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Abstract. Limited bandwidth to off-chip main memory poses a problem in chip
multiprocessors for streaming applications, such as Cell BE, and will become
more severe with the expected increase in the number of cores. Especially for
streaming computations where the ratio between computational work and mem-
ory transfer is low, the generation of memory-efficient code is thus an important
compiler optimization.
We suggest to use pipelining between the SPEs over the high-bandwidth inter-
nal bus of Cell BE to reduce the required main memory bandwidth, and thereby
improve the computation throughput for memory-intensive computations. At the
same time, we are constrained by the limited size of SPE on-chip memory avail-
able for additional buffers that are necessary for the pipelining between SPEs.
We investigate mappings of the nodes of a pipelined parallel task graph to the
SPEs that are optimal trade-offs between load balancing, buffer memory con-
sumption, and communication load on the on-chip bus. We solve this multi-
objective optimization problem by deriving an integer linear programming (ILP)
formulation and compute Pareto-optimal solutions for the mapping with a state-
of-the-art ILP solver. For larger problem instances, we sketch a two-step approach
to reduce problem size.
We exemplify our mapping technique with several memory-intensive example
problems: with acyclic pipelined task graphs derived from data parallel code,
with completed-ary tree pipelines for parallel mergesort on Cell BE, and with
butterfly pipelines for parallel FFT on Cell BE. We validate the mappings with
discrete event simulations.

1 Introduction

The new generation of multiprocessors-on-chip derives its raw power from parallelism,
and explicit parallel programming with platform-specific tuning is needed to turn this
power into performance. A prominent example is the Cell Broadband Engine with a
PowerPC core and 8 parallel slave processors called SPEs (e.g. cf. [1]). Yet, many
applications use the Cell BE like a dancehall architecture: the SPEs use their small on-
chip local memories (256 KB for both code and data) as explicitly-managed caches, and
they all load and store data from/to the external (off-chip) main memory. The bandwidth
to the external memory is much smaller than the SPEs’ aggregate bandwidth to the
on-chip interconnect bus (EIB) [1]. This limits performance and prevents scalability.
External memory is also a bottleneck in other multiprocessors-on-chip. This problem
will become more severe as the core count per chip is expected to increase considerably



in the foreseeable future. Scalable parallelization on such architectures therefore must
use communication between the SPEs to reduce communication with external memory.

In this paper, we consider the important domain of streaming computations such as
sets of dataparallel computations on large vectors, pipelined mergesort, and pipelined
FFT computations. In contrast to the textbook-style parallel formulations of these algo-
rithms as a sequence of operations on complete arrays, these computations should be
reorganized in a pipelined fashion, such that intermediate results (temporary vectors)
are not written back to main memory but instead forwarded immediately to a con-
suming successor operation. This will require some buffering of intermediate results in
on-chip memory, but this is necessary anyway in processors like Cell in order to over-
lap computation with (DMA) communication. It also requires that all tasks (elementary
streaming operations) of the algorithm be active simultaneously; however, as we would
like to guarantee fast context switching on SPEs, the limited size of Cell’s local on-chip
memory then puts a limit on the number of tasks that can be mapped to an SPE, or
correspondingly a limit on the size of data packets that can be buffered, which also af-
fects performance. Moreover, the total volume of intermediate data forwarded on-chip
should be low and, in particular, must not exceed the capacity of the on-chip bus. Hence,
we obtain a constrained optimization problem for mapping the tasks of streaming com-
putations to the SPEs of Cell such that the resulting throughput is maximized.

For a specific algorithm such as parallel mergesort, this transformation may require
some human guidance e.g. to identify the individual tasks with their properties, the
multi-way buffering scheme to be used etc. [2]. For other cases such as dataparallel
computations, such information may be derived automatically by a compiler. As we
have shown in previous work on pipelined parallel mergesort, a good or even optimal
placement of the tasks of the resulting tree-shaped pipelined computation can be com-
puted by approximation algorithms or integer linear programming [2,3]. In this paper,
we generalize this approach to the automatic computation of optimal or near-optimal
placements of tasks of arbitrary acyclic streaming task graphs. Such general graphs
may arise e.g. from the array data flow between dataparallel operations that have been
identified by the programmer or by a vectorizing compiler. We present a solution for the
mapping problem based on integer linear programming and demonstrate the method for
examples from dataparallel computations, stream-based sorting, and FFT computations.

