
Compression-free Checksum-based Fault-Detection Schemes for
Pipelined Processors
Bernhard Fechner, Jörg Keller, FernUniversität in Hagen,
Fakultät für Mathematik und Informatik, 58084 Hagen, Germany

Abstract

We propose a fault-detection scheme for pipelined, multithreaded processors. The scheme is based on check-
sums and improves on previous schemes in terms of fault coverage and detection latency by not using compres-
sion but storing complete checksums from several pipeline stages. We validate the scheme experimentally and
derive checksum polynomials that lead to perfect fault coverage.

1 Introduction and Motivation

Currently, we see two trends in the microprocessor
arena. On the one hand processors still get ever mo-
re complex, with the trend to multicore designs
slowing down the complexity increase without
stopping it. On the other hand, the ever increasing
number of gates needed in a microprocessor can
only be manufactured because of shrinking feature
sizes. This trend has reached a point where particles
are able to cause single event upsets (SEU) at
ground level, something that previously has only
been known to occur in space missions. Those soft-
errors can be modeled like random bit-flips in reg-
isters [15]. The detection of such faults is necessary
because they may lead to incorrect results which
can have catastrophical consequences. A multitude
of approaches has been published, ranging from
triple-modular redundant systems on the heavy side
to checksum approaches on the low overhead side.
The proposed scheme belongs to the latter.
The rest of the paper is organized as follows: We
will have a look at related work in Section 2. Sec-
tion 3 reviews schemes to secure the checked pipe-
lined execution from previous work. An extension
is proposed and shown how a higher degree of fault
coverage can be achieved. Section 5 concludes the
paper with an outlook to ongoing and future work.

2 Related Work
Checksum approaches follow a common concept:
checksums over the fault-free execution of a block
of instructions are stored as references, and another
checksum is computed when the instruction block
is actually executed. The execution is considered
faulty if the two checksums or signatures do not
match. Checksum computation requires deliberate

considerations for pipelined and multiscalar struc-
tures, and a plentitude of approaches is known: see
e.g. [16][17][18][19][20][21] as well as [22] and
the further references therein. Yet, all these ap-
proaches, including our own previous work, try to
provide short checksums to keep overhead in space
and computation time low. This is achieved by ag-
gregating checksums. Typically, kinds of exclusive-
or additions are used, which however are prone to
mitigate faults that flip one bit in two places. For
example, our own previous approach [22] achieves
a fault-coverage of 83%. Furthermore, there is so-
me latency before a fault is detected, because the
aggregation over all stages has to take place before
checksums can be compared.
In our current work, we investigate whether a fur-
ther investment in chip area for fault detection can
increase the fault coverage and reduce this latency.
We achieve this by saving all checksum parts in-
stead of aggregating them. Therefore, faults can be
detected earlier without sacrificing fault coverage.
Therefore we validate our approach with experi-
ments and try to quantify the area fault coverage.

3 Pipeline Signatures
In this Section we review schemes to compute sig-
natures from [22] on a micro-architectural level for
the control and data path of a simple microproces-
sor, exploiting the SMT-based pipelined execution
scheme [1]. The fault model assumes transient
faults in the form of SEUs (Single Event Upsets).
Furthermore, we assume one fault at a time in one
component (pipeline stage). SEUs are modeled
through bit-flips in latches or flip-flops. The signa-
ture computation involves cyclic redundancy check
codes (CRCs) [2][3]. Code words are gained by
polynomial division of the message polynomial

1

()
n

i
i

i

v x v x
=

= ∑ by the generator polynomial

1

()
n

i
i

i

g x g x
=

= ∑ . The message v(x) is composed out

of the instruction stream and the contents of pipe-
line latches containing the control information and
data for a stage. To clarify this, we exemplary start
with the computation of a signature for a simple
pipeline which is shown in Figure 1.

Here we already see a significant difference in
comparison to the well-known CRCs. CRCs only
use one input to the linear shift register, while we
use all context from pipeline registers to complete
the checksum. The implementation of error correct-
ing/ detecting codes checking each register in a
pipeline stage is possible, but was omitted due to
the high additional implementation cost, power
consumption and performance loss. A simple parity
computation for each stage will affect performance,

since we have to build the parity over all latches
within a stage and thus have to face fan-in prob-
lems.
We can consider the contents of out-of-order pipe-
line stages to be a part of the checksum. This com-
plicates the situation from Figure 1, since the dy-
namic multiple issuing from superscalar processors
will lead to different parts of the control and data
stream exiting the execution stage at different
times. We can realize this part easily if we choose
the generator polynomial in a way that no feedback
affects the concerned stages. For flexibility we

