CovertSenderMoreDegreesK8 and CovertReceiverMoreDegreesK8: the approach
from [6] with KS = 8. This was covered in section 4.2.3.

• CovertSenderHalfDegree and CovertReceiverHalfDegree: the initial Half-Degree
method, which negatively impacts the normal fountain code. This was covered in
section 4.3.1.

• CovertSenderHalfDegreePuzzle and CovertReceiverHalfDegreePuzzle: the mod-
ified Half-Degree method with KS = 16, where degree d∗ = 2 is no longer used. This
was covered in section 4.3.2.

• CovertSenderHalfDegreePuzzle32 and CovertReceiverHalfDegreePuzzle32: the
modified Half-Degree method with KS = 32, where degree d∗ = 2 is no longer used.
This was covered in section 4.3.2.

Each of the static functions in the Test class create a certain concrete CovertSender and
CovertReceiver with certain parameters, e.g. the choice of bS . The covert sender and
covert receiver must match, e.g. one should not create a test where a CovertSenderMoreDegrees
object sends packets to a CovertReceiverDegree4 object. That will lead to errors. The

50

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

parameters that are given to the constructors likewise need to match as well, e.g. the
choice of secret payload size bS must be identical. This requirement makes it clear that
these choices are what the covert sender and covert receiver need to somehow agree on in
advance, outside of the fountain code transmission.

The classes Channel, Sender, Receiver, CovertSender, CovertReceiver and Test that
we have already discussed make use of the following classes that provide shared function-
ality. These shared classes were not included in the diagram of figure 27 to keep the figure
simple.

• Distribution: a collection of degree distributions ρ. To sample degrees according
to a distribution we need to know the cumulative distribution function, see section
5.3.1, so we also compute the CDF in this class. The Distribution class also has
code that computes the ideal and robust soliton distributions, although these are
not used in tests.

• Header: functions to create a header of BitVector, Enum of EnumAll type, given
a list of source block indices. The tests only use Enum and EnumAll, but we have
included the BitVector header type for completeness.

• Headertype: a Java enum with types BITVECTOR, ENUM and ENUMALL.

• IntegralFactors: all the integral factors used by the various covert senders. The
numbers are very large so we use BigInteger to store them without loss of precision.

• KolmogorovSmirnov: independent class to perform the Kolmogorov-Smirnov tests
from section 4.1.3. This class is not used by the fountain code classes.

• Utilities: static functions for computing a binomial and for XOR-ing bitstrings.

5.3 Algorithms

The architecture diagram and class structure explanation glances over the fact that some
algorithms are not straightforward. Especially the ENUM algorithm and the integral
factors algorithm required careful analysis and testing. In this section we explain the im-
plementation of these two algorithms, as well as the degree distribution sampling approach
and the computation of large binomial factors in Java.

5.3.1 Distribution algorithm

When creating a fountain code packet, the degree d is chosen according to a given prob-
ability distribution, which is not necessarily uniform. To create a random number that
is sampled according to a certain probability distribution, we first generate a uniformly
distributed random number using the Random.nextDouble() function in Java. Then we
convert this number, which lies between 0 and 1, to a degree value via the cumulative
distribution function (CDF) of the degree probability distribution. The chosen degree

51

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

d ρ(d) CDF(d)
1 0.161 0.161
2 0.4 0.561
4 0.256 0.817
8 0.101 0.918
16 0.045 0.963
32 0.037 1.0

Figure 28: Illustration of the procedure to generate the degree number for a given dis-
tribution ρ(d) for K = 64. Starting from a random number r with uniform distribution,
the degree number is found by looking at the interval of the CDF where r is located. For
example r = 0.75 is between 0.561 and 0.817 and thus gives d = 4.

value depends on where the random number r falls in the range of the CDF. Figure 28
illustrates the method with an example.