The remainder of this article is organized as follows. In Section 2, we will char-
acterize some example classes from the streaming computation domain that differ in
graph topology and data rates, and that will be used throughout the paper to demon-
strate our mapping technique. In Section 3, we formalize the general mapping problem,
give an integer linear programming based solution to the mapping problem, and report
on first experimental results. We sketch a heuristic to partition larger problem instances.
Section 4 reviews related work, and Section 5 concludes.

2 Streaming Computations: Three Case Studies

2.1 Dataparallel Computations

A dataparallel operation applies the same scalar operation to each element of an input
sequence (or of several input sequences, in case of operations of higher arity) of some



lengthN to produce an output sequence of lengthN . All element computations are
independent and take the same (short) time. Dataparallel operations can either be de-
rived from inner loops of a sequential program by a vectorizing compiler, or explicitly
identified by the programmer in the form of vector instructions in array syntax, forall
loops, or special intrinsic functions, in a dataparallel programming language. Dataparal-
lel operations are especially suitable for Cell because they generally allow to use SIMD
instructions on the SPEs, running up to 4 floatingpoint operations per clock cycle on
adjacent data.

Subsequent dataparallel operations may consume a part or (most typically) the en-
tire result produced by a predecessor operation. These dataparallel operations are thus
coupled by array data flow, usually in the form of (temporary) array variables. For an
acyclic sequence of dataparallel operations in a program, the dataparallel operations
with the (array) data flow edges between them define an acyclic task graph. Here, we
focus on thequasiscalarcase [4] where the entire dataparallel task graph could be con-
sidered a single dataparallel operation, applying a complex elementwise computation to
every input element of all input arrays. In other words, the dataparallel task graph can be
seen as an overlay ofN independent scalar task graphs; in particular, it can be arbitrar-
ily partitioned along the length dimension. All data rates along array data flow edges are
equal, asN elements are forwarded along each edge. The (relative) computational load
that a dataparallel task in such a dataparallel task graph represents is determined only
by the cost of the elementary operation applied per input element. In many cases, these
can be considered equal, too. (Special treatment can be done for reduction operations
that consume an input sequence of lengthN but produce just a single output element
by accumulating over the input, such as vector sums. For these, we simply neglect the
size of the output stream, as it is small compared toN .)

Computing a sequence of dataparallel operations in the traditional (vector-style)
way will process each dataparallel operation completely before proceeding with the
next one. Independent dataparallel operations (i.e., whose nodes are not located on the
same path in the task graph) could be executed simultaneously by different processors
(SPEs). For instance, the dataparallel task graph could be scheduled level-wise. Alterna-
tively, each dataparallel operation could be cut intop partitions, each computed by one
SPE in parallel. Either way, all intermediate results will then be stored in off-chip mem-
ory, requiring a higher overall communication volume, such that the off-chip memory
bandwidth limits the number of dataparallel computations that can run simultaneously
on the Cell BE at maximum speed.

In contrast, pipelining a dataparallel computation means that all tasks will be active
at the same time, each requiring a certain CPU (SPE) share that is proportional to its
computational load in the steady state of the pipeline computation where all tasks have
input data to work on. A fair round-robin user-level scheduler on each SPE guarantees
that, in the steady state, each of multiple tasks mapped to the SPE will use its assigned
share of processing time. The pipelining also implies that small packets of intermediate
results need to be buffered in on-chip memory to account for small jitter in the process-
ing speed of each task. If the buffers are sufficiently large, no task will be slowed down
due to waiting for input packets or for flushing output packets, as the average processing
rates are balanced over all tasks. The advantage of pipelining is that the communication



to off-chip memory is minimized. Its downside is a possibly high demand of on-chip
memory space for buffering packets with intermediate results.

To allow for overlapping DMA handling of packet forwarding (both off chip and on
chip) with computation on Cell, there should be at least buffer space for 2 input packets
per input parameter and 2 output packets per output parameter of each dataparallel
operation. This amounts to at least 6 packet buffers for an ordinary binary dataparallel
operation. On Cell, the DMA packet size cannot be made arbitrarily small: the absolute
minimum is 16 bytes, and in order to be not too inefficient, at least 128 bytes should
be shipped at a time. Reasonable packet sizes are a few KB in size (the upper limit is
16KB). As the size of SPE local storage is severely limited (256KB for both code and
data) and the packet size is the same for all SPEs and throughout the computation, this
means that the maximum number of packet buffers of the tasks assigned to any SPE
should be as small as possible. On the other hand, excessively large packet sizes mean
a higher pipeline startup time. However, as long asN is very large compared to the
length of the critical path in the task graph, the startup time penalty can be neglected.

2.2 Stream-based Sorting

Sorting is an important subroutine in many high performance computing applications,
and parallel sorting algorithms on a wealth of architectures have therefore attracted con-
siderable interest continuously for the last decades, see e.g. [5,6]. As the ratio between
computation and transfer to memory is quite low in sorting, it presents an interesting
case study to develop bandwidth efficient algorithms. Sorting algorithms implemented
for the Cell BE [7,8] work in two phases to sort a data set of sizeN with local memo-
ries of sizeN ′. In the first phase, blocks of data of size8N ′ that fit into the combined
local memories of the 8 SPEs are sorted. In the second phase, those sorted blocks of
data are combined to a fully sorted data set. We concentrate on the second phase as the
majority of memory accesses occurs there. In [7], this phase is realized by a bitonic sort
because this avoids data dependent control flow and thus fully exploits SPE’s SIMD
architecture. Yet,O(N log2 N) memory accesses are needed and the reported speedups
are small. In [8], mergesort with 4-to-1-mergers is used in the second phase. The data
flow graph of the merge procedures thus forms a fully balanced merge quadtree. As each
merge procedure on each SPE reads from main memory and writes to main memory, all
N words are read from and written to main memory in each merge round, resulting in
N log4(N/(8N ′)) = O(N log4 N) data being read from and written to main memory.
While this improves the situation, speedup still is limited.

In order to overcome this bottleneck, we run merger nodes of consecutive layers
of the merge tree concurrently, so that output from one merger is not written to main
memory but sent to the SPE running the follow-up merger node, i.e. we use pipelining.
If we can embed subtrees withk levels in this way, we are able to realize parallelized
4k-to-1 merge routines and thus increase the ratio of computation to memory transfer
by a factor ofk. Yet, this must be done in a manner such that all SPEs are kept busy,
and that the overheads introduced are not too high. Our approach is that a merger node
does not process complete blocks of data before forwarding its result block, but uses
fixed sized chunks of the blocks, i.e. a merger node is able to start work as soon as it has
one chunk of each of its input blocks, and as soon as it has produced one chunk of the



output block, it forwards it to the follow-up node. This form of streaming allows to use
fixed size buffers, holding one chunk each. In order to be able to overlap data transfer
and computation, the merger nodes should use double buffering at least for their inputs.
Also, the chunks and thus the buffers should have a reasonable minimum size to allow
for efficent data transfer between SPEs. Note that due to the small local memory on
SPEs, already the mergers in the algorithm of [8] must work with buffering and chunks.

Furthermore, ensuring that our pipeline runs close to the maximum possible speed
requires consideration of load balancing. If ab-ary merger nodeu must provide an
output rate ofτ words per time unit, then its predecessor mergersu1, ..., ub feeding its
inputs must provide a rate ofτ/b on average. However, if the values in the output chunk
produced byui are much larger than those inuj , the mergeru will only process values
from the output chunk ofuj for some time, so thatuj must produce at a double rate
for some time, whileui will be stalled because of finite buffering betweenui andu.
Otherwise the rate ofu will reduce.

Finally, the merger nodes should be distributed over the SPEs such that not all com-
munication between merger nodes leads to communication between SPEs, in order not
to overload the EIB.

2.3 FFT Computations

Fast Fourier Transform (FFT) is a divide-and-conquer based algorithm to compute the
Discrete Fourier Transform (DFT) (see e.g. [9,10] for descriptions and parallelization).
The task graph of Fast Fourier Transform (FFT) is recursively defined as follows: An
elementary FFT butterfly computation takes 2 complex elements as input, performs 3
arithmetic operations (multiplication with a tabled twiddle factor, followed by an ad-
dition resp. subtraction) and produces 2 complex elements as output. An even number
q > 1 of input elements to be processed by a size-q-FFT is split in subvectors ofq/2
odd-indexed andq/2 even-indexed elements. These subvectors can be processed inde-
pendently and recursively by(q/2)-FFT subcomputations ifq/2 is even, otherwise a
DFT may be used instead. Each subcomputation producesq/2 output elements that are
elementwise combined with butterfly computations to produce theq/2 lower-indexed
andq/2 upper-indexed result elements of theq-FFT. Hence, unrolling the recursion for
q being a power of 2, the task graph becomes a butterfly graph with(q/2) log2 q butter-
fly tasks, where all node weights are equal and all edge weigths are equal. In contrast
to mergesort, no load imbalances can occur here, as FFT is an oblivious algorithm.

