
Symposium on High-Level Parallel Programming & Applications
HLPP 2021

A Deterministic Portable Parallel Pseudo-Random
Number Generator for Pattern-Based Programming
of Heterogeneous Parallel Systems

August Ernstsson · Nicolas
Vandenbergen · Jörg Keller · Christoph
Kessler

Abstract SkePU is a pattern-based high-level programming model for trans-
parent program execution on heterogeneous parallel computing systems. A key
feature of SkePU is that, in general, the selection of the execution platform
for a skeleton-based function call need not be determined statically. On single-
node systems, SkePU can select among CPU, multithreaded CPU, single or
multi-GPU execution. Many scientific applications use pseudo-random number
generators (PRNGs) as part of the computation. In the interest of correctness
and debugging, deterministic parallel execution is a desirable property, which
however requires a deterministic parallel pseudo-random number generator.
We present the API and implementation of a deterministic, portable parallel
PRNG extension to SkePU that is scalable by design and exhibits the same
behavior regardless where and with how many resources it is executed. We eval-
uate it with three probabilistic applications and show that the PRNG enables
scalability on both multi-core CPU and GPU resources, and hence supports
the universal portability of SkePU code even in the presence of PRNG calls,
while source code complexity is reduced.

Keywords skeleton programming · parallelizable algorithmic pattern ·
heterogeneous system · GPGPU · deterministic parallel pseudo-random
number generator

August Ernstsson · Christoph Kessler
PELAB, Dept. of Computer and Information Science
Linköping University, Linköping, Sweden
E-mail: <firstname>.<lastname>@liu.se

Nicolas Vandenbergen
Inst. f. Adv. Simulation
Jülich Supercomputing Center, FZ Jülich, Germany
E-mail: n.vandenbergen@fz-juelich.de

Jörg Keller
Faculty of Mathematics and Computer Science
FernUniversität in Hagen, Hagen, Germany
E-mail: joerg.keller@fernuni-hagen.de

2 August Ernstsson et al.

1 Introduction

For the foreseeable future, computer systems for performance-demanding ap-
plication domains such as HPC, machine learning and image processing, will
continue to be characterized by multi-/many-core parallelism and heterogene-
ity. Faced with the increasing slowdown of Moore’s Law, a ”Cambrian explo-
sion” of computer architectures is foreseen [16] that will continue to introduce
new CPU and GPU architectures and entirely new accelerator types at a fast
pace to sustain future hardware performance growth, while at the same time
an increasing share of performance growth needs to come from both appli-
cation and system software improvements. This imposes a challenge on the
software side: How can we support the creation of truly portable, future-proof
software that is high-level yet can efficiently leverage the hardware resources
of today’s and tomorrow’s heterogeneous parallel architectures without per-
manent rewriting and re-optimization?

The skeleton programming approach [3, 4] is a powerful and programmer-
friendly way to portable high-level parallel and heterogeneous programming,
which has been demonstrated by a number of programming frameworks during
the last decade [5,7,8,21,25,27]. Skeletons are generic programming constructs
based on higher-order functions such as map, reduce, stencil etc. that express
certain parallelism patterns, that can be parameterized in problem-specific
code (the so-called user functions) and that come with parallel or accelerator-
specific implementations (the so-called backends), which are hidden behind
a portable high-level API, today usually based on C++. In short, skeletons
expose possible application-level parallelism but not its implementation details
to the programming framework and its runtime system, which might then be
free to decide which skeleton instances in a program to use (and how), and
which ones should better remain sequential.

SkePU [9] is a pattern-based high-level programming model for transpar-
ent program execution on heterogeneous parallel computing systems. A key
feature of SkePU is that, in general, the selection of the backend, and thus,
the execution platform for a skeleton-based function call need not be deter-
mined statically, i.e. prior to execution. On single-node systems, SkePU can
select among CPU, multithreaded CPU, single or multi-GPU execution. For
example, run-time selection of the expected fastest [6] backend (depending on
operand size and location) can be tuned automatically based on training exe-
cutions or manually set by a flag outside the program’s source code. By careful
API design, each SkePU program is a valid C++ program with sequential ex-
ecution semantics if compiled with a standard C++(11 or later) compiler, and
SkePU’s design for portability aims at executions over multiple cores or one or
several GPUs to show the same input-output behavior as this sequential view.

Many scientific applications, such as Monte-Carlo simulations, use pseudo-
random number generators (PRNGs) as part of the computation. In the in-
terest of correctness and debugging, deterministic parallel or heterogeneous
execution of such a program that remains consistent with sequential execution
also in terms of generated random numbers is a desirable property, which how-

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 3

ever requires a deterministic parallel pseudo-random number generator. This
becomes a challenge with SkePU’s design of late decision about sequential,
parallel or accelerator execution.

In this paper, we present the principle, API and implementation of a deter-
ministic, portable parallel PRNG extension to SkePU that exhibits the same
behavior regardless where and with how many resources a SkePU program
is executed. Our deterministic PRNG parallelization also relaxes the implicit
dependence structure of applications using the PRNG. We show that the im-
plementation is scalable on both multi-core CPU and GPU resources, and
hence supports the universal portability of SkePU code even in the presence
of PRNG calls. It also leads to more compact source code. Core contributions
are the determinism and the high-level language integration of our approach.
While our solution is prototyped and evaluated in SkePU, where it is impor-
tant due to the execution unit of a skeleton call being statically unknown, the
approach could be adapted and integrated into other frameworks for high-level
portable pattern-based parallel programming.

The remainder of this paper is organized as follows: Section 2 introduces
background about SkePU and parallel random number generators, shows two
motivating examples of previous workarounds used with SkePU to achieve
deterministic parallel PRNG behavior, and discusses their drawbacks. Sec-
tion 2.3 discusses related work. Section 3 explains three fundamental paral-
lelization methods for PRNGs and presents the new API and implementation
of the new built-in deterministic parallel PRNG in SkePU. Section 4 presents
experimental results, and Section 5 concludes.

2 Background and Related Work

2.1 SkePU

In its current version [9], SkePU (https://skepu.github.io) provides 7 data-
parallel skeletons: Map (elementwise transformation), MapOverlap (stencil up-
dates in 1D...4D), MapPairs (generic outer product of vectors), Reduce (generic
reduction), Scan (generic prefix sums), and the combinations MapReduce and
MapPairsReduce. In general, the skeletons allow both element-wise accessed,
random-access and scalar operands and are fully variadic within each of these
categories. Most skeletons also allow multiple return operands. Array-based
operands can have 1 to 4 dimensions.

By instantiating a skeleton with one or several matching problem-specific
user functions (detailed further below), a callable entity (a skeleton instance)
is generated, see Listing 1 for an example. The MapReduce instance dotprod

can be used like any manually written function, but comes with multiple back-
ends (implementations) for the different target platforms, such as sequential
execution, OpenMP multithreaded execution, CUDA and OpenCL for GPUs.
There exists also a cluster backend for SkePU that targets the MPI interface
of the StarPU runtime system [9].

https://skepu.github.io

4 August Ernstsson et al.

Listing 1: A simple SkePU example: Dot product.

