
Dynamic delay-fault injection for reconfigurable hardware

Bernhard Fechner
Lehrgebiet VLSI und Parallelität

FernUniversität Hagen
58084 Hagen

Bernhard.Fechner@fernuni-hagen.de

Abstract

Modern internet and telephone switches consist of

numerous VLSI-circuits operating at high frequencies
to handle high bandwidths. It is beyond question that
such systems must contain mechanisms making them
reliable through fault-detection or fault-tolerance. For
monetary reasons, one or multiple Field Programma-
ble Gate Arrays (FPGAs) are used in modern Applica-
tion Specific Integrated Circuit (ASIC) development
systems before production. Hardware manufacturers
have a strong focus on quick fault-injection to verify
and validate the correct function of such a (fault-
tolerant) system. However, current FPGA-based fault
injection schemes do not consider delay faults. In this
paper we present an extension to traditional FPGA
fault injection schemes without any additional hard-
ware for fixed and small hardware overhead for dy-
namic phase shifting. By using digital clock managers
(DCMs), we are able to inject delay faults very fast
through phase-shift variation of the clock without re-
configuring the FPGA.

1. Introduction
As the minimum feature size of integrated circuits
shrinks, a phenomenon which was only known from
aerospace applications has to be considered: The in-
creasing probability that heavy-ion or high-energetic
α-particles will hit one or more transistors or capaci-
tors, causing mainly transient errors and seldom per-
manent failures. Silicon pollution will lead to more
timing-related faulty behavior (e.g. because of electro-
migration, CMOS switching times). The decreasing
electrical potential between ‘0’ and ‘1’ and the increas-
ing clock frequency lead to more signal-related delay
faults. Furthermore, fluctuations on power nets will
cause a temporary performance loss of the concerned
circuits. For these reasons, designers of future CMOS-

based computer systems must take delay faults even
more into account. Thus, there is a great need for de-
lay-fault injection to test these designs. This work
shows how to extend the limitation of FPGA-based
fault injection on stuck-at and SEU-faults to delay
faults with minimal hardware overhead.
The paper is organized as follows: In Section 2 related
work is described; Section 3 presents the fault-model.
Section 4 describes the fault-injection in detail. Section
5 concludes the paper.

2. Related work
Dynamic fault injection using dedicated additional
hardware which allowed the injection of different
faults without reconfiguring the FPGA, was proposed
in [5][6][7]. A major limitation of this technique is that
hardware has to be added to the design. The additional
hardware increases with the number of faults to inject,
which limits the size of the circuits that can be simu-
lated. In [8][10][13] faults are injected only in Look-
Up-Tables (LUTs), which reduces the fault-type spec-
trum and thus the quality of fault injection, because
most FPGA-designs do not only use LUTs. Recently,
other hardware fault injection approaches were pro-
posed in [9] using the JBITS [10] interface for partial
FPGA reconfiguration. Additional to faulty LUTs,
JBITS can provoke erroneous register values [9] but
requires the Java SDK 1.2.2 [11] and the XHWIF [12]
hardware interface.

3. The Fault Model
The Stuck-at Fault Model is the most common and
general fault model for permanent logical faults. It
assumes that a circuit fault manifests itself through the
effect that one or more circuit nodes are stuck at 0 or 1
(SA01). In Table 1 we distinguish Line Stuck-At
(LSA01) and Transistor Stuck-At (TSA01) faults. Sin-

gle Event Upsets (SEUs) are transient errors which are
caused by high-energetic α-particles hitting the die.
SEUs are modeled by bit-flips of the corresponding
latches or memory cells. Although simple, it matches
closely the real faulty behavior [5]. Single Event Dis-
turbances (SEDs) cause temporal disturbance of digital
information. Effects e.g. caused by electro-migration
or higher resistance in CMOS wiring are hard to
model. In some cases, the circuit works correctly but
slower. In others, the faulty behavior manifests only at
certain frequencies or input vectors. Some defects lead
to a delay of a 0-1, 1-0 transition and result in the ef-
fect that the circuit is not able to keep its timing speci-
fication. The model for these dynamic faults is called
delay fault model. There are two main delay fault
models: The gate-delay model [1][2][3] where a delay
fault manifests through delayed gate transitions and the
path-delay model [4][5] where a fault occurs if the
propagation delay along a path in the circuit is greater
than the specified limit. In this paper we focused on a
mixture of the transient1 bit-flip model, which results
in the modification of the content of a storage cell, the
stuck-at fault model, supporting Line Stuck-At (LSA)
and Transistor Stuck-At (TSA) faults and the path-
delay fault model. A (path-) delay fault occurs iff

