
Storage Architecture with Integrity, Redundancy and Encryption

Henning Klein
Fujitsu Siemens Computers GmbH
Buergermeister-Ulrich-Strasse 100

86199 Augsburg, Germany
Henning.Klein@fujitsu-siemens.com

Jörg Keller
FernUniversität in Hagen

Dept. of Mathematics and Computer Science
58084 Hagen, Germany

Joerg.Keller@fernuni-hagen.de

Abstract

We propose a storage system that treats confidential-
ity, integrity and availability of data in a unified manner.
Extending RAID6, it allows for failures of multiple disks,
encrypts data on disk, and stores checksums to detect faulty
data without disks failing, which occurs e.g. in solid state
disks due to wear out of cells. By handling encryption and
integrity check together, the probability of undetected faulty
data is reduced further. We provide an implementation, i.e.
a driver, which encapsulates all these features and uses par-
allel algorithms exploiting multicore processor performance
to match the bandwidth available from multiple disks. We
present performance figures of our experiments.

1. Introduction

Valuable data stored in a computer system must be
protected following the goals of confidentiality, integrity
and availability. To achieve the first goal, data is encrypted
on disk. To achieve integrity, checksums based on hash
functions are computed and stored. To achieve availability,
redundant storage is used to overcome disk failure. Typically,
these measures are applied separately and on different levels.
For example, integrity is often checked on file system level,
while redundancy is often encapsulated in a RAID system.
Integrity checks are of growing importance because with
rising disk sizes and the introduction of solid state disks the
probability of faulty blocks without a disk failure increases
considerably due to cell wear-out.

We propose a software solution able to handle these three
features together. The software is encapsulated in a driver, so
that it can be incorporated into a system without distracting
users. For fault tolerance, we build on a common RAID
system. Yet we extend this RAID system by integrity check-
sums, with the advantage that those checksums can be in-
corporated into RAID redundancy data. Thus integrity check
does not incur storage overhead. This in turn also leads to
better alignment to RAID block sizes which delivers better
performance than systems storing the parity separately. Data
is encrypted symmetrically on block level by AES, where we
build on an open-source AES implementation by Gladman

[1]. By encrypting on block level, violation of integrity in
one bit will spread over many bits during decryption. Thus,
the probability of undetected faulty disk blocks is further
decreased.

Doing all this in software requires lots of computations, so
that the microprocessor might become the bottleneck com-
pared to the aggregate bandwidth of multiple fast disks in a
RAID system. Therefore, the driver uses parallel algorithms
that exploit the current multicore processor architecture. We
present performance figures from a prototype implementa-
tion that indicate that performance is competitive and scales
well.

The remainder of this paper is structured as follows.
Section 2 describes related work. In Section 3 the proposed
technique and algorithm are introduced. Section 4 describes
general implementation aspects. Section 5 validates the
performance and error correction capability of a prototype
implementation. In Section 6 we give a conclusion and an
outlook on future work.

2. Related Work

RAID (Redundant Array of Inexpensive Disks) is a com-
mon technique used to increase performance, reliability or
both. It has been introduced in [2]. Among the variety of
RAID systems a disk array tolerating the failure of two
disk losses, called RAID 6 as described in [3] has been
investigated, which is able to tolerate two disk losses with
two additional disks using Reed Solomon codes [4]. The
main problem with this code are the Galois Field multipli-
cations that don’t perform well on standard PC processors.
This can be avoided using Cauchy Reed Solomon Codes,
that have been introduced in [5]. This algorithm can be
applied using XOR operations only. This technique has been
optimized to need fewer operations by changing the encod-
ing matrices [6], [7]. There have also been investigations
accelerating the encoding process by hardware with a FPGA-
Coprocessor [8]. More specific codes have been developed
like EVENODD [9], Blaum-Roth [10] or Liberation [11]
amongst others. Depending on the number of data and parity
disks and the bits per data unit (word size) one of the
numerous algorithms is applicable and performs better or



Figure 1. Architecture layers.

worse than others. In [12] an optimized RAID-6 implemen-
tation is presented that avoids the usage of lookup tables for
multiplications to exploit wide data paths of modern personal
computers. The present paper uses the same codes and RAID
layout as introduced in [13]. We extend this solution by
enhancing the code generation algorithm using an optimized
lookup table for the number and size of parity bytes used.
We provide a rough comparison to the next best applicable
general algorithm as evaluated in [14]. Furthermore we
combine the proposal from [13] with encryption to achieve
confidentiality besides integrity and reliability, and use this
combination to improve fault-detection capabilities as well.