1 #include <skepu >
2 ...
3 double mult (double x, double y) { return x * y; } // user function
4 double add (double x, double y) { return x + y; } // user function
5 ...
6 void main(void)
7 { ...
8 skepu::Vector <double > u(size), v(size); // two 1D data -containers
9 ...

10 auto dotprod = skepu::MapReduce <2>(mult , add); // instantiate
11 std::cout << dotprod(u, v); // call skeleton instance on 2 vectors
12 }

For passing array-type data into or out of skeleton instance calls, so-called
data containers must be used, which transparently perform memory man-
agement, software caching and data transfers for contained array elements.
SkePU 3 supports data containers for arrays in 1D (Vector), 2D (Matrix),
3D and 4D (TensorXD). All data containers are generic in the element type.

User functions must be side-effect free and be written in a restricted subset
of C++ (e.g., no dynamic memory allocation, no explicit parallelism, no skele-
ton instantiations or -calls, no global variable access) as they are translated
into the various platform-specific programming models (e.g., OpenMP, CUDA,
OpenCL) and may execute on an accelerator with a possibly separate address
space. For array-based operands passed as arguments to user functions, the
foreseen access pattern is specified by access proxy parameter objects such
as Vec<> for random-accessed vector, RegionXD<> for stencil halo regions in
MapOverlap (X ∈ {1, ..., 4}) or IndexXD for the index of the element oper-
ated on in Map-based skeletons; element-wise access is the default (no proxy
parameter type required). Access to the proxy elements depends on where the
user function will be executed and is thus entirely managed by SkePU’s data
containers. User functions can also be defined as C++ lambda (anonymous)
functions, allowing for in-line skeleton instantiation.

2.2 Parallel pseudo-random number generation

A pseudo-random number generator is a finite state automaton. Each time it is
invoked, its output function computes and outputs a pseudo-random number in
a pre-defined range from the current inner state, and transitions the inner state
via the state transition function (also called update function) into the follow-
up state. The generator only receives input upon the time of seeding, when the
seed is processed by the initialization function to produce an initial inner state.
Thus, the generator only has a very limited amount of randomness, which is
stretched over many outputs, i.e. pseudo-random. Still, current generators pass
statistical tests such as Diehard. The complexity to achieve this may lie in the
output function and/or the update function. For a complex output function,
the update function can be as simple as a counter [17].

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 5

Registered
skeletons?

Pre-forward state for
all registered

skeletons

Skeleton evaluation

Pre-
forwarded state?

Register skeleton
Forward state for
single skeleton

Yes

No

No

Yes

Return

Skeleton
evaluation

Skeleton
registration

Fig. 1: State-space of a pseudo-random number generator.

If an output of m bits is produced, the inner state comprises more than
m bits. The state transition function mostly is non-bijective1. Thus, the state
graph of the PRNG comprises one node for each state x, and a directed edge
(x, f(x)) for the transition from x to its follow-up state f(x), assuming f as
the state transition function. Thus each node has an outdegree of exactly 1,
but the indegree can vary. An example state graph is shown in Fig. 1.

Flajolet and Odlyzko [11] investigated the expected structure of state
graphs if all possible transition functions are equally likely. The graph falls
into a small number of weakly connected components, of which one comprises
the majority of the nodes (about 75%). Each component comprises a cycle
with a number of trees directed towards the cycle, where the largest tree is
expected to comprise 50% of all nodes. The expected length of the longest
cycle is less than 2

√
N , where N is the number of nodes, i.e. quite short. Trees

are ragged with depth about
√
N .

The sequence of generated pseudo-random numbers is only dependent on
the seed. In a sequential program with a deterministic program flow, the calls
to the pseudo-random number generator will produce exactly the same num-
bers at the same program place if the seed is fixed. If the program is paral-
lelized, then the PRNG state becomes a shared resource. Moreover, the order
of calls to the PRNG changes: consider e.g. a nested loop with one call per
iteration of the inner loop, where the outer loop is parallelized, so that now
the first iterations of all instances of the inner loop call the PRNG first. Still,
a deterministic parallel execution with results similar to the sequential version
(and independent of the number of threads used to parallelize the outer loop)
demands that the sequence of PRNG outputs for each inner loop execution
remains unchanged, e.g. to do debugging in the sequential version when the
parallel version has an error. This calls for a deterministic PRNG implemen-
tation as part of the parallelization.

2.3 Related Work

Kneusel [17] has a chapter on parallel PRNGs, but with respect to determin-
istic execution only reports a manual construction of duplicating the state

1 A notable exception is the linear congruential generator with transition function f(x) =
ax + b mod N for a, b chosen such that the period is maximum [18], e.g. a prime and b = 0.

6 August Ernstsson et al.

variable for each thread, plus skipping a number of states in order to achieve
the same state as in a sequential execution. He also explains counter-based
PRNGs and their suitability for parallelization because they allow skipping
any given number of states with constant effort. Fog [12] discusses require-
ments on PRNGs in parallel computations, but focuses on avoiding overlap-
ping sequences in different threads by combining generators, while L’Ecuyer
et al. [19] focus on providing independent streams and substreams. Salmon et
al. [26] focus on output functions for counter-based PRNGs to provide fast
skipping of states but still provide good statistical quality. All do not focus on
deterministic execution independent of parallelization, and have static map-
ping of tasks to threads in mind.

Leiserson et al. [20] argue that SPRNG [22], which provides a determin-
istic parallel PRNG, shows poor performance on Cilk programs and thus is
not suitable for massive parallelism. They propose pedigrees, a mechanism to
achieve a kind of linearization (i.e. a kind of equivalence to a sequential exe-
cution) in a Cilk program independent of the Cilk scheduler. However, they
do not address pattern-based parallelization.

Parallel PRNG specifically for GPU include the cuRAND library for CUDA,
SYCL-PRNG for SYCL, and work by Ciglarič et al. [2] for OpenCL. The
Thrust skeleton library for CUDA also includes a PRNG library. Passerat et
al. [23] discuss general aspects of PRNG on GPGPUs. GASPRNG [14] is an
early attempt at realizing the full SPRNG generator set on CUDA GPUs,
including clusters of CUDA GPU nodes.

2.4 Previous manual parallelization of PRNG in SkePU programs

With previous versions of SkePU, a deterministic parallel random number
generator behavior had been achieved by the two workarounds described in
the following. However, we will show that both have drawbacks.