2 1| () () |t V t V s− > , where t(V1) is the time a circuit has
stabilized under test vector V1 which was applied at
time t-i. t(V2) represents the time the test vector V2 is
applied after the circuit has stabilized under V1. A de-
lay fault is detected if the final value of the transition,
propagating from circuit input to circuit output, can not
be measured within the operational clock interval s,
meaning that propagation (transition) delays along a
path fall outside the specified timing limit.

4. Description of Fault Injection
Table 1 shows a list of reconfigurable FPGA compo-
nents. A hook means that the specified fault can be
injected in the corresponding component. Configurable
Logic Blocks (CLBs) are the building blocks for im-
plementing custom logic in every FPGA. Each CLB
has two slices. Each slice has two 4 input LUTs, 2 flip-
flops (which can also be configured as latches) and
some inaccessible carry logic. We did not mention the
DCM for producing delay faults, because it is the only
component which is able to induce this kind of errors2.
The cases that a LUT is configured as logic, (S)RAM
or ROM are handled separately as LUT/ Distributed

1 We do not distinguish transient and intermittend faults.
2 Some delay-faults can be provoked by injecting SEUs in global
clock lines.

RAM/ROM. LSA faults in switch boxes are assumed
to be collapsed to faults at lines of logic elements.

Table 1: Bitfile-accessible FPGA-components

 Injected Fault Type
Component Transient Permanent

 SEU SED TSA01 LSA01
CLB
 LUT
 Distr. RAM
 ROM
BlockRAM
Switch Box

Before fault-injection can be done, it is necessary that
a healthy (assumed fault-free) FPGA configuration
(bitfile) is uploaded. Therefore, the hardware descrip-
tion is synthesized and mapped to a specific FPGA
device. The principle of FPGA fault-injection is shown
in Figure 1:

Figure 1: Principle of FPGA fault-injection

– First, we specify the number of faults (1-n), their
duration (1-∞), thus the fault-type (transient or
permanent) and the duration of the experiment (1-
n). The specification can be done automatically or
manually. The list of faults is stored in the Data-
base of Injected Faults (DIF). For automatic fault-
generation either pre-collected mission data or a
functional description of the error/time behavior
can be used.

– Second, we do a logical linking between the gen-
erated error list and the bitfile, containing a

healthy FPGA configuration. Then we stop the
FPGA-board clock and upload the changed
(faulty) bitfile to the FPGA. After the transfer, we
start the clock again. Although it is possible to use
the FPGA-programming modes for clock control,
this could cause problems, because other on-board
components could continue their work (e.g. be-
cause they use another clock), relying on results
from the FPGA. We generally suggest stopping
the board clock. For fast injection of transient or
permanent faults, only the parts containing faulty
information can be uploaded (partial reconfigura-
tion).

– Third, we specify the maximum time (1-n clock
cycles) between fault at time t, F(t) and result R(u)
(a faulty behavior) at time u. This is done by the
module fault-recognition. The module knows the
contents of the DIF. If an injected fault is detected
or corrected by the fault-tolerance mechanisms in
hardware (supposing that the FPGA signals the er-
ror externally e.g. with different pin-value combi-
nations) within the specified time, the information
|u-t| is stored in the DIF, else ‘∞’ is stored. The
output data of each fault injection experiment is
analyzed and faults are categorized according to
their effects. Fault collapsing is performed when
different faults result in identical faulty configura-
tions.

Modern Xilinx FPGA families like Spartan-3 [16] and
Virtex II pro [17] have multiple on-chip digital clock
managers (DCMs). DCMs provide clock management
features such as clock de-skew, frequency synthesis
and phase shifting. The basic idea of this work is to
misuse the phase shift to produce non-timing conform
circuit behavior. Furthermore, we combine this idea
with conventional FPGA fault injection based on par-
tial or total reconfiguration which was described
above. A DCM can have two kinds of phase shift:
fixed and variable mode. The minimal amount a signal
can be phase shifted is dependent on voltage, current
and technology. For Spartan-3 DCMs this is ~30-50ps
[16]. It is possible to have different DCM-
configurations by modifying the bitfile, since the DCM
is part of the bitfile. The achieved speed may not al-
ways be sufficient. In fact, the DCM can be reconfig-
ured very fast on-line without doing a total or partial
reconfiguration. This is called dynamic phase shift
adjustment [14]. Assuming a 100MHz clock, we have
600µs for a minimal partial reconfiguration [15] with
16 CLBs and 1.03µs of a DCM reconfiguration (103
clock cycles for a Spartan-3[16]). Figure 2 shows the
timing diagram for a dynamic phase shift reconfigura-
tion. When the signal PSDONE goes active for one
cycle, the DCM has completed the adjustment. It may

require maximal 100 CLKIN cycles plus three PSCLK
cycles to effect a change [16]. Injection of timing-
related errors will thus take maximal 103 clock cycles
on Spartan-3 FPGAs.

Figure 2: Dynamic phase shift reconfiguration

For dynamic phase reconfiguration, extra hardware for
the error-dependent variation of the clock shift is nec-
essary. This can be either an external part on the de-
velopment board or internal FPGA hardware. To inject
a delay fault, the outputs of the component which is in
charge of producing such faults must be connected to
the appropriate ports of the DCM (PSINCDEC, etc.).
According to the delay-fault model, all supported delay
faults have in common, that the response of the circuit
under test does not appear within the specified timing
frame at the circuit outputs. Thus, injected delay-faults
do not cause a functional error but an incorrect timing
behavior. The first effect we can produce with DCMs
is a (positive or negative) clock jitter of all clocked
components. A jitter occurs due to system noise and
signal crosstalk, causing phase uncertainty. The result
is ambiguity in the rising and falling edge of a signal.
This can be done by a simple phase shift of the DCM,
requiring no additional hardware if we use a fixed
phase shift. To produce a variable phase shift, we ei-
ther need an external component or FPGA resources to
produce deterministic or random phase shifts. The sec-
ond effect we can produce is an input dependent delay
fault. This fault only occurs on a set of certain input
vectors. To do this, we need one comparator, which is
able to compare input vectors with pre-defined values
which are stored in a memory. Figure 3 (left) shows
the configurations described above. The third effect we
can produce is a modification of the output data timing
by a second DCM (Figure 3, right). A comparator can

be used to extend this method to be bit-vector depend-
ent.

DCM1

Circuit under
Test

Phase Shifted Clock

CLKIN

DCM1

Circuit under
Test

Phase Shifted Clock

DCM2

CLKIN

Phase Shifted DataInput
(Test vectors)

Test response

output

Input
(Test vectors)

Test response

output

CMP

Figure 3: Possible configurations for fault-injection

5. Conclusion
In this paper we presented a new way to inject delay-
faults in an FPGA-based design by using standard
FPGA-components. Thus, the limitation of typical
FPGA-based fault injection on certain fault-types
(Stuck-at, SEUs) is broken. We are dependent on spe-
cific FPGA types (as every FPGA-based fault injection
is) and the hardware can not be destroyed by the injec-
tor. Since DCMs exist only for dedicated FPGA fami-
lies [16][17] we are even more restricted on hardware.
With the help of the Database of Injected Faults we
are able to inject multiple transient and permanent
faults. They can be injected into a non-configured area
of the FPGA and have no effect. If we compare the
time for a DCM configuration with the time for a
minimal partial reconfiguration (16 CLBs), we see that
the reconfiguration takes approximately 0.6ms, grow-
ing exponentially with the number of CLBs [15]. If we
assume a 100MHz clock, we have 600µs for a minimal
partial reconfiguration and 1.03µs of a DCM recon-
figuration [16]. In [9] the injection times through re-
configuration for a fault with a development board
were much higher (3.5s) than expected (100ms). For a
DCM phase shift reconfiguration these times are of no
concern, because we do not have to generate and up-
load a new bitfile.

