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Abstract. We demonstrate how static, energy-efficient schedules for independent,
parallelizable tasks on parallel machines can be improved by modeling idle power if
the static power consumption of a core comprises a notable fraction of the core’s to-
tal power, which more and more often is the case. The improvement is achieved by
optimally packing cores when deciding about core allocation, mapping and DVFS
for each task so that all unused cores can be switched off and overall energy usage
is minimized. We evaluate our proposal with a benchmark suite of task collections,
and compare the resulting schedules with an optimal scheduler that does however
not take idle power and core switch-off into account. We find that we can reduce
energy consumption by 66% for mostly sequential tasks on many cores and by up
to 91% for a realistic multicore processor model.
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Introduction

Frequency scaling of cores has for several years been the method of choice to minimize
energy consumption when executing multiple tasks on a parallel machine till a fixed
deadline, cf. e.g. [6]. In recent VLSI generations however, the static power consumption
in a processor core slowly starts to dominate the dynamic power consumption, so that
frequency scaling loses its importance. Running with higher frequency and switching
off idle cores might be an alternative, but the overhead for putting a core to sleep, and
waking it up again later is considerable and much higher than the overhead for changing
the frequency. This hurts especially if a streaming application is processed, where the
same scheduling round occurs repeatedly, i.e. many times.

This overhead might be avoided if one packs the tasks onto fewer cores and have the
remaining cores switched off all the time. This requires knowledge about the hardware,
operating system and the application behavior; consequently, a solution must lie in a form
of a user-level, application-specific scheduler. In order to achieve this in a scheduler, the
underlying energy model of the cores must reflect this and distinguish between an idle
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core and a core that is switched off. However, this is typically not the case, as the idle
power of a core often is much smaller than the power when the core is under full load
and processing a compute-intensive task.

In order to test our hypothesis, we have extended an energy-optimal scheduler for in-
dependent, parallelizable tasks with deadline [5] so that its processor model incorporates
idle power, which in turn necessitates to clearly distinguish between static and dynamic
power consumption in the core model. We schedule a benchmark suite of task sets with
the new scheduler, and compare the resulting schedules with the corresponding sched-
ules from the scheduler without taking idle time into account. We find that the energy
consumption of the schedules is improved by 66% for mostly sequential tasks on many
cores and by up to 91% for a realistic multicore processor model.

The remainder of this article is organized as follows. In Section 1, we briefly summa-
rize basics about power consumption of processor cores. In Section 2, we briefly explain
the scheduler from [5] and extend it to include idle power consumption. In Section 3, we
present the results of our experiments. In Section 4, we give conclusions and an outlook
onto future work.

1. Power Consumption in Multicore Processors

The power consumption of a processor core can be roughly split into dynamic power and
static power. Dynamic power Pd is consumed because transistors are switching. This is
influenced by the energy needed for a switch, which depends quadratically on the supply
voltage (as long as this voltage is far enough from the threshold voltage), how often the
switch occurs, i.e. the frequency f within set F of applicable discrete frequency levels,
and how many transistors are switching, i.e. on the code executed [3]. There are more
influence factors such as temperature, but for simplification we assume that minimum
possible voltage for a given frequency (and vice versa) are linearly related, and that for
compute intensive tasks, the instruction mix is such that we know the average number of
transistors switching. Therefore, ignoring the constants, we get

Pd(f) = f3 .

Static power is consumed because of leakage current due to imperfect realization of tran-
sistors and due to momentary shortcuts when switching both transistor parts of CMOS
circuits. Static power is both dependent on frequency and on a device-specific constant
κ [1]. For simplification, we express it as

Ps(f) = f + κ ·minF .

For simplification, we assume a proportionality factor of 1 and get:

Pt(f) = ζ · Pd(f) + (1− ζ) · Ps(f) ,

where ζ ∈ [0; 1] expresses the relative importance of dynamic and static power consump-
tion.

The energy consumed by a processor core while processing a load can be computed
as the product of power consumption and time, while the power consumption is fix,



or by summing over sub-intervals in which power consumption is fix. The total energy
consumed by a multicore is the sum of the core energy consumptions.

We consider a processor set P and a task set T . If a processor core runs idle, it
consumes power as well. However, as long as idle power is sufficiently lower than the
power under load, it might be ignored. Moreover, consider the situation that n tasks
i ∈ T with workloads of τi cycles each are processed at frequencies fi on p cores before
a deadline M . Then the runtime ri of task2 i is ri = τi/fi, and the total energy can be
computed as

E =
∑
i∈T

ri · Pt(fi) +
∑
j∈P

tj · Pidle , (1)

where tj is the sum of the lengths of all idle periods on core j, and Pidle is the idle
power. We ignore the overhead in time and energy to scale frequencies between tasks, as
we assume that the task workloads are much larger than the scaling time.

If the power under load is modified to

P̃t(f) = Pt(f)− Pidle ,

then the formula for the total energy changes to

E =
∑
i∈T

ri · P̃t(fi) +
∑
i∈T

ri · Pidle +
∑
j∈P

tj · Pidle (2)

=
∑
i∈T

ri · P̃t(fi) +M · p · Pidle , (3)

because the sum of the task runtimes and the idle periods is the total runtime of all cores.
The latter part is fixed for given p and M and hence not relevant when energy is to be
optimized.

Please note that even if we specify the idle periods explicitly and optimize with
Eq. (1), energy consumption remains the same for different placements of tasks as long
as the frequencies are not changed. For example, both schedules in Fig. 1 consume the
same amount of energy, as each task is run at the same frequency in both schedules. In
the following, we will assume Pidle = ηPt(fmin), where fmin is the minimum possible
operating frequency. This is a simplification, as even in idle mode, some transistors are
used and thus Pd > 0, but it gives a good lower bound.

Another possible view on idle periods is that cores might enter a sleep-mode dur-
ing such periods, and hence the energy consumption of idle phases might be neglected.
However, the times to bring an idle core into a sleep-mode and to wake it up again are
much larger than frequency scaling times, and hence cannot be ignored or is not even
feasible in many applications. Yet, one possibility to take advantage of sleep-modes is
core consolidation, where tasks are packed onto fewer cores, and unused cores are not
switched on at all. E.g. in the schedules of Fig. 1, one core could remain switched off
in the right schedule, while all cores would be used in the left schedule. Thus, if idle
power is counted and if core consolidation is possible, the energy consumption would be

2The formula is for a sequential task. For a parallel task on q processors, the runtime is τi/(fiqe(q)), where
e(q) is the parallel efficiency of that task on q processors.
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Figure 1. Different schedules for identical task set.

lower in the right case: Eq. (3) would change in the sense that p in the last term would be
replaced by p− u, where u is the number of switched-off cores.

2. Energy-efficient Static Schedules of Parallelizable Tasks

We presented a new static scheduling algorithm called crown scheduling for task sets
with parallelizable tasks and a deadline, where the energy consumption is to be mini-
mized [5]. Such a task set models a streaming application with throughput requirements
or real-time constraints, where all tasks are active simultaneously, and forward interme-
diate results directly to follow-up tasks, which avoids costly off-chip memory accesses.
Multiple tasks on one core are scheduled round-robin up to a scheduling point, i.e. the
production of the next intermediate result. If task communications go from one schedul-
ing round to the next, then the tasks are independent within one round, where the dead-
line M of the round is derived from the throughput requirements, and the workloads τi
of the tasks within one round are derived from the tasks’ computational requirements.
Thus the scheduling round is executed repeatedly, as indicated in Fig. 2(b). Tasks are
assumed to be possibly parallelizable, i.e. we assume moldable tasks that are assigned
widths wi with 1 ≤ wi ≤ min{Wi, p}, where Wi is the task-specific maximum width.
A task uses wi cores from beginning to end. With a task-specific parallel efficiency func-
tion ei(q), the runtime of a task running with q cores at frequency fi can be given as
ri = τi/(fi · q · ei(q)).

We assume a parallel machine with p cores, where each core can be independently
scaled to a frequency from a finite set F = {F1, . . . , Fs} of frequencies, and where the
core power consumptions under load, i.e. Pt(Fk), and idle power Pidle is known.

Then the scheduling consists of allocating wi cores to each task, determine the op-
erating frequency for each task, and arranging the parallel tasks such that all tasks are
completed before the deadline, and that energy consumption is minimized.

In crown scheduling, we impose the following restrictions (assume p is a power of
2): Each task width must be a power of 2, and for each width w, there are p/w groups
of that width. For example, for w = p/2, there are 2 groups, one comprising cores 1
to p/2, the other comprising the remaining cores. This reduces the number of possible
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Figure 2. A group hierarchy and a possible corresponding unscaled crown schedule for 8 processors.

allocations from p to log p and the number of possible mappings from 2p to 2p− 1. The
groups are executed in order of decreasing width, so that a structure like in Fig. 2(a)
arises, which also gives rise to the name “crown”. As the rounds are executed over and
over, a conceptual barrier is necessary at the beginning of a round (Fig. 2(b)), however,
in practice, the parallel algorithm in the first task of group 1 (for width p) ensures an
implicit synchronization of the cores.

