
A True Random Number Generator with Built-in Attack Detection

Bernhard Fechner, Andre Osterloh

Department of Computer Science

FernUniversität in Hagen

{Bernhard.Fechner, Andre.Osterloh}@fernuni-hagen.de

Abstract

True random number generators (TRNGs) are extensively used in cryptography,

simulations and statistics. Metastability is a way to generate true random numbers.

By using electromagnetic radiation, a flip-flop in a metastable state can be

manipulated to a known state. In this work, we introduce and analyze the concept of

a randomized bit-cell, being able to simultaneously produce random numbers and

detect active nonintrusive attacks. The experimental comparison with a standard

TRNG yields an 11.5 times better distribution of zeros and ones while the TRNGs

are under attack. The concept is extended by using a corrector. A perfect

distribution can be gained at the expense of a delay which is proportional to the

quality of the random source.

1 Introduction

Random numbers are used and needed in our everyday lives. The generation of random

numbers is an essential component to generate passwords, session keys for SSL (secure

socket layer), but are also used in simulations such as nuclear physics, weather forecasts,

traffic simulations or Monte-Carlo approximations. The quality of a random number generator

(RNG) substantially determines the security of the underlying communication. A

manipulation leads to predictable random numbers and causes unsafe communication

channels. We have to clarify what a good random number is. In our case, a good random

number is a binary number where zeros and ones are discretely and equally distributed. A

discrete random variable X with a finite number of characteristics {0,1} is equally distributed,

if the probability of each xi (i = 1,...,n) is equal:

1 for (1,...,),
() ()

0 else.

ix x i n
P X x f x n

⎧ = =⎪= = = ⎨
⎪⎩

2 Metastability

This work deals with true random number generators (TRNG). In contrary to pseudo random-

number generators, TRNGs are able to produce a non-periodic sequence of bits. Numerous

TRNGs have been developed, some of them with industrial background, e. g. the random

number generator within the Intel i810 chipset [2]. TRNGs are based on radioactive decay,

ring oscillators [3], thermal noise [2], the photoelectric effect or other quantum phenomena

[4]. However, we are aware of the fact, that a TRNG can be subordinated to physical

influences. Therefore one should carry out tests like DIEHARD [5] or NIST tests [6] to

evaluate the RNG. These tests require a huge amount of random numbers to gain statistical

significance and thus a certain time to determine the actual quality of the RNG. For fast

online tests, others methods have to be regarded.

The violation of setup and hold times within a flip-flop (ff) leads to an unpredictable behavior

of the flip-flop called metastable state. The probability that the flip-flop will be metastable is

an exponentially decreasing function [7]. In [8] an analog-digital converter is used to produce

random numbers from the output of a flip-flop being in metastable state although it is unclear

on which voltage levels the flip-flop will toggle. For the generation of n-bit random numbers

we use the final state of a ff being metastable once.

Three things must be known about metastability [7]:

• What is the likelihood T0 that the flip-flop will enter a metastable state?

• How long will it be expected to remain in that state (τ)?

• What is the propagation delay h of the flip-flop.

The mean time between failures (MTBF) of a flip-flop in a metastable state results from

empirical observations [8] to

() ()0

t

clk in

eMTBF t
T f f

τ

=
⋅ ⋅

,

where t is the time a digital output can remain in a metastable state, fclk the system clock

frequency and fin the frequency of the input signal. In our fault model, we assume that the

attacker is able to change the state of a flip-flop systematically. Therefore, we propose the

online injection of a burst of 1 to n stuck-at-0 or stuck-at-1 faults. The observation interval is

the time to generate a single random number of length n. In Section 5, we refine the fault

model for a worst-case scenario.

3 Randomized Bit Cells

Figure 1 shows the basic randomized bit-cell (RBC). Clock signals have been removed for

clarity. All square elements are flip-flops which have random states due to their previous

metastable period. The main idea is clear: the flip-flops controlling the decoders are

generating random numbers, selecting random elements out of the bit-cell matrix which are

also randomized due to their metastable state. The output is a single bit b1. The bits c1-c4 are

used for attack detection. If we assume the number of ffs as 2ଶ arranged in a (2k, 2k)-matrix,

we have 2k bits for the selection of a single bit cell. This RBC with k bits for the selection is

called RBCk.

Figure 1: Randomized Bit-Cell (RBC)

The advantage of the scheme in Figure 1 is that the second level (the ffs at the inputs of the

decoder) introduces a meta-level of randomization. If an attacker is able to disturb the

contents of the decoder ffs, there is still a randomization, because a dedicated bit-cell will be

selected, which is again randomized. If the attacker tries to influence the function of a single

bit-cell, the randomization to select the bit cell will decrease the probability for a successful

attack. This probability computes to ଵ
ଶమೖ
. A single and most common case of a noninvasive

attack is left: the influence of all ffs within the RBC. We have 5 random outputs b1 and c1-c4.

