

Optimizing a Highly Fault Tolerant Software RAID for Many Core Systems

Henning Klein

Fujitsu Technology Solutions GmbH

Henning.Klein@ts.fujitsu.com

Jörg Keller

Fernuniversität in Hagen

Joerg.Keller@FernUni-Hagen.de

ABSTRACT

We present a parallel software driver for a RAID

architecture to detect and correct corrupted disk blocks in

addition to tolerate disk failures. The necessary

computations demand parallel execution to avoid the

processor being the bottleneck for a RAID with high

bandwidth. The driver employs the processing power of

multicore and manycore systems. We report on the

performance of a prototype implementation on a

quadcore processor that indicates linear speedup and

promises good scalability on larger machines. We use

reordering of I/O orders to ensure balance between CPU

and disk load.

KEYWORDS: Fault-Tolerant Software Design; Multi-

Core RAID Architecture

1. INTRODUCTION

RAID architectures [1] have been introduced to tolerate

disk failures. It turns out however, that also functional

disks over time evolve corrupted data blocks by so-called

silent errors [2]. This type of error gains in importance

with the advent of solid-state disks due to wear out of

memory cells. Although SSDs keep an additional space to

replace defective cells it’s only a matter of time and type

of usage until this space gets insufficient. Recent

developments showed that the reliability of SSDs is

mostly sacrificed for capacity and cost per bit [9].

Especially the process of decreasing cell sizes, while

increasing the number of storable states rose concerns

about the reliability. Other than that SSD cells are not

only getting worn out due to write processes, they tend to

lose their state over time as well. While there exist

checksum schemes such as ZFS [3] to handle silent errors,

the overhead is notable, and hence integration of schemes

for disk failure and data block corruption seems

advantageous.

The Software RAID considered in this paper was

introduced in [4] and is organized as follows: Each disk is

divided into equally sized blocks of n Sectors, starting at a

certain offset. All blocks across the disks in the array at

the same position are combined to a stripe. Every stripe

contains two blocks storing parity values, whereas the

computation of each parity value ranges over two stripes.

We denote the four parity values within two stripes by P,

Q, R and S. The values computed are based on Reed

Solomon codes using multiplications with Generators g

based on finite fields, see Fig. 2. By combining the four

parity values of two stripes as depicted in Fig. 1, detection

and correction of corrupted disk blocks is possible in

addition to RAID-6 behavior in case of disk loss.

However, to detect corrupted blocks, parity values must

be recomputed with each read and compared to stored

parity values. The architecture has been optimized by

using optimized lookup tables to speed up computations

[5], but the resulting computational effort is still high.

Moreover, with a larger number of disks providing data at

high bandwidth, the computation itself could turn out to

be the bottleneck. Previous investigations were primarily

focusing on how to speed up encoding speeds during

writes. This paper shows, how such an architecture could

be implemented effectively in a RAID driver that uses

parallel threads to exploit computational capabilities

available in multicore processors, to balance disk

bandwidth and computation. The driver has to cope with

different priorities of read and write orders which renders

low-overhead parallelization non-trivial. Some RAID

systems like RAID-5 or RAID-6 have already been

implemented in the major operating systems Linux [6] and

Windows. The Linux implementation focuses on

exploiting special instruction sets like SSE or MMX [7]

rather than taking advantage of multiple processors. The

most complex RAID configuration that Windows supports

is RAID-5, which is implementable delivering a sufficient

speed using a single core only, however the

implementation remains undocumented. There have been

investigations on speeding up Reed/Solomon-encoding

with a FPGA-based coprocessor [8] which requires

additional hardware.

0 R0P021

3 S0Q054

6 8R1P17

9 11S1Q110

Disk 0 Disk 4Disk 3Disk 2Disk 1

Stripe 0

Stripe 3

Stripe 2

Stripe 1

 Figure 1. Organization Of Data Blocks In The RAID

Figure 2. Parity Calculations

The remainder of the paper is organized as follows.

Section 2 describes the architecture of a parallel RAID

driver and describes an optimized reordering to enable

parallel disk and parity processing. In Section 3 we show

the prioritization concept of the threads and present

figures showing the advantage of connected disk orders.