The mismatch of input to output indices can be fixed by a bit reversal operation
(swapping every input element at positioni with the one at position̄i whose binary
representation is just the mirrored one ofi) before starting the actual (unordered FFT)
computation, which now can produce contiguous blocks of data and is easily expressed
in an iterative formulation. If all contiguous butterfly computations residing on the same
level of the corresponding task graph and expressible by a single dataparallel operation
are merged, the resulting task graph for this iterative formulation has a tree topology
where data rates along edges and node weights look the same way as for the merge
trees described above; hence we focus on the recursive FFT butterfly task graphs in the
remainder of this work.



3 Mapping Pipelined Task Graphs onto Processors

We start by introducing some basic notation and stating the general optimization prob-
lem to be solved. We then give an integer linear programming (ILP) formulation for
the problem, which allows to compute optimal solutions for small and middle-sized
pipeline task graphs, and report on the experimental results obtained for examples
taken from the three classes of streaming computations described earlier. We also give
a heuristic mapping algorithm for larger task graphs and machine configurations.

3.1 Definitions

Given is a setP = {P1, . . . , Pp} of p processors and a directed acyclic task graph
G = (V,E) to be mapped onto the processors. Input is fed at the sources, data flows in
direction of the edges, output is produced by the sinks.

Each node (task)v in the graph processes the incoming data streams and combines
them into one outgoing data stream. With each edgee ∈ E we associate the (average)
rateτ(e) of the data stream flowing alonge. In all types of streaming computations
considered in this work, all input streams of a task have the same rate. However, other
scenarios with differentτ rates for incoming edges may be possible.

The computational loadρ(v) denotes the relative amount of computational work
performed by the taskv, compared to the overall work

∑
v∈V ρ(V ) in the task graph.

It will be proportional to the processor time that a nodev places on a processor it is
mapped to. In most scenarios,ρ is proportional to the data rateτ(e) of its (busiest, if
several) output streame. Reductions are a natural exception here; their processing rate
is proportional to the input data rate.

In contrast to the averaged valuesρ andτ , the actual computational load (at a given
time) is usually depending on the current or recent data ratesτ . In cases such as merge-
sort where the input data rates may show higher variation around the averageτ values,
also the computational load will be varying when the jitter in the operand supply cannot
be compensated for by the limited size buffers.

For presentation purposes, we usually normalize the values ofρ and τ such that
the heaviest loaded taskr obtainsρ(r) = 1 and the heaviest loaded edgee obtains
τ(e) = 1. For instance, the rootr of a merge tree will haveρ(r) = 1 and produce a
result stream of rate 1.

The computational load and output rate may of course be interpreted as node and
edge weights of the task graph, respectively.

Thememory loadβ(v) that a nodev will place on the (SPE) processor it is mapped
to is basically proportional to the number of DMA packet buffers that it requires; for
simplicity, we abstract from the size of other data structures of the tasks and their code,
for which we reserve a fixed, small share of each SPE local store. We distinguish be-
tween two scenarios: (1) Themapping-invariant memory load modelassumes a fixed
memory load value depending on the computation type ofv; specifically, 4 buffers for
unary nodes, 6 for binary nodes, and 0 for loads and stores, representing the double
buffering policy to be applied for operand and result streams. This model is some-
what conservative but leads to a less complex optimization problem instance. (2) The
mapping-sensitive memory load modelaccounts for the fact that buffering output data



is only needed for tasks with at least one successor placed on another SPE, while for the
others, output can be written directly into the free input buffer of the successor task in
the same SPE local store (where the DMA transfer as well as the writing task may have
to wait in favor of e.g. its successor when no input buffer is free). Here, we assign a base
memory loadβb(v) of 2 for unary and 4 for binary operations, 0 for loads, and 2 for
stores to account for their predecessor’s output buffering to main memory. To this, we
add a binary mapping-specific load componentβµ(v) that is 1 iff at least one successor
of taskv is placed on another SPE. Hence,β(v) = βb(v) + βµ(v). This also implies
that shared loads have memory load 1.