5.3.2 Binomial coefficients algorithm

The value of the binomial
(K

d

)
can become very large. To keep precision we use the Java

built-in type BigInteger. Unfortunately Java does not have a built-in way to compute
large binomial numbers, so we must compute this ourselves. The standard factorial form

K!
d!(K−d)! is not efficient as it leads to a fraction that is difficult to evaluate, and slow to
compute in Java. Instead we use the multiplicative formula(

K

d

)
=

k−1∏
i=0

n − i

i + 1 . (25)

This gives precise results and is fast for our values of K and d.

5.3.3 ENUM algorithm

From source block indices to enum number The ENUM header was described in
section 3.1.2.

A straightforward approach to find the index number n that corresponds to a certain set
of source block indices {si} is to enumerate all possible sets in a loop. The loop stops when
the required set is reached, and n is then equal to the loop counter. For example to find
the value of n for {2, 7, 8, 13} we can start with 0 = {1, 2, 3, 4}, followed by 1 = {1, 2, 3, 5},
2 = {1, 2, 3, 6}, . . . , 703 = {2, 7, 8, 13}. The same method can be used to find the set of
source block indices that correspond to a given n.

This method is very inefficient, because it needs to construct all the possible sets up to the
required set. We saw earlier that there are

(K
d

)
different unique combinations, i.e. sets.

In other words, the runtime complexity is equal to O(N) with N =
(K

d

)
. This grows at

a phenomenal rate, for example for the reasonably small values of K = 64 and d = 32

52

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

the loop needs to construct up to
(64

32
)

= 1832624140942590534 different sets, which is not
feasible.

A better approach is to calculate n directly. We introduce the approach with the example
set {2, 7, 8, 13} with K = 16, and then generalise the procedure.

In order to reach {2, 7, 8, 13} in the loop that enumerates all possible sets, we need to
have constructed all the sets that start with a 1, i.e. all {1,□,□,□}. For the positions
denoted by the □ symbols, we can choose any set of 3 elements out of 15 possible values
(ranging from 2 to 16, because the value 1 has been chosen already). This gives

(15
3
)

= 455
different sets that have a value of 1 for the first source block index. So we could start the
enumeration loop already from {2, 3, 4, 5} with n = 455 instead of from {1, 2, 3, 4} with
n = 0, thus saving some effort.

We can continue this reasoning for the second position. In order to reach the value 7 on
the second position, we need to have constructed all the sets that have the value 3, 4,
5 and 6 on the second position. For the set {2, 3,□,□} there are

(13
2
)

possibilities, for
{2, 4,□,□} there are

(12
2
)

possibilities, and then
(11

2
)

and
(10

2
)

for 5 and 6 respectively.
Summing these binomials together gives

(13
2
)

+
(12

2
)

+
(11

2
)

+
(10

2
)

= 244, which means that
n = 455+244 = 699 for {2, 7, 8, 9}. Continuing the procedure gives the expected n = 703.

Generalizing, if the set looks like {A, B, C, D} for d = 4 and general K then we first need
to count the number of sets where the first position has a value that is lower than A. This
gives the sum of binomials

(K−1
3
)

+
(K−2

3
)

+ · · · +
(K−A+1

3
)

, or generally

A−1∑
i=1

(
K − i

d − 1

)
(26)

possibilities before reaching a value A in the first position.

Then we need to count the number of sets that have A in the first position and that have
a value greater than A and lower than B in the second position. This gives another sum
of binomials, similar to the previous one. Continuing until D, we get

n =
A−1∑
i=1

(
K − i

d − 1

)
+

B−1∑
i=A+1

(
K − i

d − 2

)
+

C−1∑
i=B+1

(
K − i

d − 3

)
+

D−1∑
i=C+1

(
K − i

d − 4

)
(27)

The above formula is valid for d = 4. If we try to generalise d as well then we need to
create a sum of sums. Writing as sj the value of the set at position j, we get the following
expression

n =
d∑

j=1

 sj−1∑
i=sj−1+1

(
K − i

d − j

) (28)

In Java this double sum is implemented as a double loop and extensively tested for cor-
rectness. The binomials are calculated using the algorithm from section 5.3.2.