want to use any dynamic multiple issue policy. So
we cannot use the scheme from Figure 1 without
modification. The problem is to resolve the time
dependency of instructions in the out-of-order
stage. Thus, we have to choose an associative op-
eration to build the checksum for this stage. Since
XOR is associative, we will use it for a simple
checksum computation in this part. We calculate

two checksums separately, one for the out-of-order
and one for the other in-order stages. At the time of
a context switch, the two checksums will be com-
bined. We switch the context on every latency-
causing instruction (e.g. branches). Furthermore,
branches will lead to the storage of the checksums.
If the branch occurs in the second checksum, the
existing checksums will be compared. If they are
equal, no fault occurred. If not, an error will be sig-
naled.
Figure 2 shows the checksum calculation including
the out-of-order stage.

To examine multithreaded execution, we assume
two hardware threads. More hardware threads are
possible, but were not considered, since two hard-
ware threads are sufficient to detect a fault. Thus, to
compare the calculated checksums in a multi-
threaded system, two context switches have to oc-
cur. A thread-ID tag in the pipeline helps to identify
which instructions belong to which thread and to
which checksum. Transient faults in the checksum
selection by thread-IDs (TID) will lead to different
checksums and to a detection of the fault. Figure 3
shows the checksum calculation for two threads.

Execute #1 Decode Fetch

L
a
t
c
h

L
a
t
c
h

L
a
t
c
h

F
F

F
F

F
F

g2 g1 g0

v(x)

Execute #nF
F

.

.

.

...

...

F
F

Checksum
enable

Figure 2. Out-of-order checksum calculation

Execute Decode Fetch

L
a
t
c
h

L
a
t
c
h

L
a
t
c
h

F
F

F
F

F
F

F
F

g2 g1 g0

Instruction
Stream

...

 Figure 1. Signature computation

In Figure 3 we need additional time to completely
output the checksum. The extension we propose is
shown in Figure 4. The computed checksums for
every stage will be directed in parallel to a check-
sum storage where they will be compared with pre-
viously calculated checksums.

4 Fault-coverage Analysis
We generated a random stream of 106 32 bit pseu-
do-instructions, which was used as an input for the
modeled multithreaded processors, consisting of 5
and 8 pipeline stages, respectively. For simplicity,
the contents of pipeline registers were not modified
by different stages, the fetched instructions being
propagated through the pipeline. The first experi-
ment served to determine the polynomials with the
best fault-coverage. Branches were created with

probability 1/ 5branchp = (20%).
This probability was gained from SPEC95 bench-
marks by using SimpleScalar [12] (see Table 1).

Table 1. Values for pbranch (%)

Benchmark Go Ijpeg Compress

pbranch (%) 19.355 15.349 9.463

Benchmark Cc1 Apsi Vortex

pbranch (%) 24.251 22.546 22.931

We simulated transient faults in both instruction
streams by flipping single, randomly chosen bits at
random stages with a fault rate of 10-5 and an expo-
nential distribution. No warm-up phase to fill the
pipeline until the first checksum was calculated was
considered. To determine minimum and maximum
fault coverage values for different instruction mi-

Stage 3 Stage 2 Stage 1

L
a
t
c
h

L
a
t
c
h

L
a
t
c
h

F
F

F
F

F
F

F
F

g2 g1 g0

v(x)

w(x)

g2 g1 g0

tid

TIDTIDTID

F
F

F
F

F
F

F
F

 Figure 3. Checksum calculation for two threads

Stage 3 Stage 2 Stage 1

L
a
t
c
h

L
a
t
c
h

L
a
t
c
h

F
F

F
F

F
F

F
F

g2 g1 g0

v(x)

w(x)