In Section 4 we give a conclusion and an outlook on

future work.

2. RAID ARCHITECTURE WITH

OPTIMIZED REQUEST REORDERING

The RAID architecture performs integrity checks when

reading and generates parity when writing blocks.

Therefore each disk I/O operation involves parity

computation. Both of the steps to process read and write

operations are parallelized to gain speedup and they can

further be improved by implementing them parallel to

each other, if possible. If parity checks fail, a recovery

process has to be started to recover corrupted data. All

data elements in two stripes have to be known to generate

or check data. Thus, if read or write operations start or

end in the middle of two stripes, the remaining data has to

be read from the disk array first. In case of write orders,

this data has to be checked first, in order to avoid the

generation of parity with possibly corrupted data. This can

only be achieved, if the whole dataset of two stripes will

be read, even the part that will be overwritten later. From

a performance perspective, reading full double stripes

won’t generate too much overhead, as data blocks will be

read in parallel from all disks and block sizes are chosen

in a range so that reading any smaller amount wouldn’t be

significantly faster because of the comparatively higher

disk access overhead. The whole process is depicted in

Fig. 3.

Figure 3. Parity And Disk Access Diagram

2.1. Parallelizing Parity Computation

Parity is computed in parallel threads in order to avoid it

from being a bottleneck and to gain the fastest possible

response time if computations have to be done serially to

disk I/O operations. We generate parallel processable

work loads by splitting up data blocks, in a way that each

execution path accesses each part of all blocks with the

same offset within two stripes and generates full sets of

parity values, see Fig. 4. With this method the accessed

data is being separated between each thread without the

need of further synchronization operations to perform

simultaneous write accesses to the same data blocks.

Secondly it’s easy to generate equally sized workloads for

almost any number of parallel execution paths.

Nevertheless we’ve considered splitting up the data by

assigning whole blocks, see Fig. 5. To compute parity we

use lookup tables holding precomputed multiplication

results. When computing parity, a different part of the

lookup tables is being used for each data block. By

assigning whole blocks, each thread and processor would

only have to access parts of the lookup tables which

lowers cache misses. However, by optimizing the table

access order as described in [5] the first method is

producing the best results while providing better

scalability.

T1 P: T2P: T1T1T2

T1 Q: T2Q: T1T1T2

Disk 0 Disk 4Disk 3Disk 2Disk 1

Stripe 0

Stripe 1

T2 T2T1

T2 T2T1

R: T2R: T1

S: T2S: T1

T1: Thread 1, T2: Thread 2

Figure 4. Assigning Parts Of All Blocks To Threads

T1 T2T1

T1 T2T2

Disk 0 Disk 4Disk 3Disk 2Disk 1

Stripe 0

Stripe 1

R: T1/T2P: T1/T2

S: T1/T2Q: T1/T2

T1: Thread 1, T2: Thread 2

Figure 5. Assigning Whole Blocks To Different

Threads

2.2. Optimizing Write Orders

Write orders are easier to optimize than read orders, as

they can be buffered and reported back to the caller as

completed although they are not even started. While the

buffer is being filled with write operations, the storage

driver can optimize the writing process by reordering the

commands and parallelizing calculations and I/O

operations. If the buffer reaches its limit, one of the

resources, usually the disk, will be the limiting factor,

blocking upcoming orders. The number of disk I/O

operations can be reduced by connecting consecutive

write operations, see Fig. 6, which shows the merging of

data blocks of Fig. 1. Writing consecutive data blocks will

result in a higher I/O speed. Secondly, the number of

necessary synchronization operations can be reduced as

well. Each thread would normally compute one block at a

time and then synchronize to receive a new order from the

queue.

0a

6a

2a

8a

1a

7a

3a

9a

5a

11a

4a

10a

0b

6b

2b

8b

1b

7b

3b

9b

5b

11b

4b

10b

Thread a Thread b

R0a

R1a

P0a

P1a

S0a

S1a

Q0a

Q1a

R0b

R1b

P0b

P1b

S0b

S1b

Q0b

Q1b

Figure 6. Combining Blocks To Reduce

Synchronization

If write orders are buffered, the worker thread can be

supplied with the number of unprocessed orders instead of

synchronizing for every single order. Using connected

blocks will help ordering the overhead access to the

lookup tables for finite field multiplications, which

reduces the number of CPU cache misses. That way the

overhead can be reduced and a bunch of smaller I/O

operations will be computed more efficiently on multiple

cores.

2.3. Optimizing Read Orders

Read orders cannot be buffered as the calling instance

could probably use the data immediately after receiving a

completion receipt. Without read ahead techniques, which

is the case if random read accesses occur, the design goal

has to be reacting as fast as possible. The response time

will be the sum of parallel disk I/O and parity checking.

To enable buffering techniques a read ahead should be

performed immediately after the requested block has been

transferred, to utilize the disks while parity is being

checked. The amount of data that will be read depends on

many factors: the size of the preceding read command, the

time it needs to be processed, the characteristics of the

storage medium and the probability of the used data to be

requested next.

2.4. Optimizing Mixed Read And Write Orders

In an optimal case all of the upcoming read and write

operations are known and the RAID driver is able to

parallelize disk and CPU load. Depending on the speed

and the number of available resources either parity

processing or disk I/O operations would limit the

bandwidth.

For write operations this can simply be achieved by

buffering orders. Read operations cannot be buffered and

therefore they block upcoming orders until they are

processed. If the driver receives alternating read and write

requests without rescheduling their order it would have to

process disk I/O and parity computations serially which

dramatically decreases performance. To avoid read

operations from emptying the buffer, they have to be

processed with a higher priority. In this case, they will

interrupt the processing of buffered write operations and

can seamlessly utilize CPU and disk bandwidth. As long

as there is space in the buffer, upcoming read operations

will stall the write operations.

Two important optimizations, as shown above, are

working against this scenario of mixed read and write

commands. If multiple disk write orders are merged to

reduce synchronization overhead, a single read operation

cannot be placed in between. If read operations interrupt

consecutive write orders, the additional positioning times

of rotating disks could decrease the disks’ I/O

performance. Newer solid state disks however would be

less impacted, although they are profiting of consecutive

I/Os as well. Therefore a lot of tuning has to be done that

has to fit the type and number of used storage media and

the performance and number of processors.

Depending on the application the size and rate of the read

and write operations will vary. A database will create a lot

more small and random accesses than a storage server.

Random read accesses will result in unsuccessful read

aheads. If the database doesn’t request parallel read

operations, the parity checks will have to be done serially

to the disk I/O. Therefore the optimizations are restricted

to more general types of usage involving mixed read and

write requests.

3. IMPLEMENTING THE RAID DRIVER

3.1. Thread Architecture

To accomplish fast reaction for small read operations and

high throughput for write operations the computations and

disk I/O commands are being split in different threads

with separate order queues. The order enqueuing function

checks whether the next order can be combined with

previous ones to reduce overhead. The optimal maximum

combined order size depends on the number and types of

disks used.

One thread is implemented for each processor or core, to

parallelize parity computations. To ensure that parity

computations for higher priority read operations are

processed as soon as possible a second set of threads is

started with a higher priority. The scheduler of the

operating system will switch to the higher priority threads

as soon as orders are enqueued. The highest priority

thread in the driver will be used for disk I/O threads, to

prevent them from being blocked by parity generation

threads. The enqueuing of orders will be prioritized above

parity generation of write operations to ensure they won’t

be blocked when connecting orders, see Tab. 1.

Table 1. Assigning Priority Boosts To Threads

Priority Boost Thread Type

3 Disk I/O: RW

2 Parity Check (Read)

1 Enqueue I/O

0 Parity Generation (Write)

To simplify the prioritization of read over write orders,

which usually are placed one at a time, a single variable is

used to signal a read order. This variable will be checked

by the disk thread before an order is used from the regular

queue of write orders. If no orders are available in the

queue after completing the read operation, a read ahead

can be started to utilize the storage media while parity is

being checked. This enables parallelization of

computations and disk I/O like it’s being done with

buffered write operations.

3.2. Parameter Consideration

Depending on the number of disks and the block size that

is used, the merging of orders that reduces overhead is

more or less significant for the overall computation speed.

