
Fault-Tolerant Static Scheduling for Grids

Bernhard Fechner, Udo Hönig, Jörg Keller, and Wolfram Schiffmann
FernUniversität in Hagen

Department of Mathematics and Computer Science
58084 Hagen, Germany

〈Bernhard.Fechner,Udo.Hoenig,Joerg.Keller,Wolfram.Schiffmann〉@fernuni-hagen.de

Abstract

While fault-tolerance is desirable for grid applications
because of the distributed and dynamic nature of grid re-
sources, it has seldom been considered in static scheduling.
We present a fault-tolerant static scheduler for grid appli-
cations that uses task duplication and combines the advan-
tages of static scheduling, namely no overhead for the fault-
free case, and of dynamic scheduling, namely low overhead
in case of a fault. We also give preliminary experimental
results on our scheme.

1. Introduction

Grid computing organizes geographically distributed
computing resources into a single system in order to provide
performance beyond that typically available at a single site.
The sites involved are not under a central control but belong
to different organizations. Hence, the resources available in
a grid vary dynamically, either by fault or by shutdown. As
a consequence, a multitude of fault-tolerance measures for
grid computing has been proposed in the literature.

We assume a grid to be a collection of p computing re-
sources, i.e. processing nodes. Each resource may fail with
a certain probability f . As in [3, 4, 5, 14] we consider crash
faults, i.e. a processing unit that fails is silent from then on.
As in [9], we assume that faults can occur at any point in
time. A fault can be detected either because a processing
unit does not send data at a predetermined time, or because
it does not react to a ping request. We assume that sys-
tem components, both hardware and software obey the fail-
stop [11] failure mode and that nodes cannot recover from
faults. Therefore, a restart is excluded. In accordance with
the crash fault model failures of processors are assumed to
be independent from each other [13]. While dependent fail-
ures of multiple homogeneous processors may occur as a
consequence of an attack, we note that we want to cover
failures from faults and not from attacks.

A grid application or job consists of a set of tasks, each
task being a sequential program. If one task requires data
that have to be computed by another task first, there exists
a data dependency between theses tasks, preventing their
parallel processing. The dependency structure of a parallel
program can be described by means of a directed acyclic
graph (DAG), also known as task graph. Scheduling a task
graph consists of ordering the tasks and mapping them to
processing units. Scheduling can occur prior to execution,
assuming a fixed state of the grid engine (static schedul-
ing), or can be done during execution (dynamic scheduling).
Providing fault-tolerance can be achieved in several ways:
either, when detecting that a processing unit has crashed
during execution of a task, the state of this task is recov-
ered from some checkpoint, and this task is re-executed on
another processing unit, and all tasks (potentially) to be ex-
ecuted on this processing unit are re-scheduled to another
processor. Or, all tasks are executed in multiple instances
on several processors, and the grid job can complete as long
as one copy of each task survives. The former measure bet-
ter corresponds to dynamic scheduling, the latter better to
static scheduling.

Both ways have their advantages and disadvantages. Dy-
namic scheduling can adapt to varying resources. Yet to sur-
vive crashed tasks, checkpointing is necessary which means
overhead in the fault-free case. Also, scheduling and re-
scheduling tasks during runtime produces further overhead.
Finally, dynamic schedulers typically produce mappings in-
ferior to static schedules as long as the resources remain
constant. Static scheduling with task duplication avoids the
overheads mentioned above. However, adaptation to vary-
ing resources must be handled like crashes of idle proces-
sors, and task duplication at least doubles the load on the
grid engine. Yet, it has been shown [6, 7] that the presence
of data dependencies in task graphs reduces the efficiency
of the available resources’ usage. Thus, processing units re-
main idle for a considerable fraction of the job’s runtime,
so that task duplication hurts less than one would expect.
Also, task duplication has already been employed [2, 10] to



trade communication for computation, so that using a static
scheduler with task duplication already provides some pre-
requisite for fault-tolerance.

