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Abstract 

 
Modern internet and telephone switches consist of 

numerous VLSI-circuits operating at high frequencies 
to handle high bandwidths. It is beyond question that 
such systems must contain mechanisms making them 
reliable through fault-detection or fault-tolerance. For 
monetary reasons, one or multiple Field Programma-
ble Gate Arrays (FPGAs) are used in modern Applica-
tion Specific Integrated Circuit (ASIC) development 
systems before production. Hardware manufacturers 
have a strong focus on quick fault-injection to verify 
and validate the correct function of such a (fault-
tolerant) system. However, current FPGA-based fault 
injection schemes do not consider delay faults. In this 
paper we present an extension to traditional FPGA 
fault injection schemes without any additional hard-
ware for fixed and small hardware overhead for dy-
namic phase shifting. By using digital clock managers 
(DCMs), we are able to inject delay faults very fast 
through phase-shift variation of the clock without re-
configuring the FPGA.  
 
 
1. Introduction 
As the minimum feature size of integrated circuits 
shrinks, a phenomenon which was only known from 
aerospace applications has to be considered: The in-
creasing probability that heavy-ion or high-energetic 
α-particles will hit one or more transistors or capaci-
tors, causing mainly transient errors and seldom per-
manent failures. Silicon pollution will lead to more 
timing-related faulty behavior (e.g. because of electro-
migration, CMOS switching times). The decreasing 
electrical potential between ‘0’ and ‘1’ and the increas-
ing clock frequency lead to more signal-related delay 
faults. Furthermore, fluctuations on power nets will 
cause a temporary performance loss of the concerned 
circuits. For these reasons, designers of future CMOS-

based computer systems must take delay faults even 
more into account. Thus, there is a great need for de-
lay-fault injection to test these designs. This work 
shows how to extend the limitation of FPGA-based 
fault injection on stuck-at and SEU-faults to delay 
faults with minimal hardware overhead.  
The paper is organized as follows: In Section 2 related 
work is described; Section 3 presents the fault-model. 
Section 4 describes the fault-injection in detail. Section 
5 concludes the paper. 
 
 
2. Related work 
Dynamic fault injection using dedicated additional 
hardware which allowed the injection of different 
faults without reconfiguring the FPGA, was proposed 
in [5][6][7]. A major limitation of this technique is that 
hardware has to be added to the design. The additional 
hardware increases with the number of faults to inject, 
which limits the size of the circuits that can be simu-
lated. In [8][10][13] faults are injected only in Look-
Up-Tables (LUTs), which reduces the fault-type spec-
trum and thus the quality of fault injection, because 
most FPGA-designs do not only use LUTs. Recently, 
other hardware fault injection approaches were pro-
posed in [9] using the JBITS [10] interface for partial 
FPGA reconfiguration. Additional to faulty LUTs, 
JBITS can provoke erroneous register values [9] but 
requires the Java SDK 1.2.2 [11] and the XHWIF [12] 
hardware interface. 

 
 

3. The Fault Model 
The Stuck-at Fault Model is the most common and 
general fault model for permanent logical faults. It 
assumes that a circuit fault manifests itself through the 
effect that one or more circuit nodes are stuck at 0 or 1 
(SA01). In Table 1 we distinguish Line Stuck-At 
(LSA01) and Transistor Stuck-At (TSA01) faults. Sin-



gle Event Upsets (SEUs) are transient errors which are 
caused by high-energetic α-particles hitting the die. 
SEUs are modeled by bit-flips of the corresponding 
latches or memory cells. Although simple, it matches 
closely the real faulty behavior [5]. Single Event Dis-
turbances (SEDs) cause temporal disturbance of digital 
information. Effects e.g. caused by electro-migration 
or higher resistance in CMOS wiring are hard to 
model. In some cases, the circuit works correctly but 
slower. In others, the faulty behavior manifests only at 
certain frequencies or input vectors. Some defects lead 
to a delay of a 0-1, 1-0 transition and result in the ef-
fect that the circuit is not able to keep its timing speci-
fication. The model for these dynamic faults is called 
delay fault model. There are two main delay fault 
models: The gate-delay model [1][2][3] where a delay 
fault manifests through delayed gate transitions and the 
path-delay model [4][5] where a fault occurs if the 
propagation delay along a path in the circuit is greater 
than the specified limit. In this paper we focused on a 
mixture of the transient1 bit-flip model, which results 
in the modification of the content of a storage cell, the 
stuck-at fault model, supporting Line Stuck-At (LSA) 
and Transistor Stuck-At (TSA) faults and the path-
delay fault model. A (path-) delay fault occurs iff 

