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Abstract 

We propose a fault-detection scheme for pipelined, multithreaded processors. The scheme is based on check-
sums and improves on previous schemes in terms of fault coverage and detection latency by not using compres-
sion but storing complete checksums from several pipeline stages. We validate the scheme experimentally and 
derive checksum polynomials that lead to perfect fault coverage. 

 
 

1 Introduction and Motivation 

Currently, we see two trends in the microprocessor 
arena. On the one hand processors still get ever mo-
re complex, with the trend to multicore designs 
slowing down the complexity increase without 
stopping it. On the other hand, the ever increasing 
number of gates needed in a microprocessor can 
only be manufactured because of shrinking feature 
sizes. This trend has reached a point where particles 
are able to cause single event upsets (SEU) at 
ground level, something that previously has only 
been known to occur in space missions. Those soft-
errors can be modeled like random bit-flips in reg-
isters [15]. The detection of such faults is necessary 
because they may lead to incorrect results which 
can have catastrophical consequences. A multitude 
of approaches has been published, ranging from 
triple-modular redundant systems on the heavy side 
to checksum approaches on the low overhead side. 
The proposed scheme belongs to the latter. 
The rest of the paper is organized as follows: We 
will have a look at related work in Section 2. Sec-
tion 3 reviews schemes to secure the checked pipe-
lined execution from previous work. An extension 
is proposed and shown how a higher degree of fault 
coverage can be achieved. Section 5 concludes the 
paper with an outlook to ongoing and future work. 
 
 

2  Related Work 
Checksum approaches follow a common concept: 
checksums over the fault-free execution of a block 
of instructions are stored as references, and another 
checksum is computed when the instruction block 
is actually executed. The execution is considered 
faulty if the two checksums or signatures do not 
match. Checksum computation requires deliberate 

considerations for pipelined and multiscalar struc-
tures, and a plentitude of approaches is known: see 
e.g. [16][17][18][19][20][21] as well as [22] and 
the further references therein. Yet, all these ap-
proaches, including our own previous work, try to 
provide short checksums to keep overhead in space 
and computation time low. This is achieved by ag-
gregating checksums. Typically, kinds of exclusive-
or additions are used, which however are prone to 
mitigate faults that flip one bit in two places. For 
example, our own previous approach [22] achieves 
a fault-coverage of 83%. Furthermore, there is so-
me latency before a fault is detected, because the 
aggregation over all stages has to take place before 
checksums can be compared. 
In our current work, we investigate whether a fur-
ther investment in chip area for fault detection can 
increase the fault coverage and reduce this latency. 
We achieve this by saving all checksum parts in-
stead of aggregating them. Therefore, faults can be 
detected earlier without sacrificing fault coverage. 
Therefore we validate our approach with experi-
ments and try to quantify the area fault coverage. 
 
 

3  Pipeline Signatures 
In this Section we review schemes to compute sig-
natures from [22] on a micro-architectural level for 
the control and data path of a simple microproces-
sor, exploiting the SMT-based pipelined execution 
scheme [1]. The fault model assumes transient 
faults in the form of SEUs (Single Event Upsets). 
Furthermore, we assume one fault at a time in one 
component (pipeline stage). SEUs are modeled 
through bit-flips in latches or flip-flops. The signa-
ture computation involves cyclic redundancy check 
codes (CRCs) [2][3]. Code words are gained by 
polynomial division of the message polynomial 
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of the instruction stream and the contents of pipe-
line latches containing the control information and 
data for a stage. To clarify this, we exemplary start 
with the computation of a signature for a simple 
pipeline which is shown in Figure 1. 
 