We incorporate fault-tolerance mechanisms into a static
scheduler, with the help of task duplication. Yet in contrast
to previous work our aim is to minimize overhead in a fault-
free execution, because the overwhelming majority of cases
will execute without faults. In case of a fault, our aim is to
provide a continuation of the computation with a graceful
degradation of performance.

The remainder of this article is organized as follows. In
Section 2, we review related work on fault-tolerant schedul-
ing of grid applications. In Section 3, we present our fault-
tolerance extensions, and the preliminary results of our ex-
perimental evaluation. In Section 4, we illustrate variants of
our approach by an example. In Section 5, we summarize
and give an outlook on future work.

2. Task Scheduling and Fault-Tolerance

In [14] fine-grained, dynamic fault-tolerant scheduling
is introduced. Here, redundant computations are avoided
by storing partial results in a replicated global table. In
GridTS [3, 4, 5] the resources select the tasks they want to
execute. This is contrary to the commonly used single re-
source manager, where the scheduler is responsible in find-
ing the appropriate resources. Favarim et al. assume crash
faults. The loss of a task is omitted by using transactions;
checkpointing mechanisms are applied to limit the amount
of work lost in case of a fault; replication is used to en-
sure the availability of the tuple space, a shared memory ob-
ject supporting communication decoupled in time and space
so that processes do not need to know each others location
or address. In [8] an algorithm to solve branch-and-bound
problems is introduced. The algorithm is based on epidemic
communication and designed to dynamically react on crash
faults to ensure reliability. Within SPHINX [12] another
dynamic scheduling algorithm is proposed. It is based on
re-scheduling if one or more sites crash.

A static scheduling scheme is proposed by Abawajy [1].
To imply fault-tolerance, tasks are replicated. Yet, this
scheme leads to overhead in the fault-free case. Still, we
consider this to be the related work closest to our own ap-
proach.

If a processing unit crashes, then the work it would have
to carry in the future must be distributed onto other process-
ing units1. Here we have to distinguish whether spare pro-
cessing units are available or not. If there is one spare pro-
cessor in the dynamic setting, then we still have p process-
ing units available, and after the re-execution of the crashed

1We will present our approach with homogeneous processors which
may be considered to represent a cluster within a grid. Yet, our approach
also extends to time-invariant heterogeneous grid systems.

Figure 1. Task Duplication: (a) Task graph,
(b) Schedule without duplication, (c) Sched-
ule with duplication. rt=runtime.

task, the grid job can continue as if nothing had happened.
If there is no spare processor in the dynamic setting, then
the remaining work must be distributed onto p− 1 process-
ing units2 and the remaining runtime increases by a factor

αdyn,max ≤ p

p− 1
.

In practice however, the processor efficiency increases with
decreasing processor count, so that we can sharpen the in-
equality above to

αdyn,max ≤ p

p− 1
· eff(p)

eff(p− 1)
<

p

p− 1
. (1)

Note that sometimes spare processors may come for free,
if a grid of a predetermined size is allocated for a grid job,
but the dependencies prevent the scheduler from using all
processing units in the grid. A major reason for this contra-
intuitive behaviour is communication cost. We will explain
this with the help of Fig. 1. Part (a) of this figure shows a
simple task graph. Nodes 0 and 5 are artificial nodes that
serve to generate unique source and sink nodes in the task
graph. Therefore their runtime (rt) is 0, as are the commu-
nication times on their outgoing/incoming edges. Part (b)

2We assume here that the remaining work can be balanced on p − 1
processors to the same extent as on p processors.



shows a schedule for this task graph on 2 processing units.
Tasks 1 and 3 are scheduled on processing unit P0, and task
3 can start immediately after task 1 has finished, despite an
edge (1, 3) with weight 20. This modeling is motivated by
the argument that data transfer within one processing unit
happens via memory or hard disk, and is basically free com-
pared to communication over a network. In contrast, task 4
can only be started on P1 8 time units after the completion
of task 1 because of the communication cost. This kind of
behaviour also motivated task duplication in static schedul-
ing. Part (c) of Fig. 1 shows a schedule where two copies
of task 1 are executed on P0 and P1. Because the runtime
of task 1 is smaller than the communication cost on edge
(1, 4), task 4 can now be started earlier, and the schedule
length, i.e. the time to execute the schedule completely, re-
duces from 20 to 16 time units.