In order to compute an optimal crown schedule, an integer linear program is used.
The program uses n · p · s binary variables xi,j,k with xi,j,k = 1 if and only if task i is
mapped to group j and run at frequency Fk. The width of group j is w(j) = p/2blog2 jc,
ie. group 1 has width p, groups 2 and 3 have width p/2, etc. The runtime of a task i can
then be expressed as

ri =
∑
j,k

xi,j,k ·
τi

w(j) · Fk · ei(w(j))

and thus the target function, i.e. the energy to be minimized, is

E =
∑
i

∑
j,k

xi,j,k ·
τi · Pt(Fk)

w(j) · Fk · ei(w(j))
. (4)

In order to obtain feasible schedules, we formulate the constraint

∀i :
∑
j,k

xi,j,k = 1 ,

i.e. each task is mapped exactly once. Furthermore, let Cm be all groups that comprise
core m. Then ∑

i

∑
j∈Cm

∑
k

xi,j,k ·
τi

w(j) · Fk · ei(w(j))
≤M ,

i.e. the sum of the runtimes of all tasks mapped onto core m does not supersede the
deadline. Finally, we forbid allocating more cores to a task than its maximum width
allows:



∀i :
∑

j,w(j)>Wi

∑
k

xi,j,k = 0 .

In the form stated above, idle power is treated as described in the previous section.
To explore whether core consolidation is helpful, we additionally use p binary variables
um where um = 1 if and only if corem is not used at all. Then the target function can be
derived from Eq. (3) by adding idle power as in Eq. (4) but subtracting from p all unused
cores:

Econs =
∑
i

∑
j,k

xi,j,k ·
τi · (Pt(Fk)− Pidle)

w(j) · Fk · ei(w(j))
+ (p−

∑
m

um) · Pidle . (5)

In order to set the um variables correctly, we need further constraints. If a core m is
used, then um must be forced to 0:

∀m : um ≤ 1− (1/n) ·

 ∑
j∈Cm,i,k

xi,j,k

 .

If any task i is mapped (at any frequency) to a processor group that uses m, then the
sum is larger than zero, and hence the right-hand side is less than 1. Multiplying by 1/n
ensures that the right-hand side can never be less than 0.

Forcing um to 1 if core m is not used is not strictly necessary, as an optimal solution
will set as many um as possible to 1 to minimize energy. Yet, to also have feasible non-
optimal schedules (e.g. in case of time-out), one can set

um ≥ 1−
∑

j∈Cm,i,k

xi,j,k .

3. Experiments

In this section, we compare schedules computed with target function (4) and schedules
computed with target function (5), both for the same task sets. Then we evaluate corre-
sponding schedules for their energy consumption if unused cores can be switched off.

To do this, we implement the ILP models from the previous section in AMPL and
an analytical schedule energy evaluator in C++. We use the benchmark suite of task
collections that already served to evaluate the crown scheduler heuristics [5].

We model the Intel i5 4690k Haswell processor with 2, 4, 8, 16 and 32 identical
cores. We assume that each core’s frequency can be set independently to one discrete
value in the setF = {1.2, 1.4, 1.5, 1.6, 1.7, 1.9, 2, 2.1, 2.2, 2.3, 2.5, 2.7, 2.9, 3, 3.2, 3.3, 3.5}.
For small and medium problems and machine sizes, several categories of synthetic task
collections are defined by the number of cores (p ∈ {1, 2, 4, 8, 16, 32}), the number of
tasks (10, 20, 40 and 80 tasks), and tasks’ maximum widths Wt: sequential (Wt = 1
for all t), low (1 ≤ Wt ≤ p/2), average (p/4 ≤ Wt ≤ 3p/4), high (p/2 ≤ Wt ≤ p)
and random (1 ≤ Wt ≤ p). Tasks’ maximum widths are distributed uniformly. The
target makespan of each synthetic task collection is the mean value between the runtime



of an ideally load balanced task collection running at lowest frequency and at highest
frequency.

We also use task collections of real-world streaming algorithms: parallel FFT,
parallel-reduction and parallel mergesort. FFT comprises 2 · p − 1 parallel tasks in a
balanced binary tree. In level l ∈ [0; log2 p] of the tree, there are 2l data-parallel tasks
of width p/2l and work p/2l so all tasks could run in constant time. The mergesort task
collection is similar to FFT, but all its tasks are sequential. Parallel reduction involves
log2 p+ 1 tasks of maximum width 2l and work 2l for l ∈ [1; log2 p+ 1]; they can also
run in constant time. For these regular task collections, we use more constraining target
makespan M .

Finally, we use the technique of [2] to extract tasks’ workload and parallel efficiency
from the Streamit benchmark suite [7]. We schedule all variants of the applications au-
diobeam, beamformer, channelvocoder, fir, nokia, vocoder, BubbleSort, filterbank, per-
fectest and tconvolve from the Streamit compile source package. We use their compiler
to obtain each task’s estimated workload, parallel degree and its communication rate that
we use to compute the task’s parallel efficiency.