 
 
Here we already see a significant difference in 
comparison to the well-known CRCs. CRCs only 
use one input to the linear shift register, while we 
use all context from pipeline registers to complete 
the checksum. The implementation of error correct-
ing/ detecting codes checking each register in a 
pipeline stage is possible, but was omitted due to 
the high additional implementation cost, power 
consumption and performance loss. A simple parity 
computation for each stage will affect performance, 

since we have to build the parity over all latches 
within a stage and thus have to face fan-in prob-
lems.  
We can consider the contents of out-of-order pipe-
line stages to be a part of the checksum. This com-
plicates the situation from Figure 1, since the dy-
namic multiple issuing from superscalar processors 
will lead to different parts of the control and data 
stream exiting the execution stage at different 
times. We can realize this part easily if we choose 
the generator polynomial in a way that no feedback 
affects the concerned stages. For flexibility we 

want to use any dynamic multiple issue policy. So 
we cannot use the scheme from Figure 1 without 
modification. The problem is to resolve the time 
dependency of instructions in the out-of-order 
stage. Thus, we have to choose an associative op-
eration to build the checksum for this stage. Since 
XOR is associative, we will use it for a simple 
checksum computation in this part. We calculate 

two checksums separately, one for the out-of-order 
and one for the other in-order stages. At the time of 
a context switch, the two checksums will be com-
bined. We switch the context on every latency-
causing instruction (e.g. branches). Furthermore, 
branches will lead to the storage of the checksums. 
If the branch occurs in the second checksum, the 
existing checksums will be compared. If they are 
equal, no fault occurred. If not, an error will be sig-
naled.   
Figure 2 shows the checksum calculation including 
the out-of-order stage. 

To examine multithreaded execution, we assume 
two hardware threads. More hardware threads are 
possible, but were not considered, since two hard-
ware threads are sufficient to detect a fault. Thus, to 
compare the calculated checksums in a multi-
threaded system, two context switches have to oc-
cur. A thread-ID tag in the pipeline helps to identify 
which instructions belong to which thread and to 
which checksum. Transient faults in the checksum 
selection by thread-IDs (TID) will lead to different 
checksums and to a detection of the fault.  Figure 3 
shows the checksum calculation for two threads. 
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Figure 2. Out-of-order checksum calculation 
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 Figure 1. Signature computation 



 
In  Figure 3 we need additional time to completely 
output the checksum. The extension we propose is 
shown in  Figure 4. The computed checksums for 
every stage will be directed in parallel to a check-
sum storage where they will be compared with pre-
viously calculated checksums. 

 
 

4  Fault-coverage Analysis 
We generated a random stream of 106 32 bit pseu-
do-instructions, which was used as an input for the 
modeled multithreaded processors, consisting of 5 
and 8 pipeline stages, respectively. For simplicity, 
the contents of pipeline registers were not modified 
by different stages, the fetched instructions being 
propagated through the pipeline. The first experi-
ment served to determine the polynomials with the 
best fault-coverage. Branches were created with 

probability 1/ 5branchp = (20%).  
This probability was gained from SPEC95 bench-
marks by using SimpleScalar [12] (see Table 1).  
 

Table 1. Values for pbranch (%) 

Benchmark Go Ijpeg Compress 

pbranch (%)  19.355 15.349 9.463 

Benchmark Cc1 Apsi Vortex 

pbranch (%) 24.251 22.546 22.931 

 
We simulated transient faults in both instruction 
streams by flipping single, randomly chosen bits at 
random stages with a fault rate of 10-5 and an expo-
nential distribution. No warm-up phase to fill the 
pipeline until the first checksum was calculated was 
considered. To determine minimum and maximum 
fault coverage values for different instruction mi-
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xes, 10 fault injection runs were carried out. For a 
worst case study, we assumed that the pipeline will 
be flushed each time a fault is detected. Then the 
checksums and program counters will be rolled 
back to a previous sane state. This is the branch be-
fore the fault was detected. As first model we se-
lected an in-order 5-stage pipeline with an internal 
control-path width of 32 bit from stage to stage. 
Multithreading is supported by using multiple in-
struction counters. Instructions will be fetched from 
an instruction stream until a branch occurs. Then 
the context is changed (implicit multithreading). If 
a branch is encountered in the second instruction 
stream both checksums will be compared. Figure 5 
shows the results for a fault coverage analysis to 
get the polynomials with the best fault coverage. 
The x-axis shows the number of a specific polyno-
mial, the y-axis the fault-coverage in percent. Plea-
se note that the labeling of the x-axis in Figure 5 
and Figure 6 starts with 1 instead of 0. 
We test all Boolean generator polynomials of de-
gree ≤4, i.e. 32 different polynomials. This degree 
must be chosen as a maximum, because it is limited 
by the number of pipeline stages. We represent each 
polynomial by the decimal value of its coefficients 
seen as a binary number, i.e. the polynomial g(x) = 
x4 + x3 + x + 1 is represented by 27. The upper part 
of each column in the graph shows the maximum 
fault coverage, the lower part the minimum fault 
coverage. In each fault-injection run the instruction 
stream was re-generated. 
We clearly see that the polynomials with 100% 
fault coverage are 3, 11, and 27 (offset -1). The po-
lynomials with a fault coverage of more than 90% 