In homogeneous task graphs such as merge trees or FFT butterflies, allβ(v) are
equal under the mapping-invariant memory load model. In this case, we also normalize
the memory loads such that each taskv gets memory loadβ(v) = 1.

We construct a mappingµ : V → P of nodes to processors. Under this mappingµ,
a processorPi hascomputational load

Cµ(Pi) =
∑

v∈µ−1(Pi)

ρ(v),

i.e. the sum of the load of all nodes mapped to it, and it hasmemory load

Mµ(Pi) =
∑

v∈µ−1(Pi)

β(v)

which is1 ·#µ−1(Pi) for the case of homogeneous task graphs.
The mappingµ that we seek shall have the following properties:

1. The maximum computational loadC∗
µ = maxPi∈P Cµ(Pi) among the processors

shall be minimized. This requirement is obvious, because the lower the maximum
computational load, the more evenly the load is distributed over the processors.
With a completely balanced load,C∗

µ will be minimized.
2. The maximum memory loadM∗

µ = maxPi∈P Mµ(Pi) among the processors shall
be minimized. The maximum memory load is proportional to the number of the
buffers. As the memory per processor is fixed, the maximum memory load deter-
mines the buffer size. If the buffers are too small, communication performance will
suffer.

3. Thecommunication loadLµ =
∑

(u,v)∈E,µ(u) 6=µ(v) τ(u), i.e. the sum of the edge
weights between processors, should be low.

3.2 ILP Formulation

We are given a task graph withn nodes (tasks) andm edges, node weightsρ, node
buffer requirementsβ, and edge weightsτ .

Our ILP formulation for the mapping-invariant memory load model uses two arrays
of boolean variables,x andz. For the mapping-sensitive memory load model, we add a
third array,y.

The actual solution, i.e. the mappingµ of nodes to processors, will be given byx:
xv,q = 1 iff nodev is mapped on processorq.



In order to determine which edges are internal (i.e., where both source and target
node are mapped to the same processor), we introduce auxiliary variablesz andy:
z(u,v),q = 1 iff both sourceu and targetv of edge(u, v) are mapped to processorq.
yu,q = 1 iff u is mapped toq and some successor ofu is mapped to some other SPE.

Also, we use an integer variablemaxMemoryLoadthat will indicate the maximum
memory load assigned to any SPE inP , and a linear variablemaxComputLoadthat
indicates the maximum accumulated load mapped to a processor.

The following constraints must hold:
Each node must be mapped to exactly one processor:

∀v ∈ V :
∑
q∈P

xv,q = 1

The maximum load mapped to a processor is computed as

∀q ∈ P :
∑
v∈V

xv,q · ρ(v) ≤ maxComputLoad

The memory load (here for the mapping-sensitive model) should be balanced:

∀q ∈ P :
∑
v∈V

(xv,q · βb(v) + yv,q) ≤ maxMemoryLoad

Communication cost occurs whenever an edge is not internal, i.e. its endpoints are
mapped to different SPEs. To avoid products of twox variables when determining
which edges are internal, we use the following2mp constraints:

∀(u, v) ∈ E, q ∈ P : z(u,v),q ≤ xu,q and z(u,v),q ≤ xv,q

and in order to enforce that az(u,v),q will be 1 wherever it could be, we have to take up
the (weighted) sum over allz in the objective function. This means, of course, that only
optimal solutions to the ILP are guaranteed to be correct with respect to minimizing
communication cost. We accept this to avoid quadratic optimization, and because we
also want to minimize the maximum communication load anyway.

The communication load is the total communication volume over all edges minus
the volume over the internal edges:

commLoad=
∑
e∈E

τ(e)−
∑
e∈E

∑
q∈P

ze,q · τ(e)

We apply the same construction to determineyv,q:

∀(u, v) ∈ E, q ∈ P : yu,q ≥ xu,q − xv,q and yu,q ≥ xv,q − xu,q

Finally, the objective function is:

Minimize Λ ·maxComputLoad+ εM ·maxMemoryLoad+ εC · commLoad+ M

whereΛ is a value large enough to prioritize computational load balancing over all
other optimization goals, and the positive weight parametersεM < 1 and εC < 1



can be set appropriately to give preference to minimizing formaxMemoryLoador for
commLoadas secondary optimization goal. The formulation requires thatεC > 0. For
the mapping-sensitive memory load model, we add the termM =

∑
u∈V, q∈P yu,q.

By choosing the ratio ofεM to εC , we can only find two extremal Pareto-optimal so-
lutions, one with least possiblemaxMemoryLoadand one with least possiblecommLoad.
In order to enforce finding further Pareto-optimal solutions that may exist in between,
one can use any fixed ratioεM/εC , e.g. at 1, and instead set a given minimum memory
load to spend (which is integer) on optimizing forcommLoadonly:

maxMemoryLoad≥ givenMinMemoryLoad

In total, the formulation for the mapping-invariant memory load model usesnp +
mp = O(np) boolean variables, 1 integer variable, 2 linear variables, and2mp + 2p +
2 = O(np) constraints. For the mapping-sensitive memory load model, it has2np+mp
boolean variables and4mp + 2p + 2 constraints.

We implemented the above ILP model in CPLEX 10.2 [11], a commercial ILP
solver. In the next subsections, we will report on the results obtained.

3.3 ILP Optimization Results for Merge Trees

For modeling task graphs of mergesort as introduced above, we generated binary merge
trees withk levels (and thus2k − 1 nodes) intended for mapping top = k processors
[2]. Table 1 shows all Pareto-optimal solutions that CPLEX found fork = p = 5, 6, 7,
using the mapping-invariant memory load model. While the majority of computations
for k = 5, 6, 7 took just a few seconds, CPLEX hit a timeout after 24 hours fork = 8
and only produced approximate solutions with a memory load of at least37. Figure 1
shows two of the solutions fork = 5, visualized with a tool developed by us.

Table 1.The Pareto-optimal solutions found with ILP for binary merge trees,k = p = 5, 6, 7.

k 5 6 7
# binary var.s 305 750 1771
# constraints 341 826 1906
maxMemoryLoad 8 9 10 13 14 15 20 21 29 30
commLoad 2.5 2.3751.752.6252.43751.93751.8752.3752.31252.0

To test the performance of our mappings with respect to load balancing, we imple-
mented a discrete event simulation of the pipelined parallel mergesort. The simulation
is quite accurate, as the variation in runtime for merger nodes is almost zero, and com-
munication and computation can be overlapped perfectly by mapping several nodes to
one SPE. We used scheduling and buffering as described in Subsection 2.1 with buffers
holding 1,024 integers of 32 bits. We have investigated several mappings resulting from
our mapping algorithm. The 5-level tree of Fig. 1(b) realizes a 32-to-1 merge. This
seems the limit with a memory load of 8 nodes, and 16 to 24 KB of buffering per
merger node (4 or 6 buffers of 4 KB each). With input blocks of220 randomly chosen,



(a) (b)

Fig. 1. Two Pareto-optimal solutions for mapping a 5-level merge tree onto 5 processors, com-
puted by the ILP solver. (a) max. memory load 10 and communication load 1.75, obtained e.g. for
εM = 0.1εC ; (b) max. memory load 8 and communication load 2.5, obtained e.g. forεM = 10εC .

sorted integers, the pipeline efficiency was 93%, and thus lowered bandwidth require-
ments to main memory by a factor of1.86 compared to [8]. For further results for
mapped merge trees, see [2].

3.4 ILP Optimization Results for FFT Butterfly Graphs

Figure 2 shows a Pareto-optimal mapping computed for a8 × 4 nodes Butterfly graph
onto 6 processors with the mapping-invariant memory load model. For the visualization
of Butterfly graph mappings, we have written a converter todot format and use the
graphviz package to derive a drawing where boxes enclose nodes mapped to the
same SPE. Normalized node weights are given within node circles, and normalized
edge weights are attached to the edges. We simulated this mapping in a discrete event
simulation and achieved a pipeline efficiency of close to 100%.

3.5 ILP Optimization Results for Dataparallel Computations

In order to test the ILP model with dataparallel task graphs, we used several hand-
vectorized fragments from the Livermore Loops [12] and synthetic kernels, see Table 2.
We focused on the easily vectorizable kernels and applied only standard vectorization
methods, hence any reasonable vectorizing compiler could have produced the same
dataparallel task graph. Such graphs are usually of very moderate size, and computing
an optimal ILP solution for a small number of SPEs thus takes just a few seconds in
most of the cases, at least with the mapping-invariant memory load model. For two



Fig. 2.A Pareto-optimal solution for mapping a8×4-Butterfly graph onto 6 processors, computed
from the ILP model with 482 variables and 621 constraints in 4 seconds.

Table 2. ILP models for dataparallel task graphs extracted from the Livermore Loops (LL) and
from some synthetic kernels. In the upper table, the mapping-invariant memory load model is
applied, while the lower table uses the mapping-sensitive memory load model.

Kernel Description #Nodes #EdgesILP model forp = 6 ILP model forp = 8
n m var’s constr. timevar’s constr. time

LL9 Integrate predictors 28 27333 371 2:07s443 485 —
LL10 Difference predictors 29 28345 384 0:06s459 502 1:26:39s
LL14 1D particle in cell, second loop 19 21243 290 0:03s323 380 1:05s
LL22 Planckian distribution 10 8111 125<0:01s 147 163 <0:01s
FIR8 8-tap FIR filter 16 22231 299 45:04s307 393 0:04s
T-8 Binary tree, 16 leaves 31 30369 410 5:36s491 536 0:11s
C-6 Cook pyramid, 6 leaves 21 30309 400 27:56s411 526 3:22s

Kernel Description #Nodes #EdgesILP model forp = 6 ILP model forp = 8
n m var’s constr. timevar’s constr. time

LL9 Integrate predictors 28 27498 695 12:10s667 917 —
LL10 Difference predictors 29 28519 720 — 691 950 —
LL14 1D particle in cell, second loop 19 21357 542 0:08s475 716 1:15s
LL22 Planckian distribution 10 8171 221<0:01s 227 291<0:01s
FIR8 8-tap FIR filter 16 22327 563 — 435 745 2:43s
T-8 Binary tree, 16 leaves 31 30555 770 5:22s739 1016 0:19s
C-6 Cook pyramid, 6 leaves 21 30435 760 — 579 1006 —

common Cell configurations (p = 6 as in PS3, andp = 8), the generated ILP model
sizes (after preprocessing) and the times for optimization with memory load preference
(εM � εC) are also given in Table 2.

Figure 3 shows a Pareto-optimal mapping for Livermore Loop 9 ontop = 6 SPEs
where the maximum memory load is minimized. This was computed within 2 min-
utes. In contrast, for the same task graph withp = 8 (443 variables, 485 constraints)
CPLEX could not find an optimal solution within 24 hours of optimization time. Com-
paring this to the case of merge trees above, we see that in comparison to general DAG



Fig. 3. A Pareto-optimal solution for mapping the dataparallel task graph of Livermore Loop 9
onto 6 processors with minimal memory load (εM � εC ) using the mapping-sensitive mem-
ory load model, as computed by the ILP solver. Circles represent tasks and are annotated with
normalized computational load, edges with normalized data rates.

topologies, much larger merge trees can be mapped optimally. Table 2 shows also that
the optimization problems become more complex when applying the mapping-sensitive
memory load model. Interestingly, the task graphs for the synthetic kernels FIR8, T-8
and C-6 show unexpected behavior in optimization time, where the smaller problem
instances take significantly longer time than the larger ones. We have no explanation
for this.

A discrete event simulation of the LL9 mapping on 6 SPEs (Figure 3) achieved a
pipeline efficiency of close to 100%.

For smalln, the task granularity as defined in the mapping problem gets too coarse
such that the computational capacity of the Cell may not be fully exploited. Fortunately,
in contrast to merge trees, dataparallel operations can easily be split by splitting the
operand vectors. Hence, a workaround to this problem could be to split the task graph
into 2 copies each working on half vectors only, thus halving the computational load of
each node, and repeat the mapping step. A drawback is that this increases the problem
complexity.

3.6 Heuristic Mapping Algorithm for Large Task Graphs

For largen and/orp where the ILP solver exceeds the time limit, we can apply the
following divide-and-conquer heuristic: First, we compute a partitioning of the graph
into two subgraphs of approximately equal sizes, with balanced memory load and a
small accumulated volume of inter-partition edge weights. This can, for instance, be



done by running our ILP model above withp = 2. We divide accordingly the set of
Cell SPEs into two halves, too. Now we solve the mapping problem for each partition
recursively. As both the graph size and machine size are approximately halved in each
subproblem, these should be computed considerably faster.

Fig. 4. ILP solution for partitioning the task graph of Livermore Loop 9 into two (thusp = 2)
subgraphs, each to be mapped separately on a Cell SPE subset of size4.