If computations can be done in parallel to and in less time

than disk I/O orders, only more processor time would be

consumed. Otherwise, e.g. in case of random read orders,

it will directly affect the performance of the driver. Fig. 7

and Fig. 8 show how the number of disks and the block

size affect the computation speed on single and multiple

processors.

Figure 7. Computing Parity Of Different Block Sizes

On A Single Processor

Figure 8. Computing Parity Of Different Block Sizes

On Four Processors

Having a look at the disk write speeds of rotating and

solid state disks one can see that the transfer speed of

consecutive blocks can be increased if connected and

submitted as one order. The performance on rotating disks

is significantly higher with connected blocks, see Fig. 9.

The response time and transfer speeds of consecutive read

orders indicate that reading blocks below a certain size

won’t be effective. With solid state drives this amount can

be decreased, as they reach the transfer limit sooner than

rotating disks. This will reduce the performance decrease

of wrongly predicted read aheads, see Fig. 10 and Fig. 11.

Figure 9. Speed Of Consecutive Write Orders

Figure 10. Speed Of Consecutive Read Orders

4. CONLUSIONS

We have presented the design of a parallel RAID driver

that exploits multicore capabilities to achieve high-speed

fault-tolerant disk access, not only in the case of a disk

failure, but also in the case of data block corruption. We

reported on the performance of a prototype

implementation that demonstrated good speedups and

hence scalable throughput. The presented figures about

single and quadcore processor performance show almost

linear speedup for most block sizes, which indicates that

the architecture will scale well on a higher number of

processor cores. Comparing today’s disk speeds with the

results of the computations on a consumer grade PC we

are confident that the proposed architecture will suffice

for RAID configurations with current and future hardware.

Figure 11. Response Time Of Consecutive Read

Orders

Future investigations will focus on tuning the schemes

evolved towards applications such as long-term archival

storage, where the number of silent errors, the time to disk

failure, and the number of test reads to correct the former

have a complex relation that must be optimized to achieve

reliable long-term storage with a competitive effort. A

different approach to speed up the RAID for applications

using many random read operations, such as databases, is

reducing the parity checking to on demand self correction,

i.e. during rebuild or verify operations. Another aspect

could be adjusting the number of used CPU cores

depending on the current computational workload

generated by other applications.

REFERENCES

[1] D. A. Patterson, G. Gibson, and R. H. Katz, ―A case for

redundant arrays of inexpensive disks (RAID),‖ in

SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD

International Conference on Management of Data, 1988, pp.

109–116.

[2] J. Bonwick and B. Moore, ―ZFS — the last word in file

systems,‖ http://opensolaris.org/os/community/zfs/docs/zfs

last.pdf.

[3] Sun Microsystems, ―Sun on-disk

specification, ‖http://opensolaris.org/os/community/zfs/

docs/ondiskformat-0822.pdf.

[4] H. Klein and J. Keller, ―RAID architecture with correction

of corrupted data in faulty disk blocks‖ in Proc. 6th ARCS

Workshop on Dependability and Fault-Tolerance, Delft,

NL, Mar. 2009.

[5] H. Klein and J. Keller, ―Storage Architecture with Integrity,

Redundancy and Encryption‖ in 14th IEEE Workshop on

Dependable Parallel, Distributed and Network-Centric

Systems (DPDNS '09), Rome, May 2009.

[6] Linux Kernel sources – md driver, Version 2.6.29.1, April

2009, http://kernel.org

[7] H Anvin, ―The Mathematics of RAID-6‖, 2009,

http://www.kernel.org/pub/linux/kernel/people/hpa/raid6.p

df

[8] V. Hampel, P. Sobe, and E. Maehle, ―Experiences with a

FPGA-based Reed/Solomon-encoding coprocessor,‖

Microprocess. Microsyst., vol. 32, no. 5-6, pp. 313–320,

2008.

[9] Silicon Systems, Inc., ―NAND Evolution and its effects on

Solid-State Drive (SSD) usable life‖,

http://www.siliconsystems.com/technology/pdfs/WP-001-

00R.pdf