53

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

From enum number to source block indices The opposite direction, where n is
given and the set needs to be found, is done by evaluating formula (28) in reverse. Starting
from n we subtract consecutive binomials from n, continuing until the next subtraction
would give a number below 0. The amount of binomials that we can subtract before n

falls below 0 is then the first value of the source block indices. We continue subtracting
smaller binomials from the reduced n to find the second source block value and continue
until there are no more binomials to subtract. The following example clarifies this process.

We want to compute the source block indices corresponding to the enum number n = 1293
with K = 16 and d = 4. The first index can not be 1, because there are only

(15
3
)

= 455
different sets that start with 1, and n is higher than 455. We thus subtract 455 from n

and check if the first source block could be 2.

1293 −
(

15
3

)
= 838 1

The value for n is now 838. The first index can also not be 2, because 838 >
(14

3
)
, so we

subtract
(14

3
)

from the current value of n. Continuing this gives

838 −
(

14
3

)
= 474 2

474 −
(

13
3

)
= 188 3

188 −
(

12
3

)
< 0 4

So we see that the first source block index is 4. To find the next source block indices we
reduce the degree number, as the first source block has been determined. If we simply
keep increasing the counter (written on the right), then we can read off all the source block
indices by noting where the sum would drop below 0.

188 −
(

11
2

)
= 133 5

133 −
(

10
2

)
= 88 6

88 −
(

9
2

)
= 52 7

52 −
(

8
2

)
= 24 8

24 −
(

7
2

)
= 3 9

3 −
(

6
2

)
< 0 10

54

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

The second index is thus 10. The next indices are

3 −
(

5
1

)
< 0 11

3 −
(

4
0

)
= 2 12

2 −
(

3
0

)
= 1 13

1 −
(

2
0

)
= 0 14

0 −
(

1
0

)
< 0 15

We conclude that 1293 = {4, 10, 11, 15}. Using formula (28) to go in the other direction
confirms that this is correct.

5.3.4 Integral factors

Computing integral factors The integral factors fd help to create a mapping from
X different secret headers to H different header symbols, with H ≥ X. Not all X secret
headers are equally likely, as first a secret degree is chosen according to a degree distribu-
tion, and each degree has a different number of secret headers. The effect of the mapping
should be that all H header symbols are equally likely, despite the X secret headers not
being equally likely. This is achieved by mapping each element of X to a different amount
of header symbols, depending on the likelihood of the element of X.

We explain the algorithm to find such integral factors first with an example, and then try
to formulate a general approach. We use the example of mapping the secret headers for
KS = 16, with degree distribution from table 3, onto H = 79422 header symbols. Our
algorithm starts from finding the integral factor for the highest degree and then works its
way down to the lowest degree. We start with the highest, because that has the smallest
integral factors and thus has the largest impact from rounding.

Degree 8 has a chance of ρ(8) = 0.134 to occur. So out of the 79422 header symbols, there
should be 79422 × 0.134 ≈ 10642 header symbols mapped from degree 8. There are

(16
8
)

=
12870 different headers of degree 8, so the ideal integral factor is 10642/12870 ≈ 0.827.
However integral factors can only be integer and must be at least 1, so we round this ideal
value up to 1. The integral factor of degree 8 is f8 = 1.

To determine the integral factor of degree 4, we first note that already 1 × 12870 header
symbols have been reserved by degree 8. So 79422−12870 = 66552 header symbols remain
to be divided between degrees 1, 2 and 4 with relative weights ρ(1), ρ(2) and ρ(4). The
relative chance of degree 4 is ρ(4)

ρ(1)+ρ(2)+ρ(4) = 0.217, and there are
(16

4
)

= 1820 headers
of degree 4, so the ideal integral factor is 66552 × 0.217/1820 = 7.94. Rounding to the
nearest integer gives f4 = 8.

55

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

With f4 determined only 66552 − f4 × 1820 = 51992 header symbols remain to be
distributed over degrees 1 and 2. The ideal integral factor for degree 2 is 51992 ×

ρ(2)
ρ(1)+ρ(2)/

(16
2
)

= 292.04. The nearest integer gives f2 = 292.