We use ψj to compute tasks j’s parallel efficiency ej(q) (Eq. 6).

ej(q) =

 1 if q = 1
τj/(τj + q · ψj) if q > 1 and q ≤Wj

10−6 otherwise
(6)

We measure the overall scheduling quality (energy consumption) using our inte-
grated crown scheduler [5] and the enhanced version of this paper. We use the energy
model as described by Eq. 5 with ζ = 0.649, κ = 52.64 and η = 0.5. These parameters
are derived from power values of an Intel Haswell processor. We only left out a constant
factor, because that does not show when comparing energy values of schedules, and we
weakened the term κ, because a high value might favor switching off cores too much.
We run the ILP solver on a quad-core i7 Sandy Bridge processor at 3GHz and 8GB of
main memory. We use Gurobi 6.0.0 and ILOG AMPL 10.100 with 5 minutes timeout to
solve both ILP models, on Ubuntu 14.04.

Figures 3, 4 and 5 shows that our core consolidation technique benefits mainly to
task collections whose tasks’ parallel degree is low. This is not surprising as paralleliza-
tion of tasks already balances load, so that re-arranging the tasks is difficult [4]. The ben-
efits increase with the number of tasks and the number or cores. The energy consumption
of classic task collections is reduced by 12% on average for 63 tasks, 16% on average
with mergesort and 63% on average with 32 cores. The energy consumption of the syn-
thetic task collection is reduced by 41% on average for 80 tasks, 53% on average with
sequential or tasks of low parallel degree and 63% on average with 32 cores. Fig. 6 indi-
cates this results also apply to our Streamit Task collections. The energy consumption of
the Streamit task collection is reduced by 74% on average for 127 tasks, 61% on average
with the application FIR and 74% on average with 32 cores.

The consolidation technique can lead to energy savings only if schedules yield
enough idle time to move tasks from a core to another. If there is no room to move a
task to a processor, then all tasks already mapped to this processor as well as the task
to be moved need to be run at a higher frequency. Because of the rapid growth of the
dynamic power function (f3), this can lead to the consumption of more energy than the



(a) Energy consumption per number of tasks for the
synthetic task collection.

(b) Energy consumption per number of tasks for the
class task collection.

Figure 3. Our technique performs better on sequential task collections.

(a) Energy consumption per number of tasks for the
synthetic task collection.

(b) Energy consumption per number of tasks for the
classic task collection.

Figure 4. Our technique performs better on task collections with many tasks.

energy saved by switching one or several cores off. The more tasks are sequential, the
more difficult it is for schedulers to eliminate idle time and the more energy saving can
our technique provide. Also, the more cores are available to switch off, the more energy
saving opportunities. This happens in our experimental setup and that more loose target
makespan values can result in greater differences in schedules quality. In extreme cases,
core consolidation reduces the energy consumption to 91% of the one by our crown
scheduler without consolidation for the classic task collection, 81% for the Streamit task
collection and 81% for the synthetic collection, while both schedulers could find an op-
timal solution withing the 5 minutes timeout.

Finally, Fig. 7 shows that the core consolidation technique does not influence the
optimization time of our crown scheduler.



(a) Energy consumption per number of tasks for the
synthetic task collection.

(b) Energy consumption per number of tasks for the
classic task collection.

Figure 5. Our technique performs better on many cores.

(a) Energy consumption per number of tasks for the
Streamit task collection.

(b) Energy consumption per number of tasks for the
class task collection.

Figure 6. The Streamit task collection is mostly insensitive to our technique.

(a) Optimization time by number of cores for the clas-
sic task collection.

(b) Optimization time by number of cores for the clas-
sic task collection.

Figure 7. The additional packing constraint over our integrated crown scheduler does not affect significantly
the optimization time.



4. Conclusions and Future Work

We have presented a study on how core consolidation, i.e. switching off unused cores,
can be integrated in the integer linear program of a static, energy-efficient scheduler for
moldable tasks. We have evaluated with a benchmark suite of synthetic and real-world
task graphs that on a generic multicore architecture, about 66% of energy consumption
can be saved on average and up to 91% in the most extreme case. The experiments
also show that the core consolidation doesn’t affect significantly the optimization of our
integrated ILP crown scheduler.

In the future, we would like to integrate the overhead for frequency scaling and core
switch-off/wake-up into our models, in order to explore at which level of task granularity
it becomes worthwhile switch off idle cores temporarily. Also, our consolidation tech-
nique could be integrated into other schedulers not restricted by the crown constraints.
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