The advanced encryption standard (AES), proposed by
[15] and standardized by NIST [16], is currently the standard
in encryption technology and the successor of DES. AES
single core encryption has been implemented in various
scenarios, for example in the filesystem ZFS [17] or as a
partition encryption in the operating system Windows Vista
[18]. Many hardware assisted speedup architectures like in
[19] have been proposed. We use the AES block encryption
to achieve confidentiality and to increase error correction
capabilities. We employ a widely-used implementation of
Gladman [1] to measure performance of the parallelized and
combined technique.

The file system ZFS with features similar to the one
presented in this paper has been developed by SUN [17].
Their implementation uses separated layers for encryp-
tion, integrity checking and fault tolerance. Our solution
is filesystem independent and needs no extra storage space
to save checksum values. It combines all computationally
intensive operations to allow effective parallelization with
little overhead.

3. General concept

The proposed technique uses a two-layered architecture.
The layers are combined before computing on multiple
processors to reduce overhead. If data is written to the disk,
for example, redundancy and integrity algorithms are added
before encrypting user and parity data, see Fig. 1. The data
used for integrity checking is secured that way, too.

The proposed technique is based on Reed-Solomon cor-
rection codes as in a RAID 6 system. Like the well known

Figure 2. Position of parity and data blocks.

RAID it uses two extra hard disk drives for storing redundant
data (parity) of k data disk drives and is able to recover data
in the case of the loss of up to two hard disks. Just like in
RAID 6 systems the content of each disk drive is divided into
equally sized blocks. One row of blocks across all disks in
an array having the same offset is called a stripe. Two blocks
of one stripe contain parity information instead of data. The
parity information is not stored on two specific disks. It
is spread across all disks, changing the position every two
stripes, see grey blocks in Fig. 2. Instead of calculating two
parity values like in RAID-6 the proposed system uses four
values P , Q, R and S. The parity values are computed using
the data across two stripes. Fig. 2 shows an example of the
algorithm for an array of k + 2 = 5 disks.

The algorithm for parity generation is based on the Galois
Field GF(28) with generators gn that are multiplied with
data values of the disks:

P = D00 + D01 + ... + D10 + D11 + ... + D1k

Q = D00 · g0 + D01 · g1 + ... + D0k · gk−1

+D10 · gk + D11 · gk+1 + ... + D1k · g2k−1

R = D00 · g0 + D01 · g2 + ... + D0k · g2(k−1)

+D10 · g2k + D11 · g2(k+1) + ... + D1k · g2(2k−1)

S = D00 · g0 + D01 · g3 + ... + D0k · g3(k−1)

+D10 · g3k + D11 · g3(k+1) + ... + D1k · g3(2k−1)

This enables the reconstruction of four data blocks within
a set of two stripes, if the blocks can be identified as faulty.
If disks are defect the missing blocks are known and can
therefore be recovered. The price we pay for this advantage
is that the maximum number k of data disks is reduced from
256 (RAID6) to 43, which we see still as sufficient for the
surroundings we have in mind.

Integrity checks are being done by recalculating parity
values from disk and comparing them to the values stored
on disk. In principle integrity checks could as well be done
with RAID-6 implementations but it would be limited to a
maximum probability of 2−16 = 1.5 · 10−5 if all disks are
working properly and 2−8 = 3.9 · 10−3 if one disk in the
array fails The probabilities come from the number of parity
bytes used (2 and 1 resp.). In the latter case errors can only
be detected if the position of the faulty block is known. In
our proposal more parity values are used and therefore the



capability of successful error detections is higher, see next
chapter.