Electromagnetic radiation will toggle the ffs to a fixed and known state. By comparing the

outputs, we can detect these attacks. Figure 2 shows a simple way to detect manipulations.

Every output within the array of RBCs is compared locally. If we have a global matching, we

signal an attack. A mechanism to detect permanent faults through manipulation of the attack

signal is to negate each signal from a RBC to create a second (negated) output. In this case,

every stuck-at fault is detected by comparing both signals by using an external circuit within

the perfection core.

Figure 2: n-Bit RNG with Attack detection

4 Improving the Quality of Randomness with the Smoothing Bit-Cell

In this Section we assume that our random source is not perfect, i.e. the probability that the

source produces a zero differs from the probability that it produces a one. Such effects can

occur due to the production process or by external circumstances (e. g. a nonintrusive attack).

We introduce the concept of a smoothing bit-cell (SBC) to reduce such effects and discuss its

assets and drawbacks. The SBC is a simple extension of a randomized bit cell by using a

corrector. In our case, we use a von-Neumann corrector [9]. Let 0<p0, p1<1, p0+p1=1 the

probability that the random source produces a zero or one, respectively. We get the

probabilities listed in Table 1 for sequences of length two.

Table 1: Sequences and Probabilities

Sequence Probability

00 p02

01 p0p1

10 p1p0

11 p12

Note that the probability for ‘01’ is the same as for ‘10’. We exclude the sequences ‘00’ and

‘11’. To avoid misunderstandings, we call ones and zeros produced by the random source 0-

and 1-bits (random bits) and the zeros and ones produced by the proposed method as zeros

and ones (random numbers). The drawback is that no random numbers are generated while we

have long sequences of 0- or 1-bits. The expected number of bits that we have to wait is

()n 1

n 0

22nq 1 q q
∞ −

=

− =∑ ,

where q=2p0p1. If the source produces a 0-bit with probability 2/5, i. e. q=6/25, the expected

number of bits we have to wait for is 25/6 ≈ 4,167. If we assume a very bad random source

producing a 0-bit with probability 10-k, the expected number is approximately 10k. A further

advantage is that we are able to detect stuck-at-0 and stuck-at-1 faults or alleviate

manipulations of the random source through a timer, measuring the output frequency.

Now we discuss whether this approach can be extended to a sequence of length n>2. The

main idea in case of n=2 was that we have to identify sequences with equal probabilities. The

only possibility to do this is to take sequences where the number of zeros and ones is equal.

Hence we have to restrict our attention to even n. The probability that the sequence exactly

contains n/2 zeros is

() () ()
n n n
2 2 2

n
p0 p1 2p0p1n

2

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

.

Thus, we get ()
n
2q 2p0p1= in this case. Thus, n=2 is the best choice. The number of bits

necessary to produce a one or a zero could be seen as a measure for the time needed to

produce a random number. To reduce this time we can produce random numbers of k random

sources in a synchronized and parallel fashion. The question is how long, i.e. how many steps

we have to wait until we get a one or a zero. First, we have to describe how zeros and ones are

produced and what will be a step in our model. In one step each of the k sources produces one

bit. If at least one of k sources separately produces ‘01’ or ‘10’ after two steps, we have an

output of zero or one. In case that all k sources produce ‘00’ or ‘11’, we have no output. The

probability that there is no output after two steps is k

i ii 1
(1 2p0 p1)

=
−∏ , where p0i (p1i) is the

probability that the random source i produces a zero (one). The expected number of steps we

have to wait is

k k

i i ii 1 i 1

2 2
1 (1 2p0 p1) 1 q

= =

=
− − −∏ ∏

,

where qi=1-2p0ip1i. If we assume two random sources with q1=q2=6/25, the expected number

of steps we have to wait is approximately 2.122.

5 Probability of Faults

Now we assume that we have one faulty flip-flop and we want to determine the probability

that the produced random number is affected by this fault. In our calculation we assume that

we have a worst-case fault. For our approach with one flip-flop obviously the result is

affected with probability one. For the case where we have k ffs in parallel, the probability

depends on the way we implement the choice when two or more random numbers are

produced by the k random sources. Under the assumption that a random number from k is

chosen with probability 1/k and that p0=p0i and p1= p1i for all i, we get a probability of

()
k 1 k 1 i

i

i 0

k 1 1 p 1 p
i i 1

− − −

=

−⎛ ⎞
−⎜ ⎟ +⎝ ⎠

∑ ,

where p=2p0p1. Table 2 shows the probabilities that a random number is affected by the

worst case described above.

