
Dealing with Hardware Faults in Energy-Efficient
Static Schedules of Multi-Variant Programs on

Heterogeneous Platforms
Jörg Keller

Faculty of Mathematics and Computer Science
FernUniversität in Hagen
58084 Hagen, Germany

Joerg.Keller@FernUni-Hagen.de

Christoph Kessler
Dept. of Computer and Information Science (IDA)

Linköping University
58183 Linköping, Sweden
Christoph.Kessler@liu.se

Abstract—We investigate the energy-efficient execution of pro-
grams with a sequence of program parts, each part executable
by multiple variants on different execution units. We study their
behaviour under the presence of crash faults on a computing
platform with heterogeneous execution units like multicore, GPU,
and FPGA. To this end, we extend a static scheduling algorithm
for computing the sequence of variants leading to minimum run-
time, minimum energy consumption, or a weighted sum of both,
to consider cases where one or more program variants cannot
be used anymore from some execution point on, due to failure
of the underlying execution unit(s). This extension combines the
advantageous results of static scheduling, known in the fault-free
case, with avoidance of overhead for re-scheduling in case of a
fault. We evaluate our algorithm with synthetically generated
progam task graphs. The results indicate that, compared to
computing a new schedule for each fault case, our algorithm
only needs 55% of the scheduling time for 8 variants.

Index Terms—static scheduling, energy-efficient execution,
fault-tolerant execution, optimization algorithm

I. INTRODUCTION

Modern computer architectures are increasingly power con-
strained while the computational demands from the application
side continue to grow. In order to deliver improved perfor-
mance within a sustainable power envelope, the heterogeneous
computing paradigm is getting widely adopted [1]. In fact, en-
tire new application areas such as deep learning have appeared
in the last decade thanks to the availability of affordable, GPU-
powered heterogeneous computer systems. With radically new
hardware technologies not ready yet to take over, we expect
that the trend towards using heterogeneous architectures will
grow even further.

At the same time, the steady density increase in silicon tech-
nology as postulated in Moore’s Law leads to tiny structure
sizes that are more prone to wear-out, and to higher power
density which may result in temporary or even permanent
loss of some hardware components e.g. due to damages from
local overheating [2]. While certain hardware components are
critical (such as the master core, a general purpose CPU
responsible for coordinating a heterogeneous computation)
and should be hardened against permanent faults by hardware
mechanisms (such as a standby core), the loss of non-critical

components can be exposed to the software. The classification
of system components into critical and non-critical ones and
the assumption of a reliable critical core are common in
fault-tolerant systems design, see e.g. Sha [3]. Applications to
be deployed on a heterogeneous architecture that have strict
robustness requirements, such as driver assistance systems in
modern cars, should be designed to be able to tolerate the
loss of some non-critical hardware component (e.g., a certain
accelerator) and remain operational, with possibly reduced
quality of service or reduced performance. Permanent faults
may not necessarily be caused by hardware damage only
but could also occur for instance in heterogeneous systems
equipped with hot-pluggable external accelerators, such as
USB-connected external GPUs, which might be disconnected
at any time. In real-time systems, a component that takes
longer to execute a task than the worst-case execution time
(WCET) analysis predicts may be classified as faulty, too.

In this paper we consider a static scheduling method for
efficiently dealing with the (potentially) permanent loss of a
non-critical execution component in a heterogeneous system
when optimizing the device mapping for a sequence of com-
putations. We assume that the computation is structured as
a sequence of phases that each might have a number of code
variants that each run on a different execution unit, accordingly
with different impact on time and energy usage. We extend a
known static scheduling algorithm to compute the sequence
of phase variants with minimum runtime, energy consumption
or a combination of both, to comprise also cases where one
or several variants are not available anymore due to the fault
of a hardware component. Thus, we carry over the superior
scheduling results of static scheduling (compared to dynamic
scheduling) from the fault-free case to the case of a fault, and
at the same time avoid overhead at runtime due to computing
a new schedule when a fault is detected. Beyond the ability
to remain operational in case of a fault, computing phase
sequences for all considered fault cases in advance allows to
give guarantees on performance and/or energy consumption,
and thus goes beyond computation of a next-best sequence in
case of a fault.

We implement our scheduling algorithm as a sequential pro-
gram and compare our implementation to the straightforward
alternative: to compute additional schedules for each fault
situation, i.e. the fault of any component during execution
of any phase. The comparison is done with the help of
synthetically generated phase sequences, where for each phase
a number of variants with their associated runtimes and energy
consumptions is computed according to a random distribution.
Our experiments indicate that for 8 variants, our scheduling
on average needs only 55% of the scheduling time of the
alternative.

Our main contributions are the following:
• We extend a static scheduling method for programs

modelled by sequences of phases with multiple code
variants to cover faults of components in a heterogeneous
computing system.

• We implement the extended static scheduler and its
alternative.

• We evaluate the extended static scheduler with syntheti-
cally generated program structures of different sizes for
heterogeneous computing systems of different sizes.

The remainder of this paper is organized as follows. In
Section II, we present background information and related
work. In Section III, we present the scheduling algorithm and
its extension to cover fault situations. Section IV reports on
the experiments performed to evaluate our proposal. Section V
presents a conclusion and an outlook on future work.

II. BACKGROUND AND RELATED WORK

A. Platform Model

We consider a heterogeneous computing system that com-
prises a multitude of components or execution units. We as-
sume that there exists a powerful and fault-resistant processor
core. This may either be a core specially hardened against
failures, but it may also be a realized by using multiple
cores in a (virtual) duplex or triple system [4]. Beyond, there
may be multiple cores of the same core type, there may be
processor cores of different computing power, and there may
be accelerators of different type, such as a GPU usable for
application programs, an FPGA or an Intel Xeon Phi.

All components may differ in their execution speed and in
their power consumption. To compare the execution of two
versions of a code on different components, we can use the
runtime of the codes or the respective energy consumption,
computed as the product of the runtime and the (average)
power consumption of this component during that time. The
components may have different speed-/power-states, i.e. they
might use different operating frequencies, which result in
different power consumption. We assume that the supply
voltage is always set to the lowest value possible for the
chosen frequency. For many chips, the minimum voltage now
is identical for large frequency ranges, so that the potential
savings by frequency scalings are limited. Furthermore, the
number of useful operating frequencies often is rather small,
because the growing importance of static power consumption

diminishes the reduction in power consumption when the
operating frequency is reduced, so that the reduced power
consumption cannot make up for the increased runtime, so that
runtime and energy consumption for a particular task increase.
In [5], the energy-optimal frequency for big and LITTLE cores
and several different types of tasks (i.e. different instruction
mixes) was 1,200 MHz, i.e. quite high, so that only one of
the few higher frequencies (1,400 MHz for LITTLE, 1,400 or
1,600 MHz for big) could be used to improve either runtime
or energy consumption for executing a task. The components
typically also support sleep states with low or even negligible
power consumption.

The components may have separate memories, so that if a
separate component shall continue to work on the intermediate
result of another component, a data transfer might be necessary
via a communication system (for simplicity, one may assume
a system bus) that connects the components. Also such a data
transfer incurs time and energy consumption. In the programs
we consider (see next subsection) only one component is in
use at any time. We assume that the other components are
put to an energy-saving mode so that their contribution to the
total power consumption can be neglected during that time. An
exception is the central processor core, which always runs.

All components except the central processor core may be
subject to a fault at any time. We assume a fail-stop model, i.e.
a component that fails will be silent [6] and will not consume
further energy. In similarity to [7] we assume a runtime system
that is notified about faults, aborts on-going transfers, and re-
starts the actual phase computation on a different component
if the failed component was in use at the time of the fault.

B. Application Model

We model a program as a sequence of n tasks or phases,
where task 0 is the initialization, task n − 1 is the de-
initialization, and the tasks in between might be given e.g.
as calls to a computational library. For example, Hansson and
Kessler [8] model a solver application for ordinary differential
equations based on libsolve [9], which calls copy, absaxpy,
axpy, scale and absquotMax inside a loop, so that a multitude
of phases exist. Beyond ODE integration, this sequence or iter-
ation based program structure is characteristic for applications
e.g. in solving systems of linear equations (such as Conjugate
Gradient based solvers), time-discretized simulations (e.g., N-
body simulations), online sensor data processing (e.g., cam-
era image frame preprocessing) in control and surveillance
applications, or convolutional neural network inference. We
only target tasks with computational workloads, as I/O and/or
lock-based synchronization requires different approaches for
runtime and energy prediction. For each task, there may exist a
multitude of code variants, i.e. implementations with different
algorithms, different operating frequencies and/or different
execution unit types to be found in a heterogeneous machine.
Examples of code variants are: sequential execution on a single
core of the CPU (switching all other cores to sleep mode),
parallel execution on all cores of the CPU, parallel execution
on the graphics processing unit (GPU), or parallel execution on

any other accelerator, such as Intel Xeon Phi or FPGA. While,
in principle, several variants could use the same execution
resource, we assume in the following that each task has at
most one variant for each execution resource, where variant 0
runs on the master core. This assumption is however no true
restriction and only serves to simplify our notation by skipping
one indirection level in indexing that maps the variants to the
used execution resources. Hence, we will from now on use the
terms variant and execution resource/unit interchangeably.

For each variant of each task, we can forecast (either
by experiments or analytically) the runtime and the energy
consumption of this variant, given the target machine config-
uration and the current execution context (such as the activity
status of the used execution unit, its operating frequency and
whether the operand data still needs be transferred or is already
locally available).

We are aware that the runtime of a particular variant might
not be deterministic for a variety of reasons: dependence on
data distribution, noise, external influences (such as frequency
reduction due to heat). So we might be forced to work with
performance figures derived by averaging over several trials, or
to assume worst case figures, depending on the optimization
context. For example, the question of hard or soft real-time
requirements may change the figures used.

A concrete execution on the chosen platform is character-
ized by the sequence (v0, . . . , vn−1) of the variants chosen.

Please note that not all tasks might offer variants for all
types of execution units. For example, the first and last tasks
are normally executed on the master core of the CPU (v0 =
vn−1 = 0), and for some task a particular accelerator might
not provide the computational capability to execute this task.
We denote the subset of variants available for task i by Vi,
i.e. vi ∈ Vi.

C. Related Work

Kicherer and Karl [10] combine dynamic scheduling of
tasks on a heterogeneous system for performance with fault-
tolerance. Msadek et al. [11] propose an autonomous system to
map services to nodes e.g. to improve load balancing, to map
more important services on trustworthy nodes, and combine
this with fault tolerance. In contrast, we target static scheduling
and consider a multitude of targets for optimization.

Eitschberger [7] computes static schedules for tasks with
dependencies on parallel machines with speed scaling and
considers the trade-off between runtime, energy efficiency and
fault tolerance. However, his target platforms are homoge-
neous, and he treats fault-free and fault cases separately.

Izosimov [12] considers transient faults, which are over-
come by re-execution. In contrast, we consider permanent
faults.

Hansson and Kessler [8] consider optimal selection of
variants in programs modeled as sequences of multi-variant
tasks, but do not consider fault tolerance.

Fig. 1. Execution graph of program with n = 5 tasks (numbered 0,...,4,
first entry in each box) and p = 3 variants per task (numbered 0,...,2,
second entry in each box). Edge cost labels are omitted for better readability.
Purple arrows show the shortest continuation path from each task variant
to the sink (4, 0). The overall shortest path from source to sink is here
((0, 0), (1, 0), (2, 1), (3, 2), (4, 0)).

III. SCHEDULING ALGORITHM

A. Shortest Path Algorithm

All possible execution options, i.e. all possible sequences,
can be expressed as a directed graph G = (V,E), called
program execution variant graph, where the set V of nodes is
comprised of all variants of all tasks, i.e.

V = {si,j | i = 0, . . . , n− 1, j ∈ Vi}

and the set of edges is comprised of the complete directed
bipartite (sub)graphs between the nodes of successive tasks,
i.e.

E = {(si,j , si+1,j̃) | i = 0, . . . , n−2, j ∈ Vi, j̃ ∈ Vi+1} .

Such an execution graph for n = 5 tasks and p = 3
variants per task (except for first and last task, see previous
section) is illustrated in Fig. 1. A particular execution sequence
(v0, . . . , vn−1) is given by a path from s0,0 to sn−1,0, i.e. from
source to sink, comprising all nodes si,vi . Such an execution,
choosing variants 0, 1 and 2 for the inner stages, is highlighted
as a path in Fig. 1.

Each node, i.e. each variant of each phase, can be attributed
with its runtime and energy consumption. In addition, when
two successive tasks are realized in different variants, i.e. if
vi+1 6= vi, and when the associated execution units use dif-
ferent memories, then a data transfer between those memories
(e.g. between CPU main memory and GPU memory) or a con-
version of data representation (e.g. when switching between
word-parallel and bit-slice representation) might be necessary
with associated runtime and energy consumption, attributed to
the edge (si,vi , si+1,vi+1). We model this by defining transfer

cost matrices tri ∈ Vi × Vi+1, where tr(i, j) = 0 if variants
vi and vj use the same memory and data representation.

In order to only deal with edge attributes (also called
weights in the sequel), we add the node weights to each
outgoing edge. This forces us to ignore the weight of the
sink node. However, as this node is part of every execution
sequence, it will not influence choice of paths with some
optimality criteria. We denote the attributes by ti,j,j̃ for the
runtime of variant j in task i plus the transfer or conversion
time when switching to variant j̃ in task i + 1, and ei,j,j̃ for
the associated energy consumption. For a concrete execution
sequence (v0, . . . , vn−1), the total runtime T (v0, . . . , vn−1)
(and energy consumption E(v0, . . . , vn−1)) can be computed
as the sum of the runtimes (energy consumption values) along
the path from source to sink node:

T (v0, . . . , vn−1) =

n−2∑
i=0

ti,vi,vi+1
(1)

E(v0, . . . , vn−1) =
n−2∑
i=0

ei,vi,vi+1
(2)

The variants for a concrete execution might be selected prior
to the actual execution, constituting a case of static scheduling.
As scheduling is an optimization problem, a number of target
functions may be suitable depending on the optimization goal,
some examples being:
• minimizing total runtime,
• minimizing total energy consumption,
• minimizing the weighted sum of runtime and energy

consumption,
• minimizing the energy consumption while the runtime

does not exceed a given deadline.
In the present paper, we only consider the first three options.

The choice of the variants thus becomes a variant of the
single-source shortest path problem (SSSP) [8]. For the graph
structure of our application scenario, solving this optimization
problem is simpler than for a general graph. We construct
the optimal path by starting in the sink node sn−1,0 and
we execute the shortest path algorithm by determining the
minimum distances of the nodes in phase i from the given
distances of the nodes in phase i + 1, for i = n − 2, . . . , 0.
This is a variant of Dijkstra’s SSSP algorithm [13] but we
can avoid the use of a priority queue. The time complexity is
linear in the size of the graph (O(#edges)), i.e. O(n · p2).

While we only need the shortest path from the source node
to the sink node for the scheduling in the fault-free case, i.e.
for computing the execution sequence (v0, . . . , vn−1), solving
this problem is not faster than computing the shortest path
from all nodes to the sink. As a by-product, this simplifies to
cover fault situations, which are treated in the next subsection.

B. Extending the Execution Graph

We extend the execution graph to cover fault cases in two
steps.

In step 1, we attribute each edge e = (u, v) which belongs
to the shortest path from u to the sink with a set N(e) that

specifies all nodes on the remainder of that shortest path. We
compute the attributes starting with the (hypothetical) edge
leaving the sink node which is attributed with the empty set.
For any other edge e = (u, v), we define N(e) = {v} ∪
N(e′) where e′ is the shortest path edge that leaves v. We
also attribute each node si,j with the set Ex(si,j) of nodes
not needed in the future when following the shortest path from
that node to the sink node. The attribute can be computed by
set exclusion, i.e. Ex(si,j) = {0, . . . , p − 1} \N(e) where e
is the shortest path edge that leaves si,j .

In step 2, we model all fault situations to be tolerated
by a set F . If only the failure of a single component must
be tolerated, and each variant is executed on a different
component, then F = {∅, {1}, . . . , {p − 1}}. The empty
set is included as it specifies the situation without a fault.
Variant 0 executed on component 0 (the master core) is not
included as it runs the sink node task and hence its failure
cannot be tolerated. The maximum F , where up to p − 1
component/variant faults can be tolerated, is the power set
of {1, . . . , p− 1}.

We extend the graph by nodes sSi,j for all i = 0, . . . , n− 1,
j ∈ Vi and S ∈ F . By sSi,j we mean that task i is executed in
variant j, and that fault status S is present, i.e. that the shortest
path from this node to the sink node may not use a variant
from S anymore. Please note that we allow that j ∈ S, which
seems contradictory, but will be explained below. The original
nodes si,j correspond to nodes s∅i,j , as the shortest path from
si,j to the sink node is allowed to use all variants.

For all S where S ⊆ Ex(si,j), we can identify node sSi,j
with si,j , as the shortest path from si,j to the sink does not use
any node from S. For the nodes sSi,j that cannot be identified
with an already existing node, we add outgoing edges: node
sSi,j is connected to all nodes sSi+1,j′ where j′ 6∈ S. Thus, a
node sSi,j with j ∈ S does not have incoming edges.

Now we can compute shortest paths from these nodes to
the sink node. As the path at some place may converge with
an existing path, if a follow-up node is identified with a
previously existing node, the effort for this computation is
reduced in contrast to using a different, modified graph for
each fault situation.

Figure 2 illustrates the extended graph for the execution
graph of Figure 1.

C. Scheduling in Fault Cases

In the fault-free case, we just use the computed execution
sequence along the shortest path from source to sink node
and execute the respective variants, one by one, doing data
transfers in-between if necessary.

In the case of a fault, we use the extended graph in
the following way. We assume a fail-stop model, where a
component that fails is silent [6] for the rest of the execution,
and where the runtime system learns or is notified about the
failure [7] (e.g. by repeated probing of components.) Thus, at
each point in time, we know the current fault status S, i.e. the
set of failed components.

Fig. 2. Extended execution graph considering at most one faulty hardware unit (variant) for the program with n = 5 tasks of Figure 1. Variant 0 is assumed
to be always fault-free (hardened by hardware mechanisms). The execution graph of Figure 1 is contained as a subgraph modeling the fault-free case (yellow
nodes). The green nodes model all execution states in the case of one fault. They are identified by triplets (i, j, k) where 0 ≤ i ≤ n− 1 denotes the stage
number, 0 ≤ j < |Vi| denotes the variant of stage s, and 1 ≤ k < |Vi| denotes the variant assumed to become unavailable during the execution of (i, j).
Again, purple edges show the shortest continuation path to the sink from each node. Red edges indicate that node (i, j, k) can be identified with node (i, j),
because the shortest path leaving (i, k) will not use variant k. For example, node (1, 2, 1), assuming variant 1 being broken, can delegate to the shortest
continuation path from regular node (1, 2) which passes along (2, 2), (3, 0) and (4, 0) and thus does not use the faulty component of variant 1.

If a component k fails, then we extend the fault status by
including k into S, and check if the updated S still is a subset
of F . If not, then the computation cannot be finished anymore.
For the remainder, we focus on the case S ⊆ F .

If we currently execute task i in variant j 6= k, then we
look up node sSi,j in the graph and follow the shortest path
from that node. If k = j, we must do a bit more, as the work
already invested in the current task is lost. We look up the
variant j′ that has been used for task i − 1. Then we switch
to node sSi−1,j′ , and follow the shortest path from there, i.e.
we repeat task i on a different component. To be able to do
so, we assume that at the end of each task, a checkpoint is
written to stable storage (as is usual in backward recovery-
based fault-tolerance [4]), which is kept until the follow-up
task is completed successfully. Please note that j′ = k is
possible, which explains why we considered nodes sSi,j with
j ∈ S in the previous subsection.

IV. EXPERIMENTAL RESULTS

We have implemented the two algorithms described in
Section III:
• SP (Shortest Path) algorithm working on the execution

graph for the fault-free case (Section III-A);
• FESP-1 (Single-Fault Extended Shortest Path) algorithm

constructing and optimizing on the extended execution
graph (Section III-B).

As baseline for comparison with FESP-1 in the single-
fault scenario, we also implemented a simple brute-force
enumeration algorithm that we call FSPX-1:
• FSPX-1 (SP for all eXclusions of single variants) consid-

ers for each non-failure-proof variant (k = 1, 2, . . .) the

reduced graph Gk derived from the execution graph by
excluding just that one (assumed faulty) variant per task,
performs SP on each Gk, and returns the set of resulting
shortest paths.
To achieve a fair comparison, we did some optimizations
for this implementation, most notably to construct all sets
of shortest paths together from one graph representation.
In doing so, we became a little unfair towards our
proposed method, e.g. we did not provide an access
structure to find the shortest path depending on the fault
situation, and thus did also not store the results in the
brute-force implementation.

While the absolute runtimes, and thus the absolute saving
in scheduling time, are small in our experiments, real-world
graphs may be notably larger, e.g. have more phases, or more
variants if multiple operating frequencies are used for each
component.

Table I shows the wall-clock times (measured with Linux
gettimeofday) for finding the shortest paths for 70 dif-
ferent combinations of the number of tasks (n = 3, ..., 19)
and the number of variants per task (p = 2, ..., 8), averaged
over 10 different task graphs with randomly generated edge
weights (which model task variant runtimes and switching
costs where applicable) for each such combination (n, p)1,
hence 700 task graph instances in total. The table also shows
the number of nodes and edges of the execution graph, as
well as the maximum and averaged actual number of edges in
the extended graph used for FEXP-1. Column SP shows the

1We consider here that heterogeneous systems usually have not more than
p = 8 different resource types in practice, and often fewer. The cutoff for the
number n of tasks at 19 was an ad-hoc choice.

TABLE I
OPTIMIZATION TIMES IN MICROSECONDS FOR 70 DIFFERENT GRAPH SIZE CONFIGURATIONS WITH n = 3...19 TASKS AND 2...8 VARIANTS PER TASK,

AVERAGED OVER 10 GRAPHS (STANDARD DEVIATIONS IN BRACKETS) WITH RANDOMLY GENERATED EDGE WEIGHTS PER CONFIGURATION (n,p).