2.4.1 Monte-Carlo Pi Calculation - index-based scrambling

As a first example, we consider a simple Monte-Carlo simulation, namely prob-
abilistic Pi approximation. This computation can be easily expressed as a
MapReduce instance, see Listing 2, where the user function needs to generate
two pseudo-random numbers, one per dimension. Here, a deterministic paral-
lel PRNG was simulated by an index-scrambling technique, i.e., generation of
pseudo-random numbers does not follow the automaton-based best-practice
technique described above; instead, they are calculated independently of each
other based on a transformation of the index in the parallelized main loop. In
the code example in Listing 2, the scramble function itself has been extracted
from a SPH (Smoothed Particle Hydrodynamics) simulation code. The draw-
back of the index scrambling method is that it may not really produce random
numbers of high quality but can expose more regular patterns.

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 7

Listing 2: Ad-hoc deterministic pseudo-random number generation by index
scrambling in a Monte-Carlo method for Pi calculation in SkePU.

1 #include <iostream >
2 #include <skepu >
3
4 // Define c, s, s2, s3 , MY_RAND_MAX as preprocessor constants
5
6 float scramble(int in)
7 {
8 return ((((int)(10*s*s2*in + 4*c*s3 + 5*in + 10*s*in)) % MY_RAND_MAX)
9 / ((float)MY_RAND_MAX));

10 }
11
12 float monte_carlo_sample(skepu:: Index2D index)
13 {
14 float x = scramble(index.row);
15 float y = scramble(index.col);
16 // check if (x,y) is inside region:
17 return ((x*x + y*y) < 1) ? 1.f : 0.f;
18 }
19
20 float add(float lhs , float rhs) { return lhs + rhs; }
21
22 int main(int argc , char *argv [])
23 {
24 auto montecarlo = skepu ::MapReduce <0>(monte_carlo_sample , add);
25
26 const size_t samples = atoi(argv [1]);
27 montecarlo.setDefaultSize(samples , samples);
28
29 float pi = montecarlo () / (samples * samples) * 4;
30 std::cout << pi << "\n";
31 }

2.4.2 Markov Chain Monte Carlo methods in LQCD – PRNG with explicit state

The code excerpt in Listing 3 is extracted from a Lattice QCD mini-application
which computes the Yang-Mills theory of the SU(3) group. This computation
is typically done by applying the Metropolis algorithm, a common Markov
Chain Monte Carlo (MCMC) based method. The Metropolis calculations are
performed on a 4D tensor whose elements are structures of complex number
arrays, with a 81-point (3×3×3×3) stencil computation required to evaluate
the Metropolis acceptance function. For an in-depth introduction to MCMC
methods in LQCD, see [15].

Unlike the conventional Monte Carlo method showcased in Listing 2, MCMC
methods are inherently sequential. Thus, a PRNG for MCMC methods has to
be stateful, i.e. a finite state automaton as outlined in Section 2.2. This con-
flicts with the requirement that SkePU user functions must be side-effect free.
The chosen solution for the user functions of Listing 3 is a sequential PRNG
which is algorithmically equivalent to POSIX drand48 but has an explicit state
argument instead of drand48’s internal state variable.

For such an approach, the PRNG state has to be explicitly managed. As
a dedicated PRNG state container is not a viable solution due to syntactical
constraints of the MapOverlap skeleton, the state is embedded directly in the

8 August Ernstsson et al.

data set. This has the drawback of having an unusually large memory footprint
for a PRNG. Specifically, the memory requirement for storing the PRNG states
grows by O(L4) where L is the side length of the 4D tensor, i.e. linearly with
the problem size. Usage of the proposed new library PRNG inside SkePU is
expected to lower the memory footprint of PRNG state storage to O(p) where
p is the number of computational units used in the selected backend.

While it would be possible to adapt the index-based scrambling technique
of Listing 2 to perform the initial seeding of the resulting parallel PRNG,
Listing 3 contents itself with using the Scan skeleton to force a non-repeating
state set into existence. While this is viable as a quick and dirty solution to
deterministic parallel PRNG seeding, it is likely to produce random numbers of
suboptimal quality; in that respect, a mathematically robust library solution
is preferable.

3 Designing a Deterministic PRNG for SkePU

We will now introduce a more systematic approach that provides deterministic
parallel random number generation for use in SkePU, together with an API
extension of SkePU 3 that makes PRNG streams a fundamental part of the
API. We will start by discussing inherent challenges to pseudo-random num-
ber generation in parallel programming and proceed step by step towards a
deterministic PRNG implementation at the framework level.

3.1 Global synchronization

A straightforward approach to random number generation in parallel appli-
cations is to consider the PRNG as a shared resource. As such, the PRNG
needs to be protected by the appropriate synchronization operations during
access, to avoid race conditions such as multiple threads reading the same ran-
dom value, which would decrease the quality of the random number stream,
or even the PRNG state itself being corrupted due to simultaneous writes.

This approach ensures a high-quality random number stream as each value
is generated in the same manner as in a sequential program. Any random num-
ber generator can be used in this approach, including external entropy sources,
since synchronization guarantees protected sequentialized access. This syn-
chronization does however add significant overhead and is unfeasible in mas-
sively parallel accelerators such as GPUs. Only if the synchronization method
guarantees a deterministic order of accesses to the critical section containing
the PRNG state (which is usually not the case for ordinary lock-based syn-
chronization), the random number stream generated from this method will be
itself deterministic. We cannot predict in which order the threads will generate
a value from the PRNG and update the state space.

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 9

Listing 3: Simplified SkePU code for an explicit-state parallel PRNG for
Markov-chain-based LQCD applications (Sect. 2.4.2).

1 typedef uint64_t PRNGState;
2
3 // Seeding:
4 skepu::Tensor4 <PRNGState > ones(L, L, L, L, 1), prngs(L, L, L, L);
5 auto seedPRNGs = skepu ::Scan([](PRNGState x, PRNGState y){ return x+y;});
6 seedPRNGs(prngs , ones);
7
8 // Extracting:
9 inline PRNGState statelessDrand48(PRNGState prng)

10 {
11 return (0 x5deece66d * prng + 11) % (1LL < <48);
12 }
13 inline double normalize(PRNGState prng)
14 {
15 return (double)prng / (double)(1LL <<48);
16 }
17
18 // Parallel state management:
19 struct localGauge; // 36 double -precision complex numbers
20 struct localGaugeAndPRNG
21 {
22 localGauge data;
23 PRNGState prng;
24 };
25 skepu::Tensor4 <localGaugeAndPRNG > gaugeField(L, L, L, L);
26
27 // Gauge randomization:
28 localGaugeAndPRNG randomizeGauge(PRNGState prng)
29 {
30 localGaugeAndPRNG gaugeNew;
31 for (int idx = 0; idx < 36; idx++) {
32 prng = statelessDrand48(prng);
33 gaugeNew.data.at(idx).re = normalize(prng);
34 prng = statelessDrand48(prng);
35 gaugeNew.data.at(idx).im = normalize(prng);
36 }
37 gaugeNew.prng = prng;
38 return gaugeNew;
39 }
40
41 // Metropolis step:
42 localGaugeAndPRNG localUpdate(skepu::Region4D <localGaugeAndPRNG > stencil)
43 {
44 localGaugeAndPRNG proposal = randomizeGauge(stencil(0,0,0,0).prng);
45 double limen = someDeterministicStencilArithmetic(stencil , proposal);
46 stencil(0,0,0,0).prng = statelessDrand48(proposal.prng);
47 if (normalize(stencil(0,0,0,0).prng) >= limen) {
48 stencil(0,0,0,0).data = proposal.data;
49 }
50 return stencil(0,0,0,0);
51 }
52
53 auto metropolisUpdate = skepu:: MapOverlap(localUpdate);
54 for (int iter = 0; iter < Niter; iter ++) {
55 metropolisUpdate(gaugeField , gaugeField);
56 }