The encryption used in this scenario is 128 bit AES that
encrypts 16 byte blocks. For performance measurement an
implementation of [1] has been used.

To achieve competitive performance, the driver that imple-
ments the above features is multi-threaded, so that multicore
performance can be exploited. Different threads concurrently
process disk block data which is available in large numbers
as a system typically has more disks than cores.

4. Implementation concepts

Our implementation focusses on performance. There are
two main aspects that speed up the system: Using multiple
cores or CPUs and creating an adjusted algorithm for parity
encoding and decoding. In the solution proposed by [13] four
parity values are used with the size of eight bits each, which
sums up to 32 bit. To calculate these values the same data
byte has to be multiplied with different values gn. Therefore
we use a lookup table which consists of 32 bit entries
holding a precomputed result for the multiplication of the
data byte with the corresponding gns for each disk. For the
parity value P , which is computed without multiplications,
we simply insert the corresponding data value. The resulting
two dimensional array provides a table for each possible
multiplication set and can be addressed by the data value
and the position in the equation. A 32-bit value containing
all of the four parity values can then computed by looking up
2k values and summing them up by 2k−1 XOR operations
which are 32 bits wide.

table[m][Dx] =


Pm

Qm

Rm

Sm

 =


Dx

Dx · gm

Dx · g2m

Dx · g3m




P
Q
R
S

 =
2k−1⊕
m=0


Pm

Qm

Rm

Sm


During this parity encoding the processor will load parts

of the table into its cache to avoid longer lasting RAM
transfers. For growing k, the data blocks together with tables
get too large (211 ·k bytes) for current processor caches and
so the encoding rate drops with the number of disks (see
next chapter for performance measurements). Therefore we
reschedule the order of accesses such that the algorithm
uses a smaller set of tables within a certain time range.
This is achieved by buffering intermediate results during
parity computations and performing lookups for the same
multiplication factor for all data bytes of one disk block.
Fig. 3 depicts this process in detail.

Figure 3. Optimizing lookup table access

The performance of our proposal can easily be increased
by parallelizing the workload on different processors. We
use block level parallelism to speed up computations under
heavy load. By implementing encryption and parity gener-
ation within one system the overhead can be reduced and
the workload can easier be balanced to all of the processors
than in multi layered architectures.

A side effect of our combination of integrity check and
encryption is to decrease the probability of uncorrectable
defect disk blocks by including a block encryption algo-
rithm. Depending on the underlying storage system it is
not mandatory that occurrences of data errors are reported
correctly [20]. In this case the algorithm has to be able
to recognize errors, find their location and correct them.
To achieve this the position of erroneous data has do be
guessed by enumerating all possible combinations. Then the
decoding algorithm has to be applied to reconstruct data.
Finally the correction has to be verified. In our solution
we use four parity values and try to correct up to three
errors with unknown position by the following method: We
need one parity byte to correct a possibly corrupted data
byte. After correcting the data bytes the parity values will
be recalculated and compared to the ones that have not
been used for the correction process. If the values match
a possible solution was found. If more failures occur, fewer
parity values can be used to verify a proper correction
and the probability for multiple solutions that are possibly
correct increases. Using the block level encryption AES, a
single bit error will alter the data of a whole encrypted block
of 16 bytes. Knowing this, the algorithm can be changed to
compare possible error positions 15 more times as the error
will affect the whole encrypted block. Fig. 4 illustrates an
example of connected AES blocks within two stripes on four
disks. Up to three erroneous AES blocks can be corrected.



Figure 4. Connected AES blocks tolerating up to three
errors

5. Performance and capabilities

The proposed technique was implemented in order to run
experiments about error detection and correction capabilities.
The implementation of the whole feature stack demonstrates
competitive performance and scalability when using multiple
processors or cores. A consumer system (Fujitsu Siemens
Computers Amilo Li3740) with a 2.33 GHz Intel quadcore
processor has been used to measure the data throughput
when encrypting data and calculating parity values. We
present performance and capability results for two setups.
First we focus on the speed of the combined redundancy and
integrity solution. Secondly we present results of the system
after adding encryption. Our main focus is the performance
of the parity generation which we also use for checking
integrity.