Finally for f1 there are 51992 − f2 ×
(16

2
)

= 16952 header symbols remaining. The ideal
integral factor is 16952/16 = 1059.5. For this last integral factor we can not round up,
because then we would map to more symbols than there are available. This gives then
finally f1 = 1059.

Generally, the algorithm runs in iterations. If H header symbols are still available, then

fd =
[
H

ρ(d)∑
k ρ(k)/

(
KS

d

)]
. (29)

where [] means rounding to the nearest integer.

Then H is updated, with new H ′ = H − fd

(16
d

)
. The algorithm starts with the highest

d and continues until d = 1. For d = 1 the rounding is down rather than to the nearest
integer.

When all fd have been found there exists a mapping from X to H. However because we
rounded the ideal integral factors to the nearest integer, the relative probability of the
header symbols is still wrong. We can fix this by updating the original distribution ρ(d)
to a new distribution ρ∗(d) via formula (22),

ρ∗(d) =
(KS

d

)
fd

H
. (30)

In our example from before this gives for e.g. degree 8, ρ∗(8) = 1 × 12870/79422 = 0.162,
which is a bit higher than the optimal value 0.134.

A final problem to fix is that the sum of all the ρ∗ should give 1, so that ρ∗ is a proper
distribution. Due to rounding it can happen that the values of ρ∗ do not sum nicely to 1.
We fix this problem by simply adding the difference to the highest degree. An example
where this happens is for the integral factors of KS = 8 with bS = 12 into d∗ = 4.

Using integral factors An integral factor maps a single secret header onto a range of
possible target header symbols, e.g. a single header of degree 1 in KS = 16 is mapped
to f1 = 1059 different header symbols. The size of the range is exactly the value of the
integral factor. The actual header symbol that will be used to represent the secret header
is a random choice within this range.

In the covert sender we first determine the start and end of the range, for a given secret
header expressed as a decimal value. Then we select a random value between the start
and end, and use this value as our header symbol, i.e. this value combined with the secret
payload becomes the header of the normal fountain code packet.

56

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

In the covert receiver we first separate the payload from the normal header, and then we
separate the secret payload from the secret header. This secret header we then simply
divide by the integral factor and round down, which gives us the original secret header.

57

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

6 Conclusion

We have presented several ways to embed a covert channel in a fountain code, building on
the work of [6]. We have first evaluated the chance that the original approach of [6] can
successfully transmit a secret message over the covert channel. We then proposed several
improvements, to increase both the chance of a successful transmission and to increase the
size of the secret message that can be embedded in the covert channel. The best approach
that we found was a puzzle of secret fountain code packets embedded in headers of degree
4 and higher, based on the Half-Degree method. This approach achieves a success rate of
over 99.5% for a secret message size of 128 bit.

We have also made Java code available to test all this work and to verify the results. The
Java code has been written in an Object-Oriented approach to simplify understanding the
program and the algorithms.

An important result from all our simulations is that there is always a chance that the
secret message fails to transmit. We can make this chance small, but we can not make it
zero, because the secret fountain code could be very unlucky and accidentally not transmit
the packets required by the covert receiver. Unlike the normal receiver, the covert receiver
does not have the luxury to continue to wait until enough packets have been received. So
if absolute certainty that the covert transmission will succeed is required, then a different
approach than the ones presented in this work should be used.

When it comes to future work, in section 3 we made the decision to use the distribution
for K = 64 from Rossi et al. [12] instead of the better distribution from Hyytia et al.
[5], because the difference in required normal fountain code packets is small while the ρ

for the higher degrees is higher in Rossi et al. As we have seen, the higher degrees have
more bits available for the covert channel. A possible further avenue for investigation
is then how much the distribution of the normal fountain code could be modified to
favor higher degrees, without increasing the number of required packets too much. If
the normal fountain code is too sub-optimal then this might indicate the existence of a
covert channel. This analysis might be interesting for future work, to make a comparison
between the covert transmission success rate and secret message size on the one hand, and
the probability that an observer detects that the normal fountain code has been tampered
with because it behaves inefficiently.