If all tasks were duplicated, then the crash of a single pro-
cessor can be overcome in a static schedule, because at least
one copy of each task will survive. One would need p spare
processors to guarantee a continuation in a static schedule
after a fault without performance loss. Each of the spare
processors executes exactly the same tasks as one of the p
original processors, so that the task graph is executed twice
on different hardware. No matter which processor fails, one
of the copies of the task graph will be executed without dis-
turbance. More general, if p + k processing units are avail-
able, for 0 ≤ k < p, then the schedule length increases by
a factor

αstat,max ≤ 2p

p + k
· eff(2p)

eff(p + k)
<

2p

p + k
.

Note that, while in the dynamic case only the remaining
runtime was increased, here the complete schedule length
is increased, as from the start of the grid job on, the tasks
have to be scheduled in two copies each on p+k processing
units. For k = 0, i.e. p processing units, the schedule length
increases by a factor of

2 · eff(2p)
eff(p)

.

While this looks like a serious loss of performance, our ex-
periments indicate that in practice the loss of performance
is only around 10% even for p = 4, because the efficiency
is often quite low due to data dependencies, so that both
copies of the task graph can be interleaved. This means
that the second copy of the task graph can be scheduled al-
most completely in the processors’ idle gaps that remain af-
ter scheduling the first copy of the task graph. This is what
[1] does. As the schedule length is increased, the overhead
in the fault-free and faulty case is identical.

(a)

(b)

Figure 2. Abort of task copy.

3. Efficient Fault-Tolerant Static Scheduling

Our goal is to provide a static schedule that allows to
survive a processor fault but avoids overhead in the fault-
free case. We still want to minimize the overhead in the
case of a fault, without providing spare processors. Thus,
our approach is more efficient than previous schemes. The
problem of the state of the art is, that the duplicate of a task
does not fit completely in the idle gap of another processor,
and thus leads to overhead. We note that if the task itself
completes without a fault, then the duplicate is not needed
anymore, and can be aborted. This simple difference is il-
lustrated in Fig. 2. The duplicate starts some time after the
task itself, which we call slack. In part (a) of the figure,
the duplicate also terminates later than the task itself by this
amount of time. In part (b), the task signals its termination
to the duplicate, which leads to an abort of the duplicate a
short time after the task itself has terminated. Race condi-
tions between the abort signal and the duplicate’s comple-
tion can be avoided by choosing a slack that is longer than
the maximum communication time of the termination sig-
nal.

Hence, we propose to first provide a schedule for the task
graph itself, and map a copy of each task onto another pro-
cessor in an idle gap, but adapt the runtime of this copy such
that the copy terminates at the same time that the task itself
terminates. In the extreme case that a gap on another pro-
cessor is only available after the task already terminated, the
copy is scheduled into this gap with runtime 0, because in
the fault-free case it will never start at all.

Note that when we schedule the task graph with a sched-
uler that applies task duplication for performance reasons,
we only have to place duplicates of tasks that have not been
duplicated in the course of the original scheduling, and that
only those latter tasks must and may be aborted!

It is obvious that in the fault-free case we experience no



overhead, if we neglect the short times that the abort mes-
sages need to be communicated. In the case of a fault, we
will however experience a delay, because in this case, the
copies of the crashed task, and of all tasks to be executed by
the crashed processor in the future, will not be aborted, but
run to their completion. Thus, we have a situation as in the
dynamic case, where the remaining tasks are to be executed
on p− 1 processors, and the remaining runtime is longer by
the factor as given in Eq. (1).

Our method thus combines the advantage of dynamic
scheduling in the case of a fault with respect to a small
increase in schedule length, and the advantages of static
scheduling in the fault-free case: no overhead and more ef-
ficient schedule.

So far, we have only considered the mapping of tasks,
but not the communication of data. Upon termination, a
task sends its results to the dependent task as defined in the
task graph, and to the copy of that task. Thus, network traf-
fic is doubled, but only in the sense that each message now
has two receiving parties. As it can never happen that both
copies of a task terminate (race conditions are avoided by a
suitable slack), the number of messages sent is not changed.
Note that it cannot be excluded that the first copy of a task
is placed on a different processor than its predecessor, and
thus experiences communication latency, while the second
copy is placed on the same processor as the predecessor, and
thus experiences no communication latency. In this case,
the second copy would start before the first, and thus termi-
nate before the first. Hence, this case has to be avoided by
the scheduler.

Up to now, we did not integrate our approach in a static
scheduler. It has been shown in our previous work [6, 7]
that an increasing number of available processing elements
leads to a decreasing efficiency of the target architecture
when processing only one parallel programm at a time. By
decreasing the system’s size, the execution of the program’s
tasks is concentrated on a smaller number of processing ele-
ments, resulting in a reduced need for inter-processor com-
munication implying fewer and smaller gaps. For this rea-
son, it can be expected that the overhead of our approach
in case of a fault increases with decreasing system size.
The maximum overhead occurs when the target architec-
ture consists of only two processing elements of which one
fails immediately at the beginning, and where the efficiency
of the original schedule is exactly 100%. Here, the runtime
is doubled, because all tasks are processed sequentially on
the single remaining processing element.

In order to test the viability of our scheduling approach
for larger target architectures, we did the following prelimi-
nary experiment: We scheduled a task graph with 236 tasks
on a varying number of processors and duplicated each task
with a slack of three time units. This setting represents a
kind of worst-case, because in case of a single processor

fault, only a subset of the tasks’ duplicates (the duplicates
of the tasks that were mapped to the faulty processors) have
to be processed until completion, even when the fault hap-
pens right at the beginning. With 32 shared processing el-
ements and 2 × 236 tasks, the schedule length elongated
by only 58 time units (from 1898 to 1956) when all copies
were scheduled with their full length. Thus the overhead in
the case of a fault is very small. The runtime increases by a
factor of 1.0306, which corresponds to the factor in Eq. (1)
for p = 32.

In addition to the number of available processing ele-
ments, which is an exclusive property of the target archi-
tecture, some properties of the task graph also show a sig-
nificant impact on the efficiency of the target architecture’s
use as well. It was already shown [6, 7] that a low meshing
degree and low communication costs improve schedule ef-
ficiency. While a low meshing degree implies a lower num-
ber of data dependencies and therefore a reduced chance
of time consuming data transfers between processing ele-
ments, low communication costs mean shorter communi-
cation times and smaller gaps within the resulting sched-
ule. Such schedules leave less computation time unused,
implying an increased likelyhood of a prolonged runtime in
the case of task duplication. In contrast, task graphs with
a high meshing degree or high communication costs will
probably result in less efficient schedules with several large
gaps, that can be used to host the original tasks’ duplicates.
Since these duplicates will not affect the schedule length at
all, the overhead of our fault-tolerant approach is limited in
this case.

Note that by using k > 1 copies on different processors,
failures of up to k processors can be covered in a similar
manner.

4. Three Example Variants of Fault-Tolerant
Scheduling

In this section we will illustrate variants of our approach
by an example. The considered task graph is given on the
left side of Fig. 3. For simplicity, the communication times
are set to zero. Here, we want to investigate three special
cases of fault tolerant scheduling in more detail. They are
characterized by an increasing rate of the gap’s utilization
for fault tolerant processing.

Note that we can distinguish between two kinds of du-
plicates: dummy duplicates and (normal) duplicates. A
dummy duplicate is a placeholder for a duplicate that will be
executed only if the processor for the original task crashed.
As already mentioned, we suppose that dummy duplicates
(DD<task>) do not consume processing time in the fault-
free case. Thus, they can be scheduled not only into a gap
but also between two tasks of a static schedule. In contrast,
a duplicate (D<task>) will always be executed for some



Figure 3. An example task graph and three
variants of fault-tolerant schedules.

time (or even completely) during a gap in the schedule. As
we have already seen, a duplicate can be aborted if the cor-
responding original task terminated correctly. Besides, it
may also be necessary to stretch the gap if the end of the
original task is located behind the end of the gap. In this
case the schedule length will be increased as well.

According to those special cases we construct three dif-
ferent fault-tolerant schedules. On the upper right side of
Fig. 3, you see a schedule which only makes use of dummy
duplicates. These are either scheduled at the end of tasks
or during the gray shaded gap (see DDB). In this case, the
dummy duplicates ensure that the task graph will be exe-
cuted correctly (with reduced performance) even if one of
the processors fails. Nevertheless, the available processing
power of the gap is not exploited.

This is changed on the middle right by converting a
dummy duplicate (DDB) to a duplicate (DB) which can be
started at the end of task A on processor P1. If P2 does not
fail DB will be aborted at the end of task B and the rest of
the gap is left unused. Cancelation can be accomplished by
run-time daemons for each processor. These daemons ex-
change information about task completion. If P2’s daemon
reports the successful completion of task B to P1’s daemon
it will shut down DB because it is no longer useful to exe-
cute the duplicate.

Finally, in the lower right of Fig. 3 a duplicate of task C
is scheduled at the beginning of the still unused part of the
gap. Because at the ordinary end of that gap it cannot be
decided if the original task will terminate correctly, in this

case we have to extend the duplicate until the end of C. As
a consequence, we also have to shift the rest of the sched-
ule (simultaneously on both processors) by the amount of
the delay of the gap. Here, it corresponds to a delay of the
length of task D. Thus, in this case the schedule length will
be increased and an additional new gap on processor P2 ap-
pears. Fortunately, as seen in the lower right of Fig. 3, this
new gap can now be used for a duplicate of task D. Thus,
even if the total schedule length will be increased new op-
portunities arise to use emerging gaps for fault tolerant pro-
cessing.

In general, we can choose between the three strategies
described above. While in the first case idle processors are
not used at all we can gradually increase the efficiency by
the other two variants. Even though the highest efficiency
will be observed in the last case we have to accept an in-
crease in the schedule length. On the other hand we will
get faster reaction if a processor fails because more fault
tolerant processing takes place simultaneously.

In this section, only a two processor schedule was con-
sidered for simplicity. Usually, for a specific schedule there
is a larger number of processors. Thus, we also have to
decide between multiple duplicates for filling up a gap. In
order to select a task for (normal) duplication, a selection
criterion is required. As seen in the examples above, one
can use the degree of the overlap between the original task
and the gap as criterion function. If we want to maximize
the efficiency the task with the greatest overlap should be
selected as a duplicate and for the remaining tasks dummy
duplicates are created. Moreover, depending on the desired
gap’s utilization, we can use one of the last two variants.

5. Conclusions

We presented a novel static scheduling algorithm for grid
applications that uses task duplication to allow a grid job to
survive processor failures. The scheduling algorithm com-
bines the advantages of static scheduling with respect to
better schedule efficiency and avoidance of overhead in the
fault-free case, with the advantage of dynamic scheduling in
the case of a fault, i.e. low increase of schedule length. We
have presented some very preliminary experimental results
that support our theoretical analysis. Our future work will
consist of a full implementation of this scheduler and further
explorations of the extensions and trade-offs that so far are
only sketched and not fully developed. Instead of insisting
on no overhead in the fault-free case, it is also possible to al-
low a small amount of overhead in the fault-free case, while
improving the situation in the case of a fault. For exam-
ple, one might schedule the second copy of each task with
a fixed fraction of the task’s original runtime. Also, one
might control and even fix as far as possible the amount of
slack between both copies of a task. Finally one could use a



static scheduler with task duplication in order to reduce the
number of tasks to be duplicated purely for fault-tolerance
reasons.