10 August Ernstsson et al.

0,0

0,1

0,2

0,3

0,…

0,r-1

1,0

1,1

1,2

1,3

1,…

1,r-1

2,0

2,1

2,2

2,3

2,…

2,r-1

3,0

3,1

3,2

3,3

3,…

3,r-1

4,0

4,1

4,2

4,3

4,…

4,r-1

5,0

5,1

5,2

5,3

5,…

5,r-1

…,0

…,1

…,2

…,3

…

…,r-1

p-1,0

p-1,1

p-1,2

p-1,3

p-1,…

p-1,
r-1

0 1 2 3 4 5 … p-1

SEED

0

1

2

3

…

r-1

r

r+1

r+2

r+3

…

2r-1

2r

2r+1

2r+2

2r+3

…

3r-1

3r

3r+1

3r+2

3r+3

…

4r-1

4r

4r+1

4r+2

4r+3

…

5r-1

5r

5r+1

5r+2

5r+3

…

6r-1

…

…

…

…

…

…

(p-1)r

(p-1)r
+1

(p-1)r
+2

(p-1)r
+3

…

pr-1

SEED

state forwarding

master PRNG

SEED SEED

(a) Stream-splitting approach to parallel
pseudo-random number generation.

0,0

0,1

0,2

0,3

0,…

0,r-1

1,0

1,1

1,2

1,3

1,…

1,r-1

2,0

2,1

2,2

2,3

2,…

2,r-1

3,0

3,1

3,2

3,3

3,…

3,r-1

4,0

4,1

4,2

4,3

4,…

4,r-1

5,0

5,1

5,2

5,3

5,…

5,r-1

…,0

…,1

…,2

…,3

…

…,r-1

p-1,0

p-1,1

p-1,2

p-1,3

p-1,…

p-1,
r-1

0 1 2 3 4 5 … p-1

SEED

0

1

2

3

…

r-1

r

r+1

r+2

r+3

…

2r-1

2r

2r+1

2r+2

2r+3

…

3r-1

3r

3r+1

3r+2

3r+3

…

4r-1

4r

4r+1

4r+2

4r+3

…

5r-1

5r

5r+1

5r+2

5r+3

…

6r-1

…

…

…

…

…

…

(p-1)r

(p-1)r
+1

(p-1)r
+2

(p-1)r
+3

…

pr-1

SEED

state forwarding

master PRNG

SEED SEED

(b) State-forwarding approach to parallel
pseudo-random number generation.

Fig. 2: Approaches for parallelizing a PRNG sequence.

3.2 Stream splitting

With the goal of avoiding or minimizing global synchronization of the PRNG
state, we consider a different approach [13]. As a PRNG state has to be con-
sidered a shared resource for proper operation, we can get around the synchro-
nization requirement by assigning each individual thread its own PRNG state.
A thread-private PRNG stream does not need protected access and will yield
a perfect sequential series of random values by itself. However — aside from
a large increase in memory space consumed by the replicated states — with
several or many parallel threads in the system, the aggregate random number
stream over all task invocations will differ greatly from a sequential program.

Whether data-parallel tasks are assigned in blocks or interleaved, we ef-
fectively have split the single PRNG stream into many shorter sequences dis-
tributed over the working set in the same pattern as the data-parallel tasks.
The resulting pattern can be seen in Figure 2a. This degrades the quality of
the random values in aggregate, which is undesirable for sensitive applications.

There is another unfortunate consequence of this approach: ensuring de-
terminism in the random value stream is possible, but with significant restric-
tions. Due to the aforementioned parallelization of the computation using the
PRNG, the observed PRNG stream across the data-set is a mangled mixture
of (a potentially large number of) individual streams. This mangling has to be
replicated in the sequential execution of the program to preserve determinism;
and worse, all parallel backends have to observe the same such mapping. This
can prove tricky when the parallel backends vary significantly in properties
such as the available parallelism degree. A consequence of this behavior is also
that in any execution of the program for which deterministic random values
are desired, the maximal number of threads has to be known a priori, before
even executing a sequential backend variant. If the degree of parallelism ever is
increased, e.g. by moving to a larger processor, GPU, or cluster, the previous
runs are invalidated with respect to the determinism criterion.

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 11

3.3 State forwarding

The approach taken in this work is state forwarding. We attempt to side-step
the issues of both the global synchronization as well as the stream splitting ap-
proaches. This is done by utilizing properties of the PRNG state spaces. A true
sequential single-stream variant of the program is taken as the gold standard
output, and the goal is to replicate the same output on any parallel backend,
without the need of global synchronization or advance knowledge of paral-
lelism degree. As in the stream splitting approach, data-parallel work items
are deterministically mapped across available computational units (threads).
This means that the number of tasks assigned to each thread is known ahead
of time, and for simplicity without the loss of generalization we assume the
work can be split evenly among threads.

Furthermore, we assume that the number of times a PRNG state is updated
(i.e., the number of times a random value is generated) is known ahead of time
for each work unit. Combining the knowledge of work unit count and random
calls per work unit, we know exactly how many state-forwards each thread will
generate in the respective data-parallel construct (i.e., skeleton invocation).

We can therefore, for each thread, pre-forward the state of the PRNG and
store a copy of the forwarded state. These per-thread forwarded clones of the
original PRNG can now act as the thread-private PRNG streams in the stream-
splitting approach, with the additional property that when interleaved during
the data-parallel execution, the aggregate observed stream now is equivalent
to the sequential stream, which was the primary hurdle in the stream-splitting
approach. Figure 2b illustrates the resulting pattern.

Still, the extra memory footprint of the thread-private PRNG states per-
sists and will lead to additional overhead. The state-forwarding adds an ad-
ditional computation step before the execution of the tasks, which can in
the worst case be equally costly as the PRNG value extraction process itself
(though it can also be parallelized). Properties of the PRNG state space have
to be exploited to speed up the forwarding process and reduce the induced
overhead.