Figure 5 depicts the performance of our specific solution
compared to more general attempts. All techniques were
run using one processor core with the same parameters:
8 bit word size, 4 parity values and 12 data disks. For
comparison we use the GNU LGPL C Library Jerasure
[21], Version 1.2 and ran it using SUSE Linux 11.1. Our
measurements show that the Vandermonde and Cauchy Reed
Solomon Matrix implementation ran significantly better than
a solution with a single lookup table to speed up Galois
Field multiplications. The fastest alternative is the XOR
based “good” Cauchy Reed Solomon Algorithm, that has
been improved by reducing the number of XOR operations
compared to the original method [5]. Our solution with a
32 bit lookup table performed more than five times faster
on the same machine than the next best implementation. A
recent paper [14] reports improved results for tests utilizing
this library, probably in a more optimized binary. But still
our results are better for the specific scenario on similar
hardware.

Figure 6 shows the multithreaded performance results for
the main scenario, when all disks in the RAID array are
healthy. The parity is generated twice: before writing and
after reading data in order to create redundancy data and
check integrity. The figure shows the simple lookup table
technique using one table to speed up multiplications on a

Figure 5. Performance of general solutions

Figure 6. Comparison of implemented techniques on
four Processors

Galois Field. The more advanced 8-bit Algorithm uses a two
dimensional eight bit lookup table, that holds precomputed
multiplications for terms of the type Dx ·gy . If parity values
are computed for four data disks, both of the 32 bit lookup
table implementations showed good results beyond 1,5 GB/s
as the size of the lookup table is still quite small. With
an increasing number of disks the size of the table grows
and the cache optimized solution performs clearly better,
reaching almost 2 GB/s.

In Figure 7 we present the speedup between single and
quad core execution. It underlines the importance of a
cache-optimized implementation, which almost quadruples
the speed.

Figure 8 shows the performance after one or two disks
failed. There is still room for improvements as we did not
optimize the order of table accesses. However, already our
single core performance is comparable to the best solutions
evaluated in [14].

The system is able to perform integrity checks as long
as no more than one disk fails. If a second disk fails data
can be recovered but not checked. Several billion test rounds



Figure 7. Comparison between single and four core
execution

Figure 8. Data recovery performance after disk losses

were run on random data simulating four disks and random
parity values. Correct parity values were computed and
compared to the randomly generated values. Figure 9 shows
the capabilities in both cases. If no disk fails, matching
combinations of random data and the corresponding correct
random parity values are generated once in 4.3 · 109 test
rounds. If one disk fails, 6.5 · 104 only test rounds were
necessary to create a randomly matching combination of
data and parity. This capability could be increased if six
parity values are used within three stripes on the cost of
higher computation times.

Using a combination of fault tolerance and encryption
has advantages for the recovery of faulty blocks, too. The
proposed system is able to detect and recover three errors
in two stripes, as long as no disk failed. With a rising
number of disks in the array, the capability of successful
data recovery decreases. The proposed technique uses AES
with 16 byte blocks which is applied by decrypting im-
mediately before error detection and correction. If a single
byte has changed within a 16 byte block, the remaining
15 bytes will most definitely change after decryption, too.
Therefore the positions of any computed possible solution
for three simultaneous errors can be checked 15 times when

Figure 9. Error detection capability.

Figure 10. Error Correction Capability

correcting the rest of the block. However, if errors cannot be
corrected, a single byte error would end up in 16 corrupted
bytes after decryption. Another effect is that the position
of three errors must not change within 16 bytes. Figure
10 shows the improvement of error correction capabilities
before and after adding encryption and the awareness in
the correction algorithm. 8192 triple errors were injected
in random generated data. Using encryption the system was
able to correct almost all errors. Single and double errors
within two stripes have always been corrected, regardless if
encryption was used or not.