References

[1] J. H. Abawajy. Fault-tolerant scheduling policy for grid
computing systems. In Proc. 14th IPDPS, page 238b, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[2] S. Darbha and D. P. Agrawal. A task duplication based opti-
mal scheduling algorithm for variable execution time tasks.
In ICPP, pages 52–56, 1994.

[3] F. Favarim, J. da Silva Fraga, L. C. Lung, M. Correia, and
J. F. Santos. Exploiting tuple spaces to provide fault-tolerant
scheduling on computational grids. In ISORC ’07: Pro-
ceedings of the 10th IEEE International Symposium on Ob-
ject and Component-Oriented Real-Time Distributed Com-
puting, pages 403–411, Washington, DC, USA, 2007. IEEE
Computer Society.

[4] F. Favarim, J. Fraga, L. C. Lung, and M. Correia. GridTS: A
new approach for fault tolerant scheduling in grid comput-
ing. In Proceedings of the 6th IEEE International Sympo-
sium on Network Computing and Applications (NCA), pages
187–194, July 2007.

[5] F. Favarim, L. C. Lung, J. da S. Fraga, and M. Correia.
Fault-tolerant multiuser computational grids based on tu-
ple spaces. In International Workshop on Dependability in
Service-oriented Grids (WODSOG), Oct. 2006.

[6] U. Hönig and W. Schiffmann. Improving the efficiency of
functional parallelism by means of hyper-scheduling. In
Proceedings of the 2006 International Conference on Paral-
lel Processing Workshops, pages 283–290. IEEE Computer
Society, 2006.

[7] U. Hönig and W. Schiffmann. A meta-algorithm for schedul-
ing multiple dags in homogeneous system environments. In
Proceedings of the eighteenth IASTED International Con-
ference on Parallel and Distributed Computing and Systems
(PDCS ’06), 2006.

[8] A. Iamnitchi and I. Foster. A problem-specific fault-
tolerance mechanism for asynchronous, distributed systems.
In ICPP ’00: Proceedings of the Proceedings of the 2000 In-
ternational Conference on Parallel Processing, pages 4–13,
Washington, DC, USA, 2000. IEEE Computer Society.

[9] J. Leon, A. L. Fisher, and P. Steenkiste. Fail-safe PVM: A
portable package for distributed programming with transpar-
ent recovery. Technical report, Carnegie Mellon University,
Pittsburgh, PA, USA, 1993.

[10] E. Luque, A. Ripoll, P. Hernández, and T. Margalef. Im-
pact of task duplication on static-scheduling performance in
multiprocessor systems with variable execution-time tasks.
In ICS ’90: Proceedings of the 4th international conference
on Supercomputing, pages 439–446, New York, NY, USA,
1990. ACM.

[11] F. B. Schneider. Byzantine generals in action: implementing
fail-stop processors. ACM Trans. Comput. Syst., 2(2):145–
154, 1984.

[12] J. uk In, P. Avery, R. Cavanaugh, L. Chitnis, M. Kulkarni,
and S. Ranka. SPHINX: A fault-tolerant system for schedul-
ing in dynamic grid environments. In IPDPS ’05: Pro-
ceedings of the 19th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’05) - Papers, page
12.2, Washington, DC, USA, 2005. IEEE Computer Society.

[13] J. Weissman and D. Womack. Fault tolerant scheduling in
distributed networks. Technical Report CS-96-10, Univ. of
Texas at San Antonio, 1996.

[14] G. Wrzesinska, R. V. van Nieuwpoort, J. Maassen, T. Kiel-
mann, and H. E. Bal. Fault-tolerant scheduling of fine-
grained tasks in grid environments. International Journal
of High Performance Computing Applications (IJHPCA),
20(1), February 2006.