g2 g1 g0

tid

TIDTIDTID

F
F

F
F

F
F

F
F

 Figure 4. Parallel output of checksums

xes, 10 fault injection runs were carried out. For a
worst case study, we assumed that the pipeline will
be flushed each time a fault is detected. Then the
checksums and program counters will be rolled
back to a previous sane state. This is the branch be-
fore the fault was detected. As first model we se-
lected an in-order 5-stage pipeline with an internal
control-path width of 32 bit from stage to stage.
Multithreading is supported by using multiple in-
struction counters. Instructions will be fetched from
an instruction stream until a branch occurs. Then
the context is changed (implicit multithreading). If
a branch is encountered in the second instruction
stream both checksums will be compared. Figure 5
shows the results for a fault coverage analysis to
get the polynomials with the best fault coverage.
The x-axis shows the number of a specific polyno-
mial, the y-axis the fault-coverage in percent. Plea-
se note that the labeling of the x-axis in Figure 5
and Figure 6 starts with 1 instead of 0.
We test all Boolean generator polynomials of de-
gree ≤4, i.e. 32 different polynomials. This degree
must be chosen as a maximum, because it is limited
by the number of pipeline stages. We represent each
polynomial by the decimal value of its coefficients
seen as a binary number, i.e. the polynomial g(x) =
x4 + x3 + x + 1 is represented by 27. The upper part
of each column in the graph shows the maximum
fault coverage, the lower part the minimum fault
coverage. In each fault-injection run the instruction
stream was re-generated.
We clearly see that the polynomials with 100%
fault coverage are 3, 11, and 27 (offset -1). The po-
lynomials with a fault coverage of more than 90%

are 1, 9, 17, 19, and 25. Those are exactly the poly-
nomials where the coefficient of x0 is 1 and the co-
efficient of x2 is 0. This indicates a relationship be-
tween the pipeline structure and promising genera-
tor polynomials. However, we are not aware of an
analytic method to determine optimal polynomials.
By using one of the mentioned polynomials, a per-
fect fault coverage was achieved, a 17% improve-
ment in comparison to [22]. From CRCs it is
known that the higher the degree of the polynomial,
the higher the probability that a fault could be de-
tected. In this context, we carried out the experi-
ments again with the same parameters except the
number of pipeline stages. Figure 6 clarifies this by
showing the fault-coverage for an 8-stage pipeline.
All polynomials of degree ≤7 were tested, but only
the better ones are displayed. The symmetry in cov-
erage supports the hypothesis mentioned.
Three polynomials for the 5-stage pipeline reached
a perfect fault coverage in contrary to 117 for the 8-
stage pipeline. It is plain to see that by applying a
higher number of pipeline stages the fault-coverage
increases. Figure 7 shows experimental results for a
latency-based analysis of the enhanced scheme. The
interesting question which inspired the analysis was
how fast faults could be detected. We considered
one polynomial (11) which showed perfect fault
coverage for the 5-stage pipeline and the latency
that results until the fault can be detected. ‘Time’ is
a non-linear factor, since faults occur equally dis-
tributed in time. In the graph, we did not consider
the computation of the latency over multiple fault
injection runs. Thus, we have a high variance in the
latencies. However, the arithmetic mean was 5,75

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 5. Fault coverage in % for a 5-stage pipeline (all polynomials)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time

La
te

nc
y

in
 c

yc
le

s

Figure 7. Latency in cycles to detect a fault (polynomial 11)

cycles to detect a fault. No visible bar signals the
immediate detection of a fault.

5 Conclusions and Work in
Progress

We have presented a new approach to increase the
fault coverage of checksum-based execution
schemes for pipelined processors. To achieve this

we have traded coverage against chip area. We have
validated our approach by simulation and found

that we can reach perfect fault coverage, deter-
mined the polynomials and examined different
pipeline lengths. For deeper pipelines, we can fur-
ther increase the amount of polynomials to reach
perfect fault coverage.
In our future work, we would like to investigate a
compromise between the two extremes that we
have followed here and in our previous work [22]:
is it possible to partly compress the checksum with
a function that is not as prone to mitigation of dou-
ble flips as the exclusive or is? Also we would like

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251 256
Figure 6. Fault coverage in % for an 8-stage pipeline (all polynomials)

to extend the compression path that currently forms
a cycle when the feedback is included, to a bi-
cycle.
Furthermore, we will investigate how the fault-
coverage will depend on the degree of instruction-
level parallelism (ILP) since it is expected that it
will negatively influence the fault-coverage. We
will analyze how the fetch and issue policy will af-
fect the fault-coverage. At the moment, we apply a
block-multithreading strategy, switching the context
on each branch. If we consider fine-grained multi-
threading, where we switch the context on a cycle-
by-cycle basis, we expect the fault-coverage to in-
crease that therefore to minimize the excepted loss
in fault coverage for a higher degree of ILP.

References

[1] D. Tullsen, S. Eggers, and H. Levy, Simultane-
ous Multithreading: Maximizing On-chip Par-
allelism, 22nd Annual International Symposium
on Computer Architecture, June 1995.

[2] S. Lin, D. Costello, Error Control Coding,
Prentice-Hall, 1983.