Finally, Fig. 11 shows the overall performance of an ar-
chitecture with integrity, redundancy and encryption utilizing
one and four cores. The speed can almost be quadrupled on
quad core systems comparing to a single core execution.
The figure shows that the transfer rate increases with a
larger number of disks. The reason for this is the changing
ratio of user and parity data. We measure the throughput of
processed “user” data per second, but the parity is encrypted
as well to avoid the reconstruction of user data. Using k = 4
data disks the share of encrypted parity is 2/(k +2) = 33%



Figure 11. Combined features performance

of the total data. If k = 16 data disks are used this share
decreases to 11%.

6. Conclusions

We introduced a technique offering integrity, security and
redundancy for storage systems. This combination allows a
design using little extra storage capacity to tolerate two disk
failures and integrity checking with a high error detection ca-
pability. Additionally, a flexible error correction mechanism
can be achieved. Our implementation on modern multicore
processors showed competitive performance even though
completely implemented in software. The proposed scheme
can be used to design a reliable and secure environment
using common PC hardware.

References

[1] B. Gladman, “AES and combined encryption/authentication
modes,” http://fp.gladman.plus.com/AES/.

[2] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for
redundant arrays of inexpensive disks (RAID),” in SIGMOD
’88: Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, 1988, pp. 109–116.

[3] J. S. Plank, “A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems,” Softw. Pract. Exper., vol. 27,
no. 9, pp. 995–1012, 1997.

[4] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[5] J. Blömer, M. Kalfane, M. Karpinski, R. Karp, M. Luby,
and D. Zuckerman, “An XOR-based erasure-resilient coding
scheme,” International Computer Science Institute, Tech. Rep.
TR-95-048, August 1995.

[6] J. S. Plank, “A new minimum density RAID-6 code with
a word size of eight,” in Proc. 7th IEEE International
Symposium on Network Computing and Applications (NCA
’08), Cambridge, MA, Jul. 2008, pp. 85–92.

[7] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon
codes for fault-tolerant network storage applications,” in Proc.
5th IEEE International Symposium on Network Computing
and Applications (NCA ’06), 2006, pp. 173–180.

[8] V. Hampel, P. Sobe, and E. Maehle, “Experiences with a
FPGA-based Reed/Solomon-encoding coprocessor,” Micro-
process. Microsyst., vol. 32, no. 5-6, pp. 313–320, 2008.

[9] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD:
An efficient scheme for tolerating double disk failures in
raid architectures,” IEEE Transactions on Computers, vol. 44,
no. 2, pp. 192–202, 1995.

[10] R. Blaum and R. M. Roth, “On lowest density MDS codes,”
IEEE Transactions on Information Theory, vol. 45, no. 1, pp.
46–59, 1999.

[11] J. S. Plank, “The RAID-6 Liberation codes,” in Proc. 6th
Usenix Conference on File and Storage Technologies (FAST-
2008), Feb. 2008, pp. 97–110.

[12] H. Anvin, “The mathematics of RAID-6,” 2009,
www.kernel.org/pub/linux/kernel/people/hpa/raid6.pdf.

[13] H. Klein and J. Keller, “RAID architecture with correction
of corrupted data in faulty disk blocks,” in Proc. 6th ARCS
Workshop on Dependability and Fault-Tolerance, Delft, NL,
Mar. 2009.

[14] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-
O’Hearn, “A performance evaluation and examination of
open-source erasure coding libraries for storage,” in Proc. 7th
Usenix Conference on File and Storage Technologies (FAST-
2009), Feb. 2009, pp. 253–266.

[15] J. Daemen and V. Rijmen, “AES proposal: Rijndael,”
http://www.esat.kuleuven.ac.be/rijmen/rijndael/.

[16] National Institute of Standards and Technology, “Specifica-
tion for the advanced encryption standard (AES),” Nov. 2001,
FIPS PUBS 197.

[17] Sun Microsystems, “Sun on-disk specification,”
http://opensolaris.org/os/community/zfs/docs/ondiskformat-
0822.pdf.

[18] Microsoft, “Bitlocker drive encryption,”
http://technet.microsoft.com/en-us/windows/aa905065.aspx.

[19] C. Caