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ABSTRACT 
 

We present a parallel software driver for a RAID 

architecture to detect and correct corrupted disk blocks in 

addition to tolerate disk failures. The necessary 

computations demand parallel execution to avoid the 

processor being the bottleneck for a RAID with high 

bandwidth. The driver employs the processing power of 

multicore and manycore systems. We report on the 

performance of a prototype implementation on a 

quadcore processor that indicates linear speedup and 

promises good scalability on larger machines. We use 

reordering of I/O orders to ensure balance between CPU 

and disk load. 
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1. INTRODUCTION  
 

RAID architectures [1] have been introduced to tolerate 

disk failures. It turns out however, that also functional 

disks over time evolve corrupted data blocks by so-called 

silent errors [2]. This type of error gains in importance 

with the advent of solid-state disks due to wear out of 

memory cells. Although SSDs keep an additional space to 

replace defective cells it’s only a matter of time and type 

of usage until this space gets insufficient. Recent 

developments showed that the reliability of SSDs is 

mostly sacrificed for capacity and cost per bit [9]. 

Especially the process of decreasing cell sizes, while 

increasing the number of storable states rose concerns 

about the reliability. Other than that SSD cells are not 

only getting worn out due to write processes, they tend to 

lose their state over time as well. While there exist 

checksum schemes such as ZFS [3] to handle silent errors, 

the overhead is notable, and hence integration of schemes 

for disk failure and data block corruption seems 

advantageous. 

 

The Software RAID considered in this paper was 

introduced in [4] and is organized as follows: Each disk is 

divided into equally sized blocks of n Sectors, starting at a 

certain offset. All blocks across the disks in the array at 

the same position are combined to a stripe. Every stripe 

contains two blocks storing parity values, whereas the 

computation of each parity value ranges over two stripes. 

We denote the four parity values within two stripes by P, 

Q, R and S. The values computed are based on Reed 

Solomon codes using multiplications with Generators g 

based on finite fields, see Fig. 2. By combining the four 

parity values of two stripes as depicted in Fig. 1, detection 

and correction of corrupted disk blocks is possible in 

addition to RAID-6 behavior in case of disk loss. 

However, to detect corrupted blocks, parity values must 

be recomputed with each read and compared to stored 

parity values. The architecture has been optimized by 

using optimized lookup tables to speed up computations 

[5], but the resulting computational effort is still high. 

Moreover, with a larger number of disks providing data at 

high bandwidth, the computation itself could turn out to 

be the bottleneck. Previous investigations were primarily 

focusing on how to speed up encoding speeds during 

writes. This paper shows, how such an architecture could 

be implemented effectively in a RAID driver that uses 

parallel threads to exploit computational capabilities 

available in multicore processors, to balance disk 

bandwidth and computation. The driver has to cope with 

different priorities of read and write orders which renders 

low-overhead parallelization non-trivial. Some RAID 

systems like RAID-5 or RAID-6 have already been 

implemented in the major operating systems Linux [6] and 

Windows. The Linux implementation focuses on 

exploiting special instruction sets like SSE or MMX [7] 

rather than taking advantage of multiple processors. The 

most complex RAID configuration that Windows supports 

is RAID-5, which is implementable delivering a sufficient 

speed using a single core only, however the 

implementation remains undocumented. There have been 

investigations on speeding up Reed/Solomon-encoding 

with a FPGA-based coprocessor [8] which requires 

additional hardware. 
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 Figure 1. Organization Of Data Blocks In The RAID 

  

 

 

 

 
 

Figure 2. Parity Calculations 

 

The remainder of the paper is organized as follows. 

Section 2 describes the architecture of a parallel RAID 

driver and describes an optimized reordering to enable 

parallel disk and parity processing. In Section 3 we show 

the prioritization concept of the threads and present 

figures showing the advantage of connected disk orders. 

In Section 4 we give a conclusion and an outlook on 

future work. 

 

2. RAID ARCHITECTURE WITH 

OPTIMIZED REQUEST REORDERING   
 

The RAID architecture performs integrity checks when 

reading and generates parity when writing blocks. 

Therefore each disk I/O operation involves parity 

computation. Both of the steps to process read and write 

operations are parallelized to gain speedup and they can 

further be improved by implementing them parallel to 

each other, if possible. If parity checks fail, a recovery 

process has to be started to recover corrupted data. All 

data elements in two stripes have to be known to generate 

or check data. Thus, if read or write operations start or 

end in the middle of two stripes, the remaining data has to 

be read from the disk array first. In case of write orders, 

this data has to be checked first, in order to avoid the 

generation of parity with possibly corrupted data. This can 

only be achieved, if the whole dataset of two stripes will 

be read, even the part that will be overwritten later. From 

a performance perspective, reading full double stripes 

won’t generate too much overhead, as data blocks will be 

read in parallel from all disks and block sizes are chosen 

in a range so that reading any smaller amount wouldn’t be 

significantly faster because of the comparatively higher 

disk access overhead. The whole process is depicted in 

Fig. 3. 

 
 

Figure 3. Parity And Disk Access Diagram 

 

2.1. Parallelizing Parity Computation  
 

Parity is computed in parallel threads in order to avoid it 

from being a bottleneck and to gain the fastest possible 

response time if computations have to be done serially to 

disk I/O operations. We generate parallel processable 

work loads by splitting up data blocks, in a way that each 

execution path accesses each part of all blocks with the 

same offset within two stripes and generates full sets of 

parity values, see Fig. 4. With this method the accessed 

data is being separated between each thread without the 

need of further synchronization operations to perform 

simultaneous write accesses to the same data blocks. 

Secondly it’s easy to generate equally sized workloads for 

almost any number of parallel execution paths. 

Nevertheless we’ve considered splitting up the data by 

assigning whole blocks, see Fig. 5. To compute parity we 

use lookup tables holding precomputed multiplication 

results. When computing parity, a different part of the 

lookup tables is being used for each data block. By 

assigning whole blocks, each thread and processor would 

only have to access parts of the lookup tables which 

lowers cache misses. However, by optimizing the table 

access order as described in [5] the first method is 

producing the best results while providing better 

scalability. 
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Figure 4. Assigning Parts Of All Blocks To Threads 
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Figure 5. Assigning Whole Blocks To Different 

Threads 

 

2.2. Optimizing Write Orders  
 

Write orders are easier to optimize than read orders, as 

they can be buffered and reported back to the caller as 

completed although they are not even started. While the 

buffer is being filled with write operations, the storage 

driver can optimize the writing process by reordering the 

commands and parallelizing calculations and I/O 

operations. If the buffer reaches its limit, one of the 

resources, usually the disk, will be the limiting factor, 

blocking upcoming orders. The number of disk I/O 

operations can be reduced by connecting consecutive 

write operations, see Fig. 6, which shows the merging of 

data blocks of Fig. 1. Writing consecutive data blocks will 

result in a higher I/O speed. Secondly, the number of 

necessary synchronization operations can be reduced as 

well. Each thread would normally compute one block at a 

time and then synchronize to receive a new order from the 

queue. 
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Figure 6. Combining Blocks To Reduce 

Synchronization 

 

If write orders are buffered, the worker thread can be 

supplied with the number of unprocessed orders instead of 

synchronizing for every single order. Using connected 

blocks will help ordering the overhead access to the 

lookup tables for finite field multiplications, which 

reduces the number of CPU cache misses. That way the 

overhead can be reduced and a bunch of smaller I/O 

operations will be computed more efficiently on multiple 

cores. 

 

2.3. Optimizing Read Orders  
 

Read orders cannot be buffered as the calling instance 

could probably use the data immediately after receiving a 

completion receipt. Without read ahead techniques, which 

is the case if random read accesses occur, the design goal 

has to be reacting as fast as possible. The response time 

will be the sum of parallel disk I/O and parity checking. 

To enable buffering techniques a read ahead should be 

performed immediately after the requested block has been 

transferred, to utilize the disks while parity is being 

checked. The amount of data that will be read depends on 

many factors: the size of the preceding read command, the 

time it needs to be processed, the characteristics of the 

storage medium and the probability of the used data to be 

requested next. 

 

2.4. Optimizing Mixed Read And Write Orders  
 

In an optimal case all of the upcoming read and write 

operations are known and the RAID driver is able to 

parallelize disk and CPU load. Depending on the speed 

and the number of available resources either parity 

processing or disk I/O operations would limit the 

bandwidth. 

 

For write operations this can simply be achieved by 

buffering orders. Read operations cannot be buffered and 

therefore they block upcoming orders until they are 

processed. If the driver receives alternating read and write 

requests without rescheduling their order it would have to 

process disk I/O and parity computations serially which 

dramatically decreases performance. To avoid read 

operations from emptying the buffer, they have to be 

processed with a higher priority. In this case, they will 

interrupt the processing of buffered write operations and 

can seamlessly utilize CPU and disk bandwidth. As long 

as there is space in the buffer, upcoming read operations 

will stall the write operations. 

 

Two important optimizations, as shown above, are 

working against this scenario of mixed read and write 

commands. If multiple disk write orders are merged to 

reduce synchronization overhead, a single read operation 

cannot be placed in between. If read operations interrupt 

consecutive write orders, the additional positioning times 

of rotating disks could decrease the disks’ I/O 

performance. Newer solid state disks however would be 

less impacted, although they are profiting of consecutive 

I/Os as well. Therefore a lot of tuning has to be done that 

has to fit the type and number of used storage media and 

the performance and number of processors. 

 



Depending on the application the size and rate of the read 

and write operations will vary. A database will create a lot 

more small and random accesses than a storage server. 

Random read accesses will result in unsuccessful read 

aheads. If the database doesn’t request parallel read 

operations, the parity checks will have to be done serially 

to the disk I/O. Therefore the optimizations are restricted 

to more general types of usage involving mixed read and 

write requests. 

 

3. IMPLEMENTING THE RAID DRIVER  
 

3.1. Thread Architecture  
 

To accomplish fast reaction for small read operations and 

high throughput for write operations the computations and 

disk I/O commands are being split in different threads 

with separate order queues. The order enqueuing function 

checks whether the next order can be combined with 

previous ones to reduce overhead. The optimal maximum 

combined order size depends on the number and types of 

disks used. 

 

One thread is implemented for each processor or core, to 

parallelize parity computations. To ensure that parity 

computations for higher priority read operations are 

processed as soon as possible a second set of threads is 

started with a higher priority. The scheduler of the 

operating system will switch to the higher priority threads 

as soon as orders are enqueued. The highest priority 

thread in the driver will be used for disk I/O threads, to 

prevent them from being blocked by parity generation 

threads. The enqueuing of orders will be prioritized above 

parity generation of write operations to ensure they won’t 

be blocked when connecting orders, see Tab. 1. 

 

Table 1. Assigning Priority Boosts To Threads 

 

Priority Boost Thread Type 

3 Disk I/O: RW 

2 Parity Check (Read) 

1 Enqueue I/O 

0 Parity Generation (Write) 

 

To simplify the prioritization of read over write orders, 

which usually are placed one at a time, a single variable is 

used to signal a read order. This variable will be checked 

by the disk thread before an order is used from the regular 

queue of write orders. If no orders are available in the 

queue after completing the read operation, a read ahead 

can be started to utilize the storage media while parity is 

being checked. This enables parallelization of 

computations and disk I/O like it’s being done with 

buffered write operations. 

 

3.2. Parameter Consideration  
 

Depending on the number of disks and the block size that 

is used, the merging of orders that reduces overhead is 

more or less significant for the overall computation speed. 

If computations can be done in parallel to and in less time 

than disk I/O orders, only more processor time would be 

consumed. Otherwise, e.g. in case of random read orders, 

it will directly affect the performance of the driver. Fig. 7 

and Fig. 8 show how the number of disks and the block 

size affect the computation speed on single and multiple 

processors. 

 

 
 

Figure 7. Computing Parity Of Different Block Sizes 

On A Single Processor 

 

 
 

Figure 8. Computing Parity Of Different Block Sizes 

On Four Processors 

 

Having a look at the disk write speeds of rotating and 

solid state disks one can see that the transfer speed of 

consecutive blocks can be increased if connected and 



submitted as one order. The performance on rotating disks 

is significantly higher with connected blocks, see Fig. 9. 

The response time and transfer speeds of consecutive read 

orders indicate that reading blocks below a certain size 

won’t be effective. With solid state drives this amount can 

be decreased, as they reach the transfer limit sooner than 

rotating disks. This will reduce the performance decrease 

of wrongly predicted read aheads, see Fig. 10 and Fig. 11. 

 

 
 

Figure 9. Speed Of Consecutive Write Orders 

 

 
 

Figure 10. Speed Of Consecutive Read Orders 

 

 

4. CONLUSIONS  
 

We have presented the design of a parallel RAID driver 

that exploits multicore capabilities to achieve high-speed 

fault-tolerant disk access, not only in the case of a disk 

failure, but also in the case of data block corruption. We 

reported on the performance of a prototype 

implementation that demonstrated good speedups and 

hence scalable throughput. The presented figures about 

single and quadcore processor performance show almost 

linear speedup for most block sizes, which indicates that 

the architecture will scale well on a higher number of 

processor cores. Comparing today’s disk speeds with the 

results of the computations on a consumer grade PC we 

are confident that the proposed architecture will suffice 

for RAID configurations with current and future hardware. 

 

 
 

Figure 11. Response Time Of Consecutive Read 

Orders 

 

 

Future investigations will focus on tuning the schemes 

evolved towards applications such as long-term archival 

storage, where the number of silent errors, the time to disk 

failure, and the number of test reads to correct the former 

have a complex relation that must be optimized to achieve 

reliable long-term storage with a competitive effort. A 

different approach to speed up the RAID for applications 

using many random read operations, such as databases, is 

reducing the parity checking to on demand self correction, 

i.e. during rebuild or verify operations. Another aspect 

could be adjusting the number of used CPU cores 

depending on the current computational workload 

generated by other applications. 
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