References

[1] Y. Levendel, P.R. Menon, Transition Faults in Com-
binatorial Logic Circuits. Input Transition Test Gen-
eration and Fault Simulation. In Proc. of the 16th Fault
Tolerant Computing Symposium, pp. 278-283, June
1985.

[2] J. Rajski, H. Cox, A Method of Test Generation and
Fault Diagnosis in Very Large Circuits. In Proc. of the
International Test Conference, pp. 932-943, Sept.
1987.

[3] J.A. Waicukauski, E. Lindbloom, B. Rosen, V. Iyen-
gar, Transient Fault Simulation by Parallel Pattern
Single Fault Propagation. In Proc. of the International
Test Conference, pp. 542-549, Sept. 1986.

[4] G.L. Smith, A Model for Delay Faults Based on Paths.
In Proc. of the International Test Conference, pp. 342-
349, Sept. 1985.

[5] R.W. Wieler, Z. Zhang, R.D. McLeod, Simulating
static and dynamic faults in BIST structures with a
FPGA based emulator. In Proc. of IEEE International
Workshop of Field-Programmable Logic and Applica-
tion, pp. 240-250, 1994.

[6] S.A. Hwang, J.H. Hong, C.W. Wu, Sequential Circuit
Fault Simulation Using Logic Emulation. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, 17(8), pp. 724-736, August 1998.

[7] P.Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza
Reorda, M. Violante, An FPGA-based approach for
speeding-up Fault Injection campaigns on safety-
critical circuits. IEEE Journal of Electronic Testing
Theory and Applications, 18(3), pp. 261-271, June
2002.

[8] M. Abramovici, P. Menon, Fault Simulation on Recon-
figurable Hardware. IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 182-190, 1997.

[9] L. Antoni, R. Leveugle, B. Fehér, Using Run-Time Re-
configuration for Fault Injection in Hardware Proto-
types. IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, pp. 245-253, 2002.

[10] S. Guccione, D. Levi, P. Sundararajan, JBITS: A Java-
based Interface for Reconfigurable Computing. In
Proc. of the 2nd Military and Aerospace Applications
of Programmable Devices and Technologies Conf.,
Sept. 1999.

[11] E. Lechner, S. Guccione, The Java Environment for
Reconfigurable Computing. In Proc. of the 7th Interna-
tional Workshop on Field-Programmable Logic and
Applications, pp. 284-293, Sept. 1997.

[12] P. Sundararajan, S. Guccione, D. Levi, XHWIF: A
portable hardware interface for reconfigurable com-
puting. In Proc. of Reconfigurable Technology:
FPGAs and Reconfigurable Processors for Computing
and Communications, SPIE 4525-20, pp. 155-160,
June 2001.

[13] A. Parreira, J.P. Teixeira, M.B. Santos, Built-in self-
test preparation in FPGAs, In Proc. of the 7th IEEE
Workshop on Design and Diagnostics of Electronic
Circuits and Systems, pp. 83-90, April 2004.

[14] Xilinx Inc., Active Phase Alignment, Application Note:
Virtex II Series, Xilinx XAPP268, Dec. 2002.

[15] U. Malik, K. So, O. Diessel, Resource-Aware Run-time
Elaboration of Behavioral FPGA Specifications, IEEE
International Conference on Field-Programmable
Technology, pp. 68-75, Dec. 2002.

[16] Xilinx Inc., Spartan-3 FPGA Family: Complete Data
Sheet, Xilinx DS099, March 2004.

[17] Xilinx Inc., Xilinx Virtex-II Pro and Virtex II Pro X
Platform FPGAs: Complete Data Sheet, Xilinx
DS083, Nov. 2004.