2 1| ( ) ( ) |t V t V s− > , where t(V1) is the time a circuit has 
stabilized under test vector V1 which was applied at 
time t-i. t(V2) represents the time the test vector V2 is 
applied after the circuit has stabilized under V1. A de-
lay fault is detected if the final value of the transition, 
propagating from circuit input to circuit output, can not 
be measured within the operational clock interval s, 
meaning that propagation (transition) delays along a 
path fall outside the specified timing limit. 
 
 
4. Description of Fault Injection 
Table 1 shows a list of reconfigurable FPGA compo-
nents. A hook means that the specified fault can be 
injected in the corresponding component. Configurable 
Logic Blocks (CLBs) are the building blocks for im-
plementing custom logic in every FPGA. Each CLB 
has two slices. Each slice has two 4 input LUTs, 2 flip-
flops (which can also be configured as latches) and 
some inaccessible carry logic. We did not mention the 
DCM for producing delay faults, because it is the only 
component which is able to induce this kind of errors2. 
The cases that a LUT is configured as logic, (S)RAM 
or ROM are handled separately as LUT/ Distributed 

                                                           
1 We do not distinguish transient and intermittend faults. 
2 Some delay-faults can be provoked by injecting SEUs in global 
clock lines. 

RAM/ROM. LSA faults in switch boxes are assumed 
to be collapsed to faults at lines of logic elements.  

Table 1: Bitfile-accessible FPGA-components  

 Injected Fault Type 
Component  Transient Permanent 

 SEU SED TSA01 LSA01 
CLB      
 LUT     
 Distr. RAM     
 ROM     
BlockRAM     
Switch Box      

 
Before fault-injection can be done, it is necessary that 
a healthy (assumed fault-free) FPGA configuration 
(bitfile) is uploaded. Therefore, the hardware descrip-
tion is synthesized and mapped to a specific FPGA 
device. The principle of FPGA fault-injection is shown 
in Figure 1: 

 

Figure 1: Principle of FPGA fault-injection 

– First, we specify the number of faults (1-n), their 
duration (1-∞), thus the fault-type (transient or 
permanent) and the duration of the experiment (1-
n). The specification can be done automatically or 
manually. The list of faults is stored in the Data-
base of Injected Faults (DIF). For automatic fault-
generation either pre-collected mission data or a 
functional description of the error/time behavior 
can be used.  

– Second, we do a logical linking between the gen-
erated error list and the bitfile, containing a 



healthy FPGA configuration. Then we stop the 
FPGA-board clock and upload the changed 
(faulty) bitfile to the FPGA. After the transfer, we 
start the clock again. Although it is possible to use 
the FPGA-programming modes for clock control, 
this could cause problems, because other on-board 
components could continue their work (e.g. be-
cause they use another clock), relying on results 
from the FPGA. We generally suggest stopping 
the board clock. For fast injection of transient or 
permanent faults, only the parts containing faulty 
information can be uploaded (partial reconfigura-
tion). 

– Third, we specify the maximum time (1-n clock 
cycles) between fault at time t, F(t) and result R(u) 
(a faulty behavior) at time u. This is done by the 
module fault-recognition. The module knows the 
contents of the DIF. If an injected fault is detected 
or corrected by the fault-tolerance mechanisms in 
hardware (supposing that the FPGA signals the er-
ror externally e.g. with different pin-value combi-
nations) within the specified time, the information 
|u-t| is stored in the DIF, else ‘∞’ is stored. The 
output data of each fault injection experiment is 
analyzed and faults are categorized according to 
their effects. Fault collapsing is performed when 
different faults result in identical faulty configura-
tions.  