The leapfrog resp. sequence splitting method for state forwarding, intro-
duced by Celmaster and Moriarty [1] for use with vector computers, considers
a special case that allows to parallelize the forwarding phase of the PRNG. A
linearly congruential PRNG with factor a is partitioned into p linearly con-
gruential PRNGs each to be used r times, which are defined based on the
same linear factor a, by seed(i) = (ar · seed(i − 1)) mod m for i = 1, ..., p,
rand(i, 0) = seed(i) and rand(i, j) = a · rand(i, j − 1) mod m. Hence, the
p PRNGs equally partition the period of the seed PRNG in contiguous sub-
sequences of length r. First, the air for i = 0, ..., p − 1 and the seed sequence
can be calculated in parallel by a Scan in O(log p) steps, using the property
a2k mod m = ((ak mod m)2) mod m. Then the rand calls are independent
for each i. (For reasonably low numbers of p such as for a current multicore
CPU, sequential computation of the seeds should be faster; this is done in the
current implementation.) The leapfrog / sequence splitting method scales well

12 August Ernstsson et al.

0,0

0,1

0,2

0,3

0,…

0,r-1

1,0

1,1

1,2

1,3

1,…

1,r-1

2,0

2,1

2,2

2,3

2,…

2,r-1

3,0

3,1

3,2

3,3

3,…

3,r-1

4,0

4,1

4,2

4,3

4,…

4,r-1

5,0

5,1

5,2

5,3

5,…

5,r-1

…,0

…,1

…,2

…,3

…

…,r-1

p-1,0

p-1,1

p-1,2

p-1,3

p-1,…

p-1,
r-1

0 1 2 3 4 5 … p-1

SEED

0

1

2

3

…

r-1

r

r+1

r+2

r+3

…

2r-1

2r

2r+1

2r+2

2r+3

…

3r-1

3r

3r+1

3r+2

3r+3

…

4r-1

4r

4r+1

4r+2

4r+3

…

5r-1

5r

5r+1

5r+2

5r+3

…

6r-1

…

…

…

…

…

…

(p-1)r

(p-1)r
+1

(p-1)r
+2

(p-1)r
+3

…

pr-1

SEED

state forwarding

master PRNG

SEED SEED

(a) No pre-forwarding between iter-
ations.

0,0

0,1

0,2

0,3

0,…

0,r-1

1,0

1,1

1,2

1,3

1,…

1,r-1

2,0

2,1

2,2

2,3

2,…

2,r-1

3,0

3,1

3,2

3,3

3,…

3,r-1

4,0

4,1

4,2

4,3

4,…

4,r-1

5,0

5,1

5,2

5,3

5,…

5,r-1

…,0

…,1

…,2

…,3

…

…,r-1

p-1,0

p-1,1

p-1,2

p-1,3

p-1,…

p-1,
r-1

0 1 2 3 4 5 … p-1

SEED

0

1

2

3

…

r-1

r

r+1

r+2

r+3

…

2r-1

2r

2r+1

2r+2

2r+3

…

3r-1

3r

3r+1

3r+2

3r+3

…

4r-1

4r

4r+1

4r+2

4r+3

…

5r-1

5r

5r+1

5r+2

5r+3

…

6r-1

…

…

…

…

…

…

(p-1)r

(p-1)r
+1

(p-1)r
+2

(p-1)r
+3

…

pr-1

SEED

state forwarding

master PRNG

SEED SEED

(b) Pre-forwarding the PRNGs once
before the iterative loop.

Fig. 3: Container indexing and memory layout.

but is known to have problems for lcg with power-of-2 values for modulus and
p. Skipping can also be applied for counter-based PRNGs [26] with output
functions based on block ciphers for better statistics at a higher cost.

3.4 Optimizing long or iterated skeleton chains by pre-forwarding

While some applications may consist of a single parallelized step (such as
a parallel for loop or skeleton call; we will use the latter here), others, in
particular larger applications, will have multiple phases which are individually
parallelized. A common example is iterative applications where each iteration
in turn consists of one or more skeleton calls. To achieve good efficiency, we
need to ask the question: when is the PRNG state split and forwarded for the
purposes of parallelization in a skeleton invocation scenario?

In a naive implementation of the state-splitting approach, the state split-
ting and forwarding step (see Fig. 3a) is done right before each skeleton call.
On the other hand, if we have a known number of skeleton calls (determinable
by static analysis, lineage building [10], or program instrumentation), we only
need to perform the splitting and forwarding of the PRNG states once per ap-
plication. This is referred to as pre-forwarding and is illustrated in Figure 3b.
In practice, restrictions such as data-dependent control flow (e.g., branches or
iteration bounds) may limit the degree to which pre-forwarding can be applied,
and application programmers may benefit from awareness of the cost-reduction
opportunities from pre-forwarding already during program design.

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 13

3.5 API Extension Design

We have implemented the state-forwarding approach in the skeleton program-
ming framework SkePU 3. SkePU did not previously have a random number
generation component, and as shown in Section 2.4, previous manual imple-
mentations of PRNG-like functionality in SkePU applications have been ad-
hoc and substantially different from each other. A baseline contribution of a
framework-level PRNG library in SkePU is the programmability gains from
reducing the effort of designing probabilistic applications on top of SkePU, as
well as readability benefits from having a unified system for random number
generation across all SkePU programs.

3.5.1 Random number extraction in user functions

As explained in Section 2.1, a SkePU skeleton is defined entirely by its type
(e.g., Map), the signature of its instantiating user function, and state prop-
erties set on the resulting skeleton instance (such as .setOverlap(...) for
MapOverlap instances). PRNG extraction is made available in all skeletons
with a fully data-parallel mapping stage, which is the entire skeleton set ex-
cept for Reduce and Scan.2

As such, the user function signature (“header”) itself should encode the
use of random number extraction. This is analogous to the preexisting option
for mapping user functions to request the index of the currently processed
element (see Listing 2). Therefore, we encode PRNG reliance in the same
way. At the start of the parameter list (after the index parameter, if any), a
parameter of type skepu::Random<N>& is added. N is a compile-time constant
used in SkePU’s template metaprogramming-based implementation to deduce
the number of random values extracted by the user function in the dynamic
extent of its evaluation. N is required to be known ahead-of-time for the state
forwarding to work and determinism to be preserved.3 A compilation option
allows for run-time verification that the extraction count is obeyed.

Value extraction is carried out by a call to one out of two member func-
tions of the skepu::Random<N> object. random.get() produces integers in
[0,SKEPU RAND MAX) while random.getNormalized() returns real num-
bers in [0, 1). Each call corresponds to one extraction and state update of the
PRNG stream. A basic example of a user function with 5 random number
extractions is shown in Listing 4.

SkePU user functions are allowed to call other functions, subject to some
but not all restrictions of skeleton-instantiating user functions. As the extrac-
tion count N is only required for instantiation, passing a PRNG stream object
to indirect user functions is instead done with a skepu::Random<>* parameter
with no positional requirement.

2 Reduce and Scan are parallelized through tree reductions reliant on the associativity
property of their user functions.

3 If determinism is not required by the application, N can be treated as an upper bound,
which instead guarantees that no sub-sequences of random numbers are overlapping.

14 August Ernstsson et al.

Listing 4: User function with calls to the SkePU random number generator.