In practice more advanced variants of fountain codes are used, such as Raptor codes which
we mentioned in section 3.4. Because Raptor codes also use uniform random sampling of
source blocks, the possibility exists to embed a covert channel in Raptor codes as well,
using methods similar to what we described in this paper. The overhead is smaller for
Raptor codes, meaning less packets will be transmitted for a given K, so we will need
a secret fountain code that requires less packets as well. The presented methods that
have a very high pS value, such as Keller’s method [6] with KS = 8 or Half-Degree with
KS = 16, will potentially still perform well in Raptor codes. On the other hand, Raptor

58

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

codes typically use a different degree distribution than LT codes and have an average
degree value of about 3 [10]. As the covert channel relies on the higher degrees to transmit
the secret fountain code packets, the presented methods might have a low success rate.
An option could be to use Raptor codes for the secret fountain code as well. This could
lead to higher success rates.

In addition, extentions to beyond K = 64 could be investigated as well. The proposed
Half-Degree method and puzzle of secret fountain code packets lends itself well to being
embedded into normal fountain codes with a different value for K, perhaps with a dense
degree distribution instead of a sparse one. A puzzle image similar to figure 24 should
be created and then implemented in Java, in order to evaluate the practical results for
different puzzle variations.

References

[1] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. “A Digital Fountain Approach
to Reliable Distribution of Bulk Data”. In: Proceedings of the ACM SIGCOMM ’98
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’98. Vancouver, British Columbia, Canada: Association
for Computing Machinery, 1998, pp. 56–67. isbn: 1581130031. doi: 10.1145/28523
7.285258. url: https://doi.org/10.1145/285237.285258.

[2] W. Fraczek, W. Mazurczyk, and K. Szczypiorski. “Multi-Level Steganography: Im-
proving Hidden Communication in Networks”. In: Computing Research Repository
- CORR 8 (2011), pp. 2551–2567. doi: 10.3217/jucs-018-14-1967.

[3] K. F. Hayajneh, S. Yousefi, and M. Valipour. “Left degree distribution shaping for
LT codes over the binary erasure channel”. In: 2014 27th Biennial Symposium on
Communications (QBSC). 2014, pp. 198–202. doi: 10.1109/QBSC.2014.6841213.

[4] E. Hyytia, T. Tirronen, and J. Virtamo. “Optimal Degree Distribution for LT Codes
with Small Message Length”. In: IEEE INFOCOM 2007 - 26th IEEE International
Conference on Computer Communications. 2007, pp. 2576–2580. doi: 10.1109/
INFCOM.2007.324.

[5] E. Hyytia, T. Tirronen, and J. Virtamo. “Optimizing the degree distribution of LT
codes with an importance sampling approach”. In: 6th International Workshop on
Rare Event Simulation, RESIM. 2006.

[6] J. Keller. “Multilevel Network Steganography in Fountain Codes”. In: EICC: Eu-
ropean Interdisciplinary Cybersecurity Conference (Nov. 2021), pp. 72–76. doi: 10.
1145/3487405.3487420.

[7] B. W. Lampson. “A Note on the Confinement Problem”. In: Commun. ACM 16.10
(Oct. 1973), pp. 613–615. issn: 0001-0782. doi: 10.1145/362375.362389.

[8] M. Luby. “LT Codes”. In: Proceedings of The 43rd Annual IEEE Symposium on
Foundations of Computer Science. 2002, pp. 271–282.

59

https://doi.org/10.1145/285237.285258
https://doi.org/10.1145/285237.285258
https://doi.org/10.1145/285237.285258
https://doi.org/10.3217/jucs-018-14-1967
https://doi.org/10.1109/QBSC.2014.6841213
https://doi.org/10.1109/INFCOM.2007.324
https://doi.org/10.1109/INFCOM.2007.324
https://doi.org/10.1145/3487405.3487420
https://doi.org/10.1145/3487405.3487420
https://doi.org/10.1145/362375.362389

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

[9] P. Luo, H. Fan, W. Shi, X. Qi, Y. Zhao, and X. Zhou. “An ECSO-based approach
for optimizing degree distribution of short-length LT codes”. In: EURASIP Journal
on Wireless Communications and Networking 76 (2019). doi: 10.1186/s13638-
019-1376-6.

[10] D. J. C. Mackay. “Fountain Codes”. In: IEE Communications 152 (2005), pp. 1062–
1068. doi: 10.1049/ip-com:20050237.

[11] W. Mazurczyk, S. Wendzel, S. Zander, A. Houmansadr, and K. Szczypiorski. Infor-
mation Hiding in Communication Networks: Fundamentals, Mechanisms, and Ap-
plications. Mar. 2016. isbn: 978-1-118-86169-1.

[12] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. F. Harris III, and M. Zorzi.
“SYNAPSE: A Network Reprogramming Protocol for Wireless Sensor Networks Us-
ing Fountain Codes”. In: 2008 5th Annual IEEE Communications Society Confer-
ence on Sensor, Mesh and Ad Hoc Communications and Networks. 2008, pp. 188–
196. doi: 10.1109/SAHCN.2008.32.

[13] A. Shokrollahi. “Raptor Codes”. In: IEEE Transactions on Information Theory 52.6
(2006), pp. 2551–2567. doi: 10.1109/TIT.2006.874390.

[14] J. H. Sørensen, P. Popovski, and J. Østergaard. “Design and Analysis of LT Codes
with Decreasing Ripple Size”. In: IEEE Transactions on Communications 60.11
(2012), pp. 3191–3197. doi: 10.1109/TCOMM.2012.091112.110864.

[15] S. Wendzel, S. Zander, B. Fechner, and C. Herdin. “Pattern-Based Survey and Cat-
egorization of Network Covert Channel Techniques”. In: ACM Comput. Surv. 47.3
(2015), 50:1–50:26. doi: 10.1145/2684195.

[16] C. Zaiontz. Kolmogorov-Smirnov Normality. https://www.real-statistics.com/
tests- normality- and- symmetry/statistical- tests- normality- symmetry/
kolmogorov-smirnov-test/, Last accessed on 2022-03-29.

[17] C. Zaiontz. Kolmogorov-Smirnov Table. https://www.real- statistics.com/
statistics-tables/kolmogorov-smirnov-table/, Last accessed on 2022-03-29.

60

https://doi.org/10.1186/s13638-019-1376-6
https://doi.org/10.1186/s13638-019-1376-6
https://doi.org/10.1049/ip-com:20050237
https://doi.org/10.1109/SAHCN.2008.32
https://doi.org/10.1109/TIT.2006.874390
https://doi.org/10.1109/TCOMM.2012.091112.110864
https://doi.org/10.1145/2684195
https://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/kolmogorov-smirnov-test/
https://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/kolmogorov-smirnov-test/
https://www.real-statistics.com/tests-normality-and-symmetry/statistical-tests-normality-symmetry/kolmogorov-smirnov-test/
https://www.real-statistics.com/statistics-tables/kolmogorov-smirnov-table/
https://www.real-statistics.com/statistics-tables/kolmogorov-smirnov-table/

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

A Appendix: integral factors for KS = 8 into degrees of
K = 64

When embedding a secret fountain code with KS = 8 into the headers of degrees d∗ =
{4, 8, 16, 32} of a normal fountain code with K = 64, integral factors need to be used in
order to keep the performance of the normal fountain code and to avoid detection of the
covert channel. We have already presented the integral factors for d∗ = 4 in the main text,
in table 12. The following tables show the (sometimes very large) integral factors for the
remaining degrees d∗. These are used in the Java code when running simulations.

For d∗ = 8 bS = 9 bS = 10 bS = 11 bS = 12
H = 8644854 H = 4322427 H = 2161213 H = 1080606

d
(8

d

)
ρ(d) fd ρ∗(d) fd ρ∗(d) fd ρ∗(d) fd ρ∗(d)

1 8 0.268 289603 0.268 144801 0.268 72401 0.268 36200 0.268
2 28 0.576 177836 0.576 88918 0.576 44460 0.576 22230 0.576
4 70 0.156 19266 0.156 9633 0.156 4816 0.156 2408 0.156

Table 16: Integral factors fd and modified ρ∗(d) for different payload sizes bS , for a secret
fountain code with KS = 8 into degree d∗ = 8 of a normal fountain code with K = 64.

For d∗ = 16 bS = 9 bS = 10
H = 954154173983 H = 477077086991

d
(8

d

)
ρ(d) fd ρ∗(d) fd ρ∗(d)

1 8 0.268 31964164825 0.268 15982082413 0.268
2 28 0.576 19628314436 0.576 9814157219 0.576
4 70 0.156 2126400731 0.156 1063200365 0.156

bS = 11 bS = 12
H = 238538543495 H = 119269271747

d
(8

d

)
ρ(d) fd ρ∗(d) fd ρ∗(d)

1 8 0.268 7991041207 0.268 3995520604 0.268
2 28 0.576 4907078608 0.576 2453539305 0.576
4 70 0.156 531600183 0.156 265800091 0.156

Table 17: Integral factors fd and modified ρ∗(d) for different payload sizes bS , for a secret
fountain code with KS = 8 into degree d∗ = 16 of a normal fountain code with K = 64.

61

Fountain Codes and Covert Channels
FernUni Hagen Ewelina Marciniszyn

For d∗ = 32 bS = 9 bS = 10
H = 3579344025278497 H = 1789672012639248

d
(8

d

)
ρ(d) fd ρ∗(d) fd ρ∗(d)

1 8 0.268 119908024846829 0.268 59954012423413 0.268
2 28 0.576 73632219948585 0.576 36816109974293 0.576
4 70 0.156 7976823827764 0.156 3988411913882 0.156

bS = 11 bS = 12
H = 894836006319624 H = 447418003159812

d
(8

d

)
ρ(d) fd ρ∗(d) fd ρ∗(d)

1 8 0.268 29977006211708 0.268 14988503105855 0.268
2 28 0.576 18408054987146 0.576 9204027493574 0.576
4 70 0.156 1994205956941 0.156 997102978470 0.156

Table 18: Integral factors fd and modified ρ∗(d) for different payload sizes bS , for a secret
fountain code with KS = 8 into degree d∗ = 32 of a normal fountain code with K = 64.

B Appendix: USB stick content

The Java code and this paper have been submitted on a USB stick. The folder structure
of the USB stick is as follows:

• /bin/fountaincode: The compiled java code as .class files.

• /paper: The pdf version of this paper as well as the Selbständigkeitserklärung.

• /src/fountaincode: The .java source files.

• readme.txt: Instructions on how to run the java code.

62

	Introduction
	Covert Channel
	Fountain Code
	Header formats
	BV
	ENUM
	ENUMALL

	Decoding algorithm
	Gaussian Elimination
	LT Decoder

	Degree distributions
	Ideal soliton distribution
	Robust soliton distribution
	Sparse degree distributions

	Variations of Luby fountain codes

	Covert Channel in Fountain Code
	Covert Channel in one header degree
	Approach
	Additional problems
	Detectability and efficiency
	Integral factors
	Packet loss in the channel

	Covert Channel in multiple degrees
	Using degrees 4, 8, 16 and 32
	Using only degrees 8, 16 and 32
	Degrees 4, 8, 16 and 32, with KS=8

	Half-Degree covert channel
	Basic approach
	Improvement by adding more secret packets

	Comparison

	Implementation
	Instructions
	Architecture
	Algorithms
	Distribution algorithm
	Binomial coefficients algorithm
	ENUM algorithm
	Integral factors

	Conclusion
	Appendix: integral factors for KS=8 into degrees of K=64
	Appendix: USB stick content