As an example, consider the case of Livermore Loop 9 withp = 8, for which the
CPLEX solver could not find an optimal solution within 24 hours (Table 2) under either
memory load model. For the partitioning, the ILP model forp = 2 was solved within
8 seconds, producing two subgraphs of 14 nodes each, connected by just a single edge,
see Figure 4. The two ILP models for mapping the subgraphs optimally to 4 SPEs each
were solved in less than a second. Both mapped subgraphs have a maximum memory
load of 12, and the overall communication load is 1 + 5 + 5 = 11. There is, of course,
no guarantee that the composed mapping forp = 8 is (Pareto-)optimal, as one with
smaller maximum memory load or communication load may exist.

4 Related Work

There is a wealth of literature on mapping and scheduling acyclic task graphs of stream-
ing computations to multiprocessors. Some methods are designed for special topolo-
gies, such as linear chains (see e.g. Bokhari [13] for chain partitioning of linear pipelined
task graphs into contiguous partitions) and trees (see e.g. Ray and Jiang [14]). The
approaches for general task graphs can be roughly divided into two classes: Non-
overlapping scheduling and overlapping scheduling.

Non-overlapping schedulingschedules a single execution of the program (and re-
peats this for further input sets if necessary); it aims at minimizing the makespan (execu-
tion time for one input set) of the schedule. This can be done by classical list-scheduling
based approaches for task graph clustering that attempt to minimize the critical path
length for a given number of processors. Usually, partitions are contiguous subgraphs.
The problem complexity can be reduced by a task merging pre-pass that coarsens the
task granularity. See [15] for a recent survey and comparison. For Cell BE, Beniniet
al. [16] propose a constraint programming approach for combined mapping, scheduling
and buffer allocation of non-pipelined task graphs to minimize the makespan.



Overlapping scheduling, which is closely related tosoftware pipelining, instead
overlaps executions for different input sets in time and attempts to maximize the through-
put in the steady state, even if the makespan for a single input set may be long. Mapping
methods for such pipelined task graphs have been described e.g. by Hoang and Rabaey
[17] and Ruggieroet al. [18]. Our method also belongs to this second category.

Hoang and Rabaey [17] work on a hierarchical task graph such that task granularity
can be refined by expanding function calls or loops into subtasks as appropriate. They
provide a heuristic algorithm based on greedy list scheduling for simultaneous pipelin-
ing, parallel execution and retiming to maximize throughput. The resulting mapped
pipeline is a linear graph where each pipeline stage is assigned one or several proces-
sors. Buffer memory requirements are considered only when checking feasibility of a
solution, but are not really minimized for. The method only allows contiguous subDAGs
to be mapped to a processor.

Ruggieroet al. [18] decompose the problem into mapping (resource allocation)
and scheduling. The mapping problem, which is close to ours, is solved by an integer
linear programming formulation, too, and is thus, in general, not constrained to parti-
tions consisting of contiguous subDAGs as in most other methods. Their framework
targets MPSoC platforms where the mapped partitions form linear pipelines. Their ob-
jective function for mapping optimization is minimizing the communication cost for
forwarding intermediate results on the internal bus. Buffer memory requirements are
not considered.

5 Conclusion

We have investigated how to lower memory bandwidth requirements in code for the
Cell BE by on-chip pipelining of memory-intensive computations. To realize pipelin-
ing with maximum throughput while reducing on-chip memory load and interprocessor
communication, we have formulated the general problem of mapping a task graph as an
integer linear optimization problem. We have demonstrated our model with case studies
from dataparallel code generation, merge trees in sorting, and FFT butterfly computa-
tions, and validated the mappings with discrete event simulations. Implementing and
evaluating the resulting code on Cell is an issue of current and future work. The method
could be used e.g. as an optimization in code generation for dataparallel code in an
optimizing compiler for Cell, such as [19].

The ILP solver works well for small task graph and machine sizes, especially with
the mapping-invariant memory load model. However, for future generations of Cell with
many more SPEs and for larger task graph sizes, computing optimal mappings with the
ILP approach will no longer be computationally feasible, especially if the more detailed
mapping-sensitive memory load model should be used. We have proposed a divide-and-
conquer based heuristic where the partitioning step is based on the ILP model forp =
2; other partitioning methods are possible and should be investigated, too. Moreover,
developing approximation algorithms for the general case is an issue of future research.
For the special case of merge trees, we have presented fast approximation algorithms in
previous work [2,3].
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