[3] Peterson, W. & E. Weldon. Error-Correcting
Codes, MIT Press, Second Edition, 1972.

[4] J.C. Smolens, B.T. Gold, J. Kim, B. Falsafi,
J.C. Hoe, A. Nowatzyk: “Fingerprinting: boun-
ding soft-error detection latency and band-
width”. ASPLOS 2004: 224-234.

[5] S.S. Yau, F.C. Chen. “An Approach to Concur-
rent Control Flow Checking”. In IEEE Trans.
Soft. Eng. SE-6(2) (March 1980): 126-137.

[6] M. Namjoo. “Techniques for Concurrent Test-
ing of VLSI Processor Operation”. In Proc. of
the 12th Int’l. Symp. On Fault-Tolerant-
Computing, IEEE Computer Society, Santa
Monica, CA, June 1982, pp. 461-468.

[7] T. Sridhar, S.M. Thatte. “Concurrent Checking
of Program Flow in VLSI Processors.” In Di-
gest of the 1982 Int’l. Test Conference, IEEE
1982, paper 9.2, pp. 191-199.

[8] J.P. Shen, M.A. Schuette. “On-Line Monitoring
Using Signatured Instruction Streams”, IEEE
Proc. 13th Int’l. Test Conference, Oct. 1983, pp.
275-282.

[9] Richard W. Hamming. Error-detecting and er-
ror-correcting codes, Bell System Technical
Journal 29(2):147-160, 1950.

[10] M.A. Schuette et al. “Experimental Evaluation
of Two Concurrent Error Detection Schemes”,
In Proc. Of the 16th Int’l. Symp. On Fault-
Tolerant Computing, Vienna, July 1986, pp.
138-143

[11] Karnik et al.: Characterization of Soft Errors
Caused by Single Event Upsets in CMOS Proc-
esses, IEEE Transactions on Dependable and
Secure Computing, Vol. 1, No. 2, April-June
2004.

[12] D.C. Burger and T.M. Austin. "The SimpleSca-
lar Tool Set, Version 2.0", Computer Architec-
ture News, 25 (3), pp. 13-25, June, 1997.

[13] S.M. Müller, W.J. Paul. Computer Architecture.
Complexity and Correctness, Springer-Verlag,
2000.

[14] R. Baumann, Silicon Amnesia: A Tutorial on
Radiation Induced Soft Errors. International
Reliability Physics Symposium (IRPS), 2001.

[15] R.W. Wieler, Z. Zhang, R.D. McLeod, Simulat-
ing static and dynamic faults in BIST structures
with a FPGA based emulator. In Proc. of IEEE
International Workshop of Field-Programmable
Logic and Application, pp. 240-250, 1994.

[16] Galla Thomas M., Sprachmann Michael, Stein-
inger Andreas, Temple Christopher: Control
Flow Monitoring for a Time-Triggered Com-
munication Controller, May 6th-7th 1999, Pro-
ceedings of the 10th European Workshop on
Dependable Computing (EWDC-10), Vienna,
Austria.

[17] R. J. Andraka and J. L. Brady. A Low Com-
plexity Method for Detecting Configuration
Upset in SRAM Based FPGAs. MAPLD 2002,
Proceedings of the 2002 Military and Aero-
space Applications of Programmable Devices
and Technologies Conference, Sept 10-12,
2002, Laurel, MD.

[18] Seongwoo Kim and Arun K. Somani. On-Line
Integrity Monitoring of Microprocessor Con-
trol Logic. Proc. International Conference on
Computer Design 2001,

[19] S. Kim and A. K. Somani, “SSD: An affordable
fault-tolerant architecture for superscalar proc-
essors,'' in Proc. of IEEE 2001 Pacific Rim In-
ternational Symposium on Dependable Com-
puting (PRDC), December, 2001.

[20] Yung-Yuan Chen, Kun-Feng Chen. Incorporat-
ing signature-monitoring technique in VLIW
processors. In Proc. 19th IEEE Int.l Symp. on
Defect and Fault Tolerance in VLSI Systems
(DFT 2004), pp. 395- 402, 2004.

[21] Wilken, K. D. and Kong, T. Concurrent Detec-
tion of Software and Hardware Data-Access
Faults. IEEE Trans. Comput. 46, 4 (Apr. 1997),
412-424.

[22] B. Fechner. Analysis of Checksum-Based Exe-
cution Schemes for Pipelined Processors. Proc.
11th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems,
Rhodes, Greece, April 2006.