1 float uf(skepu::Random <5> &prng , skepu::Region1D <float > region)
2 {
3 float res = 0;
4 for (int i = -2; i <= 2; ++i) // 1D stencil with random weights
5 res += region(i) * prng.getNormalized ();
6 return res;
7 }

Fig. 4: Flow-chart of the deterministic PRNG implementation. Here ellipses
are events and boxes correspond to processes.

3.5.2 PRNG streams and skeleton invocations

Once a skepu::Random<N>&-enabled user function is present, a skeleton can
be instantiated as usual. In addition to the skeleton instance, a PRNG stream
object needs to be defined in the program: an object of type skepu::PRNG.
Initialization of the PRNG stream takes an optional seed integer argument.
The seed changes the deterministic sequence generated in the stream and
can be assigned from an external entropy source (e.g., a timestamp) if non-
determinism across program runs is preferred.

The stream object is a state machine which registers skeletons ahead of
invocation time. Also in this way PRNG streams work like SkePU’s index pa-
rameters: the stream is not part of a skeleton call’s argument list. Instead they
are registered as skeleton.setPRNG(prng). The full flow chart of the regis-
tration and evaluation process is shown in Figure 4. In short, several skeleton
instances may be registered before reaching an evaluation event. Only at this
point is the PRNG sequence split across computational units and forwarded to
the appropriate state. The input size (i.e., the maximum degree of parallelism)
has direct impact on the forwarding leaps and is only known at the evaluation
point from the input arguments to the skeleton call.4 In subsequent skeleton
invocations, the PRNG object checks for existing forwarded state and skips
directly to evaluation (refer to Fig. 3b).

Listing 5 shows a variant of the Monte-Carlo Pi calculation algorithm using
the new SkePU API. Implementation with a MapReduce<0> skeleton enables
a data-parallel computation without explicit container allocation, as the al-

4 The input size is assumed to be uniform over a sequence of skeleton calls.

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 15

Listing 5: Pi approximation using the new SkePU PRNG API.

1 #include <iostream >
2 #include <skepu >
3
4 int monte_carlo_sample(skepu ::Random <2> &random)
5 {
6 float x = random.getNormalized ();
7 float y = random.getNormalized ();
8 // check if (x,y) is inside region:
9 return ((x*x + y*y) < 1) ? 1 : 0;

10 }
11
12 int add(int lhs , int rhs) { return lhs + rhs; }
13
14 int main(int argc , char *argv [])
15 {
16 auto montecarlo = skepu ::MapReduce <0>(monte_carlo_sample , add);
17
18 skepu::PRNG prng;
19 montecarlo.setPRNG(prng);
20
21 const size_t samples = atoi(argv [1]);
22 montecarlo.setDefaultSize(samples);
23
24 double pi = (double)montecarlo () / samples * 4;
25 std::cout << pi << "\n";
26 }

gorithm needs no element-wise input data to the user function; all input is
derived from the PRNG stream. Internally, SkePU will use two containers:
one input data set for the split PRNG sub-sequence states, and one output
data set for the results of the user function invocations. Note, however, that
SkePU will optimize the size of these intermediate data sets; they grow by
O(p), the number of computational units, and not O(n), problem size (here
the sample count).

Our prototype implementation handles multiple PRNG stream objects
across different skeleton calls, but a single skeleton call (and thus its user
function) can only receive values from one PRNG stream per invocation.
skepu::Random usage can be combined with most other SkePU features, with
a notable exception being dynamic scheduling for multi-core execution intro-
duced [9] in SkePU 3.

4 Experimental Evaluation

For the performance evaluations in this section, we use a server with two six-
core Xeon E5-2630L CPUs with two-way hardware multi-threading, a Nvidia
K20c GPU, and 64 GiB of main memory. The system runs Ubuntu 18.04.5
LTS and GCC 10.3.0 is used as backend compiler with -O3 optimization level.

16 August Ernstsson et al.

Miller-Rabin

N Sequential OpenMP OpenCL

10 1×10^−06 1,6×10^−05 0,00077

100 4,5×10^−05 1,8×10^−05 0,000783

1000 0,0005 9,8×10^−05 0,00087

10000 0,006689 0,001127 0,001039

100000 0,083241 0,007432 0,00439

1000000 0,994746 0,086984 0,05345

10000000 11,6659 0,897295 0,606255

Ti
m

e,
 s

ec
on

ds

1×10^−04

1×10^−02

1×10^+00
1×10^+01

Problem size
10 100 1000 10000 100000 1000000 10000000

Sequential
OpenMP
OpenCL

Monte-Carlo pi

N Sequential OpenMP OpenCL

1000 2×10^−06 1×10^−05 0,000331

10000 2,2×10^−05 2,2×10^−05 0,000326

100000 0,000221 0,000119 0,000338

1000000 0,002217 0,001098 0,000426

10000000 0,0222 0,011002 0,001623

100000000 0,221864 0,091518 0,003245

1000000000 1,96226 0,581136 0,012379

10000000000 19,076 5,4943 0,104971

Ti
m

e,
 s

ec
on

ds

1×10^−04

1×10^−02

1×10^+00
1×10^+01

Sample count
1000 100000 10000000 1000000000

Sequential
OpenMP
OpenCL

Fig. 5: Monte-Carlo Pi calculation with varying sample count on different
backends.

Miller-Rabin

N Sequential OpenMP OpenCL

10 1×10^−06 1,6×10^−05 0,00077

100 4,5×10^−05 1,8×10^−05 0,000783

1000 0,0005 9,8×10^−05 0,00087

10000 0,006689 0,001127 0,001039

100000 0,083241 0,007432 0,00439

1000000 0,994746 0,086984 0,05345

10000000 11,6659 0,897295 0,606255

Ti
m

e,
 s

ec
on

ds

1×10^−04

1×10^−02

1×10^+00
1×10^+01

Problem size
10 100 1000 10000 100000 1000000 10000000

Sequential
OpenMP
OpenCL

Monte-Carlo pi

N Sequential OpenMP OpenCL

1000 2×10^−06 1×10^−05 0,000331

10000 2,2×10^−05 2,2×10^−05 0,000326

100000 0,000221 0,000119 0,000338

1000000 0,002217 0,001098 0,000426

10000000 0,0222 0,011002 0,001623

100000000 0,221864 0,091518 0,003245

1000000000 1,96226 0,581136 0,012379

10000000000 19,076 5,4943 0,104971
Ti

m
e,

 s
ec

on
ds

1×10^−04

1×10^−02

1×10^+00
1×10^+01

Sample count
1000 100000 10000000 1000000000

Sequential
OpenMP
OpenCL

Monte-Carlo pi-1

threads L=16 Manual L=16
skepu::Random

L=24 Manual L=24
skepu::Random

1 50,89399500 50,92491200 266,66553500 259,22417500
2 26,66627900 26,30092700 135,72546900 135,83852600
4 13,83029900 13,86120100 71,52564500 70,49268500
6 10,66803600 10,60762800 48,24080700 53,38938600
8 7,32216200 7,21442500 36,88826400 35,90116800