#Tasks #Variants Execution Graph Extended Graph Optimization Times
(n) (p) #Nodes #Edges Max. #Edges Avg. #Edges SP FSPX-1 FESP-1* FESP-1
3 2 4 4 6 4.5 0.5 us [0.2] 0.6 us [0.2] 2.9 us [0.2] 0.5 us [0.2]
3 3 5 6 14 7.4 0.9 us [0.1] 1.4 us [0.2] 5.2 us [0.3] 1.1 us [0.1]
3 4 6 8 26 10.7 0.7 us [0.2] 2.3 us [0.3] 8.3 us [0.9] 2.2 us [0.3]
3 5 7 10 42 14.0 1.0 us [0.2] 3.4 us [0.3] 10.4 us [1.4] 1.8 us [0.3]
3 6 8 12 62 17.0 1.0 us [0.2] 3.8 us [0.5] 14.8 us [1.6] 4.7 us [1.6]
3 7 9 14 86 20.0 1.3 us [0.2] 5.1 us [0.6] 13.4 us [1.0] 3.6 us [0.3]
3 8 10 16 114 23.0 1.1 us [0.1] 5.2 us [0.1] 15.6 us [0.4] 4.8 us [0.2]
4 2 6 8 12 10.0 1.0 us [0.2] 1.1 us [0.1] 4.2 us [0.5] 0.6 us [0.2]
4 3 8 15 35 22.8 1.3 us [0.2] 2.0 us [0.0] 7.4 us [0.4] 1.7 us [0.2]
4 4 10 24 78 38.7 1.5 us [0.2] 4.4 us [0.2] 12.6 us [0.7] 3.7 us [0.4]
4 5 12 35 147 59.0 2.2 us [0.1] 7.3 us [0.2] 16.5 us [0.4] 4.4 us [0.3]
4 6 14 48 248 87.0 2.6 us [0.2] 10.9 us [0.2] 23.9 us [0.9] 6.5 us [0.6]
4 7 16 63 387 115.8 3.7 us [0.2] 16.2 us [0.3] 30.7 us [0.6] 9.5 us [0.5]
4 8 18 80 570 148.6 4.1 us [0.1] 22.4 us [0.3] 40.3 us [1.1] 12.7 us [0.9]
5 2 8 12 18 16.2 1.0 us [0.0] 1.0 us [0.0] 5.3 us [0.3] 1.2 us [0.1]
5 3 11 24 56 37.4 1.8 us [0.1] 2.9 us [0.1] 10.6 us [0.4] 2.7 us [0.3]
5 4 14 40 130 74.2 2.8 us [0.1] 6.4 us [0.2] 17.7 us [0.6] 5.0 us [0.4]
5 5 17 60 252 121.2 3.7 us [0.2] 11.3 us [0.2] 30.2 us [1.1] 10.0 us [0.8]
5 6 20 84 434 177.0 4.8 us [0.3] 19.1 us [0.5] 53.0 us [4.0] 16.2 us [0.6]
5 7 23 112 688 245.2 7.9 us [0.9] 36.6 us [3.8] 83.8 us [3.7] 23.4 us [1.9]
5 8 26 144 1026 321.1 9.2 us [1.0] 51.5 us [5.7] 84.7 us [4.1] 28.3 us [2.2]
7 2 12 20 30 26.6 1.8 us [0.1] 1.1 us [0.1] 7.0 us [0.4] 1.4 us [0.2]
7 3 17 42 98 77.0 3.4 us [0.3] 4.9 us [0.5] 20.0 us [1.7] 5.9 us [0.6]
7 4 22 72 234 160.2 6.0 us [0.7] 14.0 us [1.4] 47.0 us [3.7] 14.8 us [1.3]
7 5 27 110 462 259.2 6.7 us [0.6] 21.1 us [1.7] 63.2 us [6.1] 19.3 us [1.6]
7 6 32 156 806 410.5 9.2 us [0.7] 36.7 us [2.9] 93.5 us [6.4] 30.1 us [2.3]
7 7 37 210 1290 591.6 10.5 us [0.3] 50.2 us [1.0] 133.3 us [8.3] 45.2 us [2.2]
7 8 42 272 1938 789.3 17.8 us [1.8] 86.5 us [8.5] 168.4 us [11.0] 55.4 us [3.3]
9 2 16 28 42 39.0 2.2 us [0.3] 1.4 us [0.2] 9.3 us [0.9] 2.0 us [0.2]
9 3 23 60 140 113.4 3.7 us [0.2] 6.6 us [1.3] 22.8 us [0.7] 7.1 us [0.6]
9 4 30 104 338 258.2 6.1 us [0.2] 14.2 us [0.1] 50.9 us [1.9] 18.3 us [1.9]
9 5 37 160 672 437.6 9.3 us [0.2] 28.7 us [0.4] 95.0 us [4.9] 35.4 us [4.5]
9 6 44 228 1178 685.0 12.0 us [0.2] 46.8 us [0.7] 127.4 us [3.2] 44.2 us [1.1]
9 7 51 308 1892 1044.8 15.3 us [0.2] 73.4 us [0.6] 193.8 us [3.4] 66.0 us [1.1]
9 8 58 400 2850 1365.3 24.5 us [2.6] 140.5 us [17.5] 298.7 us [17.8] 98.0 us [4.5]

11 2 20 36 54 51.5 2.7 us [0.2] 1.7 us [0.2] 11.7 us [0.9] 3.2 us [0.4]
11 3 29 78 182 162.4 5.5 us [0.5] 7.4 us [0.6] 31.9 us [2.6] 9.2 us [0.6]
11 4 38 136 442 355.6 8.9 us [0.7] 19.2 us [1.5] 72.6 us [4.0] 24.3 us [0.9]
11 5 47 210 882 623.6 11.6 us [0.4] 37.3 us [1.2] 120.9 us [9.1] 39.5 us [2.5]
11 6 56 300 1550 1047.5 15.8 us [0.3] 63.2 us [0.9] 213.6 us [9.7] 77.3 us [6.8]
11 7 65 406 2494 1502.2 21.9 us [1.9] 106.6 us [9.6] 317.9 us [22.9] 110.2 us [8.7]
11 8 74 528 3762 2000.8 26.8 us [2.3] 153.8 us [12.6] 382.6 us [16.6] 136.1 us [9.0]
13 2 24 44 66 63.1 3.0 us [0.0] 1.8 us [0.1] 11.2 us [0.3] 2.9 us [0.2]
13 3 35 96 224 197.2 5.8 us [0.2] 8.3 us [0.2] 34.2 us [0.8] 10.7 us [0.5]
13 4 46 168 546 459.0 9.6 us [0.2] 22.0 us [0.4] 81.0 us [1.7] 27.9 us [0.7]
13 5 57 260 1092 861.6 18.6 us [3.1] 58.4 us [9.2] 173.9 us [10.2] 59.4 us [2.9]
13 6 68 372 1922 1385.0 19.3 us [0.3] 75.5 us [1.2] 260.8 us [12.3] 87.5 us [4.0]
13 7 79 504 3096 1989.6 26.4 us [2.2] 130.9 us [10.2] 375.4 us [12.0] 129.3 us [6.9]
13 8 90 656 4674 2872.2 41.2 us [4.3] 242.3 us [25.2] 636.0 us [54.4] 213.0 us [22.5]
15 2 28 52 78 76.0 3.9 us [0.4] 2.3 us [0.2] 14.6 us [1.2] 3.5 us [0.3]
15 3 41 114 266 243.0 6.5 us [0.2] 9.2 us [0.2] 44.8 us [1.0] 14.8 us [0.4]
15 4 54 200 650 566.0 11.2 us [0.2] 25.3 us [0.5] 104.7 us [5.8] 40.3 us [5.4]
15 5 67 310 1302 1047.6 16.3 us [0.3] 51.2 us [0.5] 195.1 us [11.5] 68.3 us [4.8]
15 6 80 444 2294 1691.5 25.2 us [2.3] 100.3 us [9.7] 326.9 us [21.9] 114.1 us [7.5]
15 7 93 602 3698 2440.4 38.2 us [3.8] 190.7 us [20.3] 556.0 us [40.0] 184.5 us [15.4]
15 8 106 784 5586 3726.8 56.5 us [4.7] 330.7 us [26.9] 840.9 us [73.3] 282.7 us [28.6]
17 2 32 60 90 87.7 4.7 us [0.5] 3.0 us [0.4] 17.7 us [1.2] 4.2 us [0.5]
17 3 47 132 308 281.2 10.9 us [1.6] 12.9 us [1.3] 65.1 us [5.0] 23.4 us [4.9]
17 4 62 232 754 675.4 15.6 us [1.9] 33.2 us [3.3] 140.3 us [8.7] 49.3 us [4.3]
17 5 77 360 1512 1243.6 28.2 us [2.6] 88.2 us [8.5] 264.6 us [23.3] 86.1 us [6.1]
17 6 92 516 2666 2051.0 34.3 us [3.3] 139.7 us [12.7] 487.5 us [18.9] 154.8 us [11.3]
17 7 107 700 4300 3113.8 47.0 us [4.8] 231.9 us [23.4] 715.8 us [57.8] 229.7 us [20.3]
17 8 122 912 6498 4374.9 46.4 us [3.7] 276.6 us [20.5] 779.3 us [21.8] 269.9 us [18.3]
19 2 36 68 102 99.3 4.1 us [0.1] 2.6 us [0.2] 17.5 us [1.3] 4.8 us [0.3]
19 3 53 150 350 326.0 10.0 us [1.1] 13.7 us [1.2] 66.5 us [3.8] 23.2 us [2.1]
19 4 70 264 858 756.9 20.6 us [1.8] 48.1 us [4.0] 173.0 us [8.7] 61.7 us [4.2]
19 5 87 410 1722 1436.0 36.4 us [2.3] 116.7 us [6.2] 364.9 us [23.8] 116.9 us [6.7]
19 6 104 588 3038 2441.0 38.2 us [3.7] 157.3 us [16.2] 572.2 us [30.7] 178.6 us [11.4]
19 7 121 798 4902 3615.0 53.3 us [5.1] 265.2 us [26.4] 778.8 us [68.7] 252.6 us [20.1]
19 8 138 1040 7410 5015.3 74.2 us [7.1] 438.3 us [39.9] 1178.4 us [89.1] 390.9 us [43.2]

averaged times for the SP algorithm computing the shortest
path for the fault-free case (as in Figure 1). Column FSPX-
1 gives the averaged times for computing shortest paths
excluding one variant per node; these runs reuse the already
allocated execution graph data structure and these times do
not include the time for storing the p − 1 different shortest
path solutions. Finally, column FESP-1* gives the averaged
times of the FESP-1 algorithm for constructing the extended
graph and computing the shortest path for all possible failures
of one execution unit (variant) among variants 1, 2, ..., 8,
while column FESP-1 shows the time of the FESP-1 algorithm
excluding the time for constructing the extended graph.

We observe that the optimization times of all three im-
plementations grow with the corresponding graph size. The
baseline algorithm FSPX-1 takes, except for cases with only
2 variants, longer time than SP, which is expected because it
must execute SP multiple times on restricted execution graphs,
despite our optimizations. Likewise, shortest path computation
in FESP-1 takes longer than in SP, because it works on a much
larger graph. Nevertheless, the average actual number of edges
in the extended graph is clearly lower than the maximum
possible number of edges, typically by a factor of up to 2,
which shows the graph folding effect of the FESP-1 algorithm.
FESP-1* takes generally longer than FSPX-1, which is mainly
due to the construction of the much larger extended graph as
we can see from the FESP-1 column while FSPX-1 reuses
the execution graph data structure over all its iterations. It
is actually fair to compare FSPX-1 and FESP-1 times, i.e.
excluding graph construction times for both algorithms, be-
cause for FSPX-1 the graph construction time for the restricted
graphs (and storing their solutions for its p− 1 different fault
scenarios) are not included in the FSPX-1 timings either. In
addition, the measurement setup is too friendly towards FSPX-
1 as the data structure is reused across all its p − 1 SP runs
and the solutions are not stored but overwritten. Based on that,
we see that our FESP-1 algorithm considerably improves in
performance in almost all cases over the FSPX-1 baseline, in
the considered graph configurations with speedups typically
between 10% and 100% for sufficiently large p.

V. CONCLUSIONS

We have presented how to extend a static scheduling al-
gorithm for executing a multi-variant program on a hetero-
geneous computing platform with different execution units
(like multiple CPU cores, a GPU, and other accelerators) to
cover the situation of a fault of one or more components, so
that one or more code variants are not executable anymore.
Our scheduler finds, even for fault situations, the sequence of
variants leading to minimum runtime, energy consumption, or
a weighted sum of both. We have implemented and evaluated
our scheduler and compared it to an alternative with synthet-
ically generated program structures. In the experiments, our
scheduler on average needs only 55% of the scheduling time
of the alternative for 8 variants.

Future work will comprise the extension of the schedule’s
optimization target to constraint path scheduling, e.g. mini-

mum energy under the constraint that the runtime stays below
a pre-defined threshold, which is an NP-complete problem for
general graphs [14]. Also, our implementation so far assumes
that each variant runs on a different component, so that the
fault of a component only affects one variant. Our hypothesis
is that the advantage of our method increases with the number
of tolerated faults, as there will be more opportunities to
identify nodes of fault situations with other nodes. Finally,
the graph size may grow exponentially with the number of
unavailable variants. For example, for n = 100 stages and
p = 10 variants, the graph comprises 1,000 nodes in the fault-
free case, up to 10,000 if one variant may fail, up to 46,000
if two variants may fail, and already up to 130,000 if three
variants may fail. We plan to quantify the limits of use for our
approach in the worst case and for realistic task graphs taken
from real-world software flows.

Beyond the concrete use in fault tolerance, the approach
might also be used as a low-overhead anomaly detection in
real-time scenarios.

ACKNOWLEDGMENT

We are very grateful to Martin Hellwig who mentioned
a related optimization problem in route planning for electric
vehicles, and thus sparked the present research.

C. Kessler acknowledges partial funding from EU H2020
project EXA2PRO (801015), exa2pro.eu.

REFERENCES

[1] Q. Wu, Y. Ha, A. Kumar, S. Luo, A. Li, and S. Mohamed, “A
heterogeneous platform with GPU and FPGA for power efficient high
performance computing,” in Proc. 2014 International Symposium on
Integrated Circuits (ISIC), 2014, pp. 220–223.

[2] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, pp. 258–266, 2005.

[3] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18,
no. 4, pp. 20–28, July/August 2001.

[4] D. P. Siewiorel and R. S. Swarz, Reliable Computer Systems — Design
and Evaluation, 3rd ed. Natick, Mass.: A K Peters, 1998.

[5] S. Holmbacka and J. Keller, “Workload type-aware scheduling on
big.LITTLE platforms,” in Proc. Internat. Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2017), S. Ibrahim, K.-
K. R. Choo, Z. Yan, and W. Pedrycz, Eds. Cham: Springer International
Publishing, 2017, pp. 3–17.

[6] R. Schlichting and F. Schneider, “Fail-stop processors an approach
to designing fault-tolerant computing systems,” ACM Transactions on
Computing Systems, vol. 1, no. 3, pp. 222–238, 1983.

[7] P. Eitschberger, “Energy-efficient and fault-tolerant scheduling for many-
cores and grids,” PhD Dissertation, FernUniversität in Hagen, Germany,
2017.

[8] E. Hansson and C. Kessler, “Optimized variant-selection code generation
for loops on heterogeneous multicore systems,” in Proc. ParCo-2015
conference, Edinburgh, UK, 1-4 Sep. 2015. Published in: G. Joubert, H.
Leather, M. Parsons, F. Peters, M. Sawyer (eds.): Advances in Parallel
Computing, Volume 27: Parallel Computing: On the Road to Exascale.
IOS Press, Apr. 2016, pp. 103–112.

[9] M. Korch and T. Rauber, “Optimizing locality and scalability of em-
bedded Runge-Kutta solvers using block-based pipelining,” J. Parallel
Distrib. Comput., vol. 66, no. 3, pp. 444–468, Mar. 2006.

[10] M. Kicherer and W. Karl, “Automatic task mapping and heterogeneity-
aware fault tolerance: The benefits for runtime optimization and
application development,” Journal of Systems Architecture - Embedded
Systems Design, vol. 61, no. 10, pp. 628–638, 2015. [Online]. Available:
https://doi.org/10.1016/j.sysarc.2015.10.001

[11] N. Msadek, R. Kiefhaber, and T. Ungerer, “A trustworthy,
fault-tolerant and scalable self-configuration algorithm for
organic computing systems,” Journal of Systems Architecture,
vol. 61, no. 10, pp. 511 – 519, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138376211500082X

[12] V. Izosimov, “Scheduling and optimization of fault-tolerant distributed
embedded systems,” Doctoral dissertation, Linköping University, 2009.

[13] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
MIT Press, 1990.

[14] M. Ziegelmann, “Constrained shortest paths and related problems,” PhD
Dissertation, Saarland University, Germany, 2001.