are 1, 9, 17, 19, and 25. Those are exactly the poly-
nomials where the coefficient of x0 is 1 and the co-
efficient of x2 is 0. This indicates a relationship be-
tween the pipeline structure and promising genera-
tor polynomials. However, we are not aware of an 
analytic method to determine optimal polynomials. 
By using one of the mentioned polynomials, a per-
fect fault coverage was achieved, a 17% improve-
ment in comparison to [22]. From CRCs it is 
known that the higher the degree of the polynomial, 
the higher the probability that a fault could be de-
tected. In this context, we carried out the experi-
ments again with the same parameters except the 
number of pipeline stages. Figure 6 clarifies this by 
showing the fault-coverage for an 8-stage pipeline. 
All polynomials of degree ≤7 were tested, but only 
the better ones are displayed. The symmetry in cov-
erage supports the hypothesis mentioned. 
Three polynomials for the 5-stage pipeline reached 
a perfect fault coverage in contrary to 117 for the 8-
stage pipeline. It is plain to see that by applying a 
higher number of pipeline stages the fault-coverage 
increases. Figure 7 shows experimental results for a 
latency-based analysis of the enhanced scheme. The 
interesting question which inspired the analysis was 
how fast faults could be detected. We considered 
one polynomial (11) which showed perfect fault 
coverage for the 5-stage pipeline and the latency 
that results until the fault can be detected. ‘Time’ is 
a non-linear factor, since faults occur equally dis-
tributed in time. In the graph, we did not consider 
the computation of the latency over multiple fault 
injection runs. Thus, we have a high variance in the 
latencies. However, the arithmetic mean was 5,75 
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Figure 5. Fault coverage in % for a 5-stage pipeline (all polynomials) 
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Figure 7. Latency in cycles to detect a fault (polynomial 11) 

cycles to detect a fault. No visible bar signals the 
immediate detection of a fault. 

 
 

 

5   Conclusions and Work in 
Progress 

We have presented a new approach to increase the 
fault coverage of checksum-based execution 
schemes for pipelined processors. To achieve this 

we have traded coverage against chip area. We have 
validated our approach by simulation and found 

that we can reach perfect fault coverage, deter-
mined the polynomials and examined different 
pipeline lengths. For deeper pipelines, we can fur-
ther increase the amount of polynomials to reach 
perfect fault coverage. 
In our future work, we would like to investigate a 
compromise between the two extremes that we 
have followed here and in our previous work [22]: 
is it possible to partly compress the checksum with 
a function that is not as prone to mitigation of dou-
ble flips as the exclusive or is? Also we would like 
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to extend the compression path that currently forms 
a cycle when the feedback is included, to a bi-
cycle. 
Furthermore, we will investigate how the fault-
coverage will depend on the degree of instruction-
level parallelism (ILP) since it is expected that it 
will negatively influence the fault-coverage. We 
will analyze how the fetch and issue policy will af-
fect the fault-coverage. At the moment, we apply a 
block-multithreading strategy, switching the context 
on each branch. If we consider fine-grained multi-
threading, where we switch the context on a cycle-
by-cycle basis, we expect the fault-coverage to in-
crease that therefore to minimize the excepted loss 
in fault coverage for a higher degree of ILP.  
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