10 7,16795200 7,80871700 36,26677900 36,51375300
12 7,14516700 8,51562800 25,02662300 24,70299300
14 8,23175500 8,07528800 30,98545700 31,05482900
16 6,06539800 6,04189800 32,20937800 32,08328300
18 6,05937700 6,04776200 32,16685600 32,84153200
20 6,07945900 6,08136800 32,14131500 28,90955900
22 6,05239600 6,17395000 29,24989000 28,87149700
24 6,21952300 6,09078400 21,72536500 22,04088200

Ti
m

e,
 s

ec
on

ds

0

75

150

225

300

Thread count
1 2 4 6 8 10 12 14 16 18 20 22 24

L=16 Manual
L=16 skepu::Random
L=24 Manual
L=24 skepu::Random

1

Fig. 6: Time (seconds) for 10 iterations of LQCD with lattice sizes L = 16 and
L = 24 for varying number of hardware threads in the OpenMP backend.

4.1 Monte-Carlo Pi approximation

We begin with the probabilistic Pi calculation from Section 2.4.1. SkePU code
using the new skepu::Random API is shown in Listing 5.

Figure 5 contains the performance results from executing the SkePUized
program on various backends. The Monte-Carlo Pi calculation algorithm is an
interesting stress test due to the random number generation dominating the
total work. The application scales well on the GPU using the OpenCL backend
(up to 180x speedup compared to sequential in the presented results), even
though the work done in the user function is very lightweight.

4.2 LQCD Mini-Application

For the LQCD mini-application introduced in Section 2.4.2, SkePU code using
the new PRNG API is shown in Listing 6.

Figure 6 shows the times of 10 iterations of LQCD with the OpenMP back-
end, comparing the manual workaround of Listing 3 to the new version using
skepu::Random of Listing 6 (note that the optimization for pre-forwarding is

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 17

Listing 6: Markov-chain-based LQCD application with new SkePU PRNG API

1 // Data management:
2 struct localGauge; // 36 double -precision complex numbers
3 skepu::Tensor4 <localGauge > gaugeField(L, L, L, L);
4
5 // Gauge randomization:
6 localGauge randomizeLocalGauge(skepu::Random <> *prng)
7 {
8 localGauge gaugeNew;
9 for (int idx = 0; idx < 36; idx++) {

10 gaugeNew.at(idx).re = prng ->getNormalized ();
11 gaugeNew.at(idx).im = prng ->getNormalized ();
12 }
13 return gaugeNew;
14 }
15
16 // Metropolis step:
17 localGauge localUpdate(skepu::Random <73>& prng ,
18 skepu::Region4D <localGauge > stencil)
19 {
20 localGaugeAndPRNG update = randomizeLocalGauge(prng);
21 double limen = someMatrixArithmetic(stencil , update);
22 if (prng.getNormalized () >= limen) {
23 stencil(0,0,0,0) = update;
24 }
25 return stencil(0,0,0,0);
26 }
27
28 ...
29 skepu::PRNG prng;
30 auto metropolisUpdate = skepu:: MapOverlap(localUpdate);
31 metropolisUpdate.setPRNG(prng);
32 for (int iter = 0; iter < Niter; iter ++) {
33 metropolisUpdate(gaugeField , gaugeField);
34 }

Listing 7: Pseudocode of Miller-Rabin probabilistic primality testing

1 int test(int n)
2 {
3 result = true;
4 for (int i = 1; i <= t; i++) {
5 int a = rand ();
6 result = result & millerrabin(n, a);
7 // if (result == false) break;
8 }
9 return result;

10 }

not activated yet and will be contained in the final paper; the times are ex-
pected to improve). We can see that no new overheads are introduced while
code complexity decreases (see Sect. 4.4).

18 August Ernstsson et al.
Miller-Rabin

N Sequential OpenMP OpenCL

10 1×10^−06 1,6×10^−05 0,00077

100 4,5×10^−05 1,8×10^−05 0,000783

1000 0,0005 9,8×10^−05 0,00087

10000 0,006689 0,001127 0,001039

100000 0,083241 0,007432 0,00439

1000000 0,994746 0,086984 0,05345

10000000 11,6659 0,897295 0,606255

Ti
m

e,
 s

ec
on

ds

1×10^−04

1×10^−02

1×10^+00
1×10^+01

Problem size
10 100 1000 10000 100000 1000000 10000000

Sequential
OpenMP
OpenCL

Monte-Carlo pi

N Sequential OpenMP OpenCL

1000 2×10^−06 1×10^−05 0,000331

10000 2,2×10^−05 2,2×10^−05 0,000326

100000 0,000221 0,000119 0,000338

1000000 0,002217 0,001098 0,000426

10000000 0,0222 0,011002 0,001623

100000000 0,221864 0,091518 0,003245

1000000000 1,96226 0,581136 0,012379

10000000000 19,076 5,4943 0,104971

Ti
m

e,
 s

ec
on

ds

1×10^−04

1×10^−02

1×10^+00
1×10^+01

Sample count
1000 100000 10000000 1000000000

Sequential
OpenMP
OpenCL

Fig. 7: Miller-Rabin primality test with varying sample count on different
backends.

4.3 Miller-Rabin primality testing

The Miller-Rabin primality test [24] is a probabilistic algorithm to deter-
mine for a given number if it is likely prime or not. The actual test gets two
inputs: n, the number to be tested for primality, and a value a in the range
{2...n − 2}. It performs a computation on a and n, and depending on the
result it outputs “n is prime” or “n is composite”. While the latter answer
is always true, there is a certain probability that the former answer is wrong,
and this probability can be reduced by doing the computation repeatedly with
randomly chosen a, see Listing 7. This can be easily parallelized, as the t iter-
ations are independent (except for calls to the PRNG), but for comparability
it is helpful that the random choices are similar to the sequential version.

Our SkePU implementation of the Miller-Rabin algorithm is largely based
on an open-source implementation in C++ by Larsen5 where the main Monte-
Carlo parallelism is expressed by a MapReduce<0> skeleton instance.

Parallel performance of the SkePUized Miller-Rabin application can be
seen in Figure 7. Instruction flow is highly divergent throughout the algorithm
due to data-dependent control flow, which is challenging for the GPU back-
end: it is just barely faster than multi-core CPU computation. This property
distinguishes the program from the Monte-Carlo sampling algorithm wherein
the PRNG values have no effect on control flow. For the multi-core OpenMP
backend we observe speedup up to 13x.