Modern Xilinx FPGA families like Spartan-3 [16] and 
Virtex II pro [17] have multiple on-chip digital clock 
managers (DCMs). DCMs provide clock management 
features such as clock de-skew, frequency synthesis 
and phase shifting. The basic idea of this work is to 
misuse the phase shift to produce non-timing conform 
circuit behavior. Furthermore, we combine this idea 
with conventional FPGA fault injection based on par-
tial or total reconfiguration which was described 
above. A DCM can have two kinds of phase shift: 
fixed and variable mode. The minimal amount a signal 
can be phase shifted is dependent on voltage, current 
and technology. For Spartan-3 DCMs this is ~30-50ps 
[16]. It is possible to have different DCM-
configurations by modifying the bitfile, since the DCM 
is part of the bitfile. The achieved speed may not al-
ways be sufficient. In fact, the DCM can be reconfig-
ured very fast on-line without doing a total or partial 
reconfiguration. This is called dynamic phase shift 
adjustment [14]. Assuming a 100MHz clock, we have 
600µs for a minimal partial reconfiguration [15] with 
16 CLBs and 1.03µs of a DCM reconfiguration (103 
clock cycles for a Spartan-3[16]). Figure 2 shows the 
timing diagram for a dynamic phase shift reconfigura-
tion. When the signal PSDONE goes active for one 
cycle, the DCM has completed the adjustment. It may 

require maximal 100 CLKIN cycles plus three PSCLK 
cycles to effect a change [16]. Injection of timing-
related errors will thus take maximal 103 clock cycles 
on Spartan-3 FPGAs. 

 
Figure 2: Dynamic phase shift reconfiguration  

 
For dynamic phase reconfiguration, extra hardware for 
the error-dependent variation of the clock shift is nec-
essary. This can be either an external part on the de-
velopment board or internal FPGA hardware. To inject 
a delay fault, the outputs of the component which is in 
charge of producing such faults must be connected to 
the appropriate ports of the DCM (PSINCDEC, etc.).  
According to the delay-fault model, all supported delay 
faults have in common, that the response of the circuit 
under test does not appear within the specified timing 
frame at the circuit outputs. Thus, injected delay-faults 
do not cause a functional error but an incorrect timing 
behavior. The first effect we can produce with DCMs 
is a (positive or negative) clock jitter of all clocked 
components. A jitter occurs due to system noise and 
signal crosstalk, causing phase uncertainty. The result 
is ambiguity in the rising and falling edge of a signal. 
This can be done by a simple phase shift of the DCM, 
requiring no additional hardware if we use a fixed 
phase shift. To produce a variable phase shift, we ei-
ther need an external component or FPGA resources to 
produce deterministic or random phase shifts. The sec-
ond effect we can produce is an input dependent delay 
fault. This fault only occurs on a set of certain input 
vectors. To do this, we need one comparator, which is 
able to compare input vectors with pre-defined values 
which are stored in a memory. Figure 3 (left) shows 
the configurations described above. The third effect we 
can produce is a modification of the output data timing 
by a second DCM (Figure 3, right). A comparator can 



be used to extend this method to be bit-vector depend-
ent.  
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Figure 3: Possible configurations for fault-injection 

 
5. Conclusion 
In this paper we presented a new way to inject delay- 
faults in an FPGA-based design by using standard 
FPGA-components. Thus, the limitation of typical 
FPGA-based fault injection on certain fault-types 
(Stuck-at, SEUs) is broken.  We are dependent on spe-
cific FPGA types (as every FPGA-based fault injection 
is) and the hardware can not be destroyed by the injec-
tor. Since DCMs exist only for dedicated FPGA fami-
lies [16][17] we are even more restricted on hardware. 
With the help of the Database of Injected Faults we 
are able to inject multiple transient and permanent 
faults. They can be injected into a non-configured area 
of the FPGA and have no effect. If we compare the 
time for a DCM configuration with the time for a 
minimal partial reconfiguration (16 CLBs), we see that 
the reconfiguration takes approximately 0.6ms, grow-
ing exponentially with the number of CLBs [15]. If we 
assume a 100MHz clock, we have 600µs for a minimal 
partial reconfiguration and 1.03µs of a DCM recon-
figuration [16]. In [9] the injection times through re-
configuration for a fault with a development board 
were much higher (3.5s) than expected (100ms). For a 
DCM phase shift reconfiguration these times are of no 
concern, because we do not have to generate and up-
load a new bitfile. 
 
References 

[1] Y. Levendel, P.R. Menon, Transition Faults in Com-
binatorial Logic Circuits. Input Transition Test Gen-
eration and Fault Simulation. In Proc. of the 16th Fault 
Tolerant Computing Symposium, pp. 278-283, June 
1985. 

[2] J. Rajski, H. Cox, A Method of Test Generation and 
Fault Diagnosis in Very Large Circuits. In Proc. of the 
International Test Conference, pp. 932-943, Sept. 
1987. 

[3] J.A. Waicukauski, E. Lindbloom, B. Rosen, V. Iyen-
gar, Transient Fault Simulation by Parallel Pattern 
Single Fault Propagation. In Proc. of the International 
Test Conference, pp. 542-549, Sept. 1986. 

[4] G.L. Smith, A Model for Delay Faults Based on Paths. 
In Proc. of the International Test Conference, pp. 342-
349, Sept. 1985. 

[5] R.W. Wieler, Z. Zhang, R.D. McLeod, Simulating 
static and dynamic faults in BIST structures with a 
FPGA based emulator. In Proc. of IEEE International 
Workshop of Field-Programmable Logic and Applica-
tion, pp. 240-250, 1994. 

[6] S.A. Hwang, J.H. Hong, C.W. Wu, Sequential Circuit 
Fault Simulation Using Logic Emulation. IEEE Trans. 
on Computer-Aided Design of Integrated Circuits and 
Systems, 17(8), pp. 724-736, August 1998. 

[7] P.Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza 
Reorda, M. Violante, An FPGA-based approach for 
speeding-up Fault Injection campaigns on safety-
critical circuits. IEEE Journal of Electronic Testing 
Theory and Applications, 18(3), pp. 261-271, June 
2002. 

[8] M. Abramovici, P. Menon, Fault Simulation on Recon-
figurable Hardware. IEEE Symposium on FPGAs for 
Custom Computing Machines, pp. 182-190, 1997. 

[9] L. Antoni, R. Leveugle, B. Fehér, Using Run-Time Re-
configuration for Fault Injection in Hardware Proto-
types. IEEE International Symposium on Defect and 
Fault Tolerance in VLSI Systems, pp. 245-253, 2002. 

[10] S. Guccione, D. Levi, P. Sundararajan, JBITS: A Java-
based Interface for Reconfigurable Computing. In 
Proc. of the 2nd Military and Aerospace Applications 
of Programmable Devices and Technologies Conf., 
Sept. 1999. 

[11] E. Lechner, S. Guccione, The Java Environment for 
Reconfigurable Computing. In Proc. of the 7th Interna-
tional Workshop on Field-Programmable Logic and 
Applications, pp. 284-293, Sept. 1997. 

[12] P. Sundararajan, S. Guccione, D. Levi, XHWIF: A 
portable hardware interface for reconfigurable com-
puting. In Proc. of Reconfigurable Technology: 
FPGAs and Reconfigurable Processors for Computing 
and Communications, SPIE 4525-20, pp. 155-160, 
June 2001. 

[13] A. Parreira, J.P. Teixeira, M.B. Santos, Built-in self-
test preparation in FPGAs, In Proc. of the 7th IEEE 
Workshop on Design and Diagnostics of Electronic 
Circuits and Systems, pp. 83-90, April 2004. 

[14] Xilinx Inc., Active Phase Alignment, Application Note: 
Virtex II Series, Xilinx XAPP268, Dec. 2002.  

[15] U. Malik, K. So, O. Diessel, Resource-Aware Run-time 
Elaboration of Behavioral FPGA Specifications, IEEE 
International Conference on Field-Programmable 
Technology, pp. 68-75, Dec. 2002. 

[16] Xilinx Inc., Spartan-3 FPGA Family: Complete Data 
Sheet, Xilinx DS099, March 2004. 



[17] Xilinx Inc., Xilinx Virtex-II Pro and Virtex II Pro X 
Platform FPGAs: Complete Data Sheet, Xilinx 
DS083, Nov. 2004. 