Table 2: Worst-Case Results

Number of ffs in matrix Total number of ffs Probability Name

4 6=4+2 1/6 RBC1

16 20=16+4 1/20 RBC2

22k 22k+2k 1/(22k+2k) RBCk

6 Experimental Results

For a qualitative comparison we conducted fault-injection experiments. Faults were injected

according to the fault-model in Section 2. An array of randomized-bit cells, an array of

metastable ffs and an array of smoothing bit cells (SBC) were modeled within a software

simulation. In the SBC, an additional bit-cell is introduced to hold the previous results. If the

current result differs from the last content, we output a random bit according to a fixed coding

like (10) →0 or (01) →1. Other results are retained. Figure 3 shows the development of

distributions for the sequential (SEQ) array, the array of RBCk’s (k=4, MAT) and the array of

SBCs (BSEQ) for 1-39 stuck-at-0 bursts for 1000 fault-injection runs. The array holding the

structures had the length of 40 bits, since the typical length for session keys ranges from 40-

128 bit or 160 bit [1]. The number of zeros and ones was counted for each method. The 1-bit

frequencies were divided by the 0-bit frequencies, resulting in the data points in Figure 3.

Additio

trend fo

SBC ha

7 C

In this

(RBC),

and com

show an

array of

examine

expense

source p

Fr
eq
u
en
cy
 1
b
it
/0
b
it

nally, the li

ormulae sho

ad the best d

Fi

Conclusio

work, we i

second the

mpared with

n 11.5 time

f metastabl

ed. The resu

e of a delay

produces a 0

0

0,2

0,4

0,6

0,8

1

1 2 3

Fr
eq
u
en
cy
 1
b
it
/0
b
it

inear trend

ow that the

distribution

igure 3: Dev

on

introduced

e smoothing

h a standard

s better dis

le elements

ults show th

equal to 1

0- or 1-bit.

3 4 5 6 7 8 9

SEQ

MAT

BSEQ

Linear (SEQ)

Linear (MAT

for both me

randomized

(=1).

velopment of

several nov

g bit-cell (S

d array of m

tribution fo

. Additiona

hat the SBC

p0p1 , wher

9 10 11 12 13 14 1

)

T)

ethods (line

d bit cell gi

f Distributio

velties. Firs

SBC). Both

etastable m

or 1-n stuck

ally, the SB

C gives an e

re p0 and p1

5 16 17 18 19 20 2

Burst Len

ear (SEQ), l

ives an 11.5

ons over 1-3

t, the conc

 concepts w

memory elem

k-at faults in

BC was exp

equal distrib

1 is the prob

1 22 23 24 25 26 2

ngth

linear (MAT

5 times bett

9 Burst Fau

ept of the r

were experi

ments. The e

n compariso

perimentall

bution of ze

bability that

y = ‐0,0232x
R² = 0,9

y = ‐0,0
R²

7 28 29 30 31 32 3

T)) is depic

ter distribut

ults

randomized

imentally ex

experimenta

on to the tra

ly and theo

eros and on

t a physical

+ 0,8441
627

0022x + 0,8819
² = 0,4944

3 34 35 36 37 38 3

cted. The

ion. The

d bit-cell

xamined

al results

aditional

oretically

es to the

l random

9

[1] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman. The Secure Real-time Transport Protocol (SRTP).

Request for Comments 3711. The Internet Society, 2004.

[2] E. Hoffman. Random number generator. 5706218 USA, 06. 01 1998.

[3] B. Sunar, W. J. Martin, D. R. Stinson. A Provable Secure True Random Number Generator with Build-In Tolerance to

Active Attacks. IEEE Transactions on Computers. 2007, Vol. 56, 1.

[4] Quantum Random Bit Generator Service. [Online] 12 12, 2007. [Cited: 12 12, 2007.] http://random.irb.hr/.

[5] G. Marsaglia, DIEHARD: a battery of tests of randomness. The Marsaglia Random Number CDROM including the

Diehard Battery of Tests of Randomness. [Online] 1886. [Cited: 11 22, 2007.] http://www.stat.fsu.edu/pub/diehard/.

[6] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray,

S. Vo. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

Special Publication. 2000, Vol. 800, 22.

[7] Philips Semiconductors. A metastability primer, Application Note 219. s.l. : Philips, 1989.

[8] S. Walker, S. Foo. Evaluating Metastability in Electronic Circuits for Random Number Generation. Workshop on VLSI.

2001.

[9] B. Kocher, Jun and Paul. The Intel random number generator. s.l. : Intel, April 1999.

References