4.4 Programmability Evaluation

In all of Pi calculation, Lattice QCD and Miller-Rabin primality test, the im-
plementations see a reduction in lines-of-code count after applying the SkePU

5 C.S. Larsen: The Miller-Rabin primality test in C++. https://github.com/cslarsen/
miller-rabin

https://github.com/cslarsen/miller-rabin
https://github.com/cslarsen/miller-rabin

A Deterministic Portable Parallel PRNG for Heterogeneous Parallel Systems 19

PRNG API. This effect primarily comes from abstracting the implementa-
tion details of the PRNG engine itself. The entire code base of the SkePUized
LQCD application is reported by sloccount to be 1,212 lines of code before
applying the new skepu::Random API, and 1,137 afterwards. This amounts
to a reduction by 6.2%. In addition, the change simplifies the data structure
hierarchy, and fewer skeleton calls and user function declarations are necessary.

5 Conclusion and Future Work

We have proposed a method for realizing a deterministic parallel PRNG for
use with skeleton-based high-level programming of heterogeneous parallel sys-
tems where the type and number of parallel execution resources of skeleton
calls can be selected dynamically at run-time. We provided an extension of
the SkePU API and its prototype implementation based on state forwarding.
We evaluated it with three probabilistic applications on multi-core CPU and
GPU backends, and found that the proposed API and parallelization approach
performs at least equally well as manual workarounds while code complexity
is reduced. The PRNG scales on both CPU and GPU backends.

Ongoing work includes the extension of the prototype implementation in
SkePU to support skepu::Random for other skeletons and for other GPU back-
ends (e.g., CUDA); GPU implementations will also include state forwarding
using a parallel prefix sum where applicable. Updated results will be reported
in the final version of the paper, likewise GPU timings for LQCD. Moreover
we plan to include one more test application.

Future work will extend the current implementation of the new PRNG
functionality to also work with cluster and hybrid backends of SkePU. The
PRNG API will be integrated in the public open source SkePU repository.

Acknowledgment

This work was partly funded by EU H2020 project 801015 (EXA2PRO),
exa2pro.eu and by CUGS, Linköping University.

References

1. William Celmaster and Kevin J.M. Moriarty. A method for vectorized random number
generators. J. of Comput. Physics, 64:271–275, 1986.

2. Tadej Ciglarič, Erik Štrumbelj, et al. An OpenCL library for parallel random number
generators. The Journal of Supercomputing, 75(7):3866–3881, 2019.

3. Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel computing, 30(3):389–406, 2004.

4. Murray I. Cole. Algorithmic skeletons: Structured management of parallel computation.
Pitman and MIT Press, Cambridge, Mass., 1989.

5. Marco Danelutto and Massimo Torquati. Structured parallel programming with ”core”
FastFlow. In Central European Functional Programming School, volume 8606 of LNCS,
pages 29–75. Springer, 2015.

exa2pro.eu

20 August Ernstsson et al.

6. Usman Dastgeer, Lu Li, and Christoph Kessler. Adaptive implementation selection in
the SkePU skeleton programming library. In Advanced Parallel Processing Technologies,
pages 170–183. Springer, 2013.

7. David del Rio Astorga, Manuel F. Dolz, Javier Fernández, and J. Daniel Garćıa. A
generic parallel pattern interface for stream and data processing. Concurrency and
Computation: Practice and Experience, 29(24):e4175, 2017.

8. Johan Enmyren and Christoph W Kessler. SkePU: A multi-backend skeleton program-
ming library for multi-GPU systems. In Proceedings of the fourth international work-
shop on High-level parallel programming and applications, pages 5–14. ACM, 2010.

9. August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph Kessler. SkePU
3: Portable high-level programming of heterogeneous systems and HPC clusters. Int. J.
of Parallel Programming, May 2021. https://doi.org/10.1007/s10766-021-00704-3.

10. August Ernstsson and Christoph Kessler. Extending smart containers for data locality-
aware skeleton programming. Concurrency and Computation: Practice and Experience,
31(5):e5003, 2019.

11. Philippe Flajolet and Andrew M. Odlyzko. Random mapping statistics. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology - Proc. EU-
ROCRYPT ’89 Workshop on the Theory and Application of Cryptographic Techniques,
Houthalen, Belgium, volume 434 of LNCS, pages 329–354. Springer, 1989.

12. Agner Fog. Pseudo-random number generators for vector processors and multicore
processors. J. Modern Appl. Stat. Meth., 14:308–334, December 2015.

13. Paul Frederickson, Robert Hiromoto, Thomas L. Jordan, Burton Smith, and Tony
Warnock. Pseudo-random trees in monte carlo. Parallel Comput., 1(2):175–180, De-
cember 1984.

14. Shuang Gao and Gregory D. Peterson. GASPRNG: GPU accelerated scalable parallel
random number generator library. Computer Physics Comm., 184(4):1241–1249, 2013.

15. Masanori Hanada. Markov chain monte carlo for dummies. arXiv 1808.08490, 2018.
16. John L. Hennessy and David A. Patterson. A new golden age for computer architecture.

Commun. ACM, 62(2):48–60, January 2019.
17. Ronald T. Kneusel. Random Numbers and Computers. Springer, Cham (CH), 2018.
18. Donald E. Knuth. The Art of Computer Programming Volume 2: Seminumerical Al-

gorithms. Addison-Wesley Longman, Boston, MA, 3rd edition, 1997.
19. Pierre L’Ecuyer, David Munger, Boris N. Oreshkin, and Richard J. Simard. Random

numbers for parallel computers: Requirements and methods, with emphasis on GPUs.
Math. Comput. Simul., 135:3–17, 2017.

20. Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. Deterministic parallel random-
number generation for dynamic-multithreading platforms. In Proc. 17th Symposium on
Principles and Practice of Parallel Programming, page 193–204. ACM, 2012.

21. Ricardo Marques, Hervé Paulino, Fernando Alexandre, and Pedro D. Medeiros. Algo-
rithmic skeleton framework for the orchestration of GPU computations. In Euro-Par
2013 Parallel Processing, volume LNCS 8097, pages 874–885. Springer, 2013.

22. Michael Mascagni and Ashok Srinivasan. Algorithm 806: SPRNG: A scalable library for
pseudorandom number generation. ACM Trans. Math. Softw., 26(3):436–461, Septem-
ber 2000.

23. Jonathan Passerat-Palmbach, Claude Mazel, and David R.C. Hill. Pseudo-random num-
ber generation on GP-GPU. In Proc. IEEE/ACM/SCS Workshop on Principles of
Advanced and Distributed Simulation, pages 146–153, June 2011.

24. Michael O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and
complexity, pages 21–39. Academic Press, 1976.

25. Christoph Rieger, Fabian Wrede, and Herbert Kuchen. Musket: a domain-specific lan-
guage for high-level parallel programming with algorithmic skeletons. In Proc. Sympo-
sium on Applied Computing (SAC’19), pages 1534–1543. ACM, 2019.

26. John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random
numbers: As easy as 1, 2, 3. In Proc. Int. Conf. for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages 16:1–16:12. ACM, 2011.

27. Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. SkelCL–a portable skeleton li-
brary for high-level GPU programming. In 16th Int. Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS’11), pages 1176–1182, 2011.

https://doi.org/10.1007/s10766-021-00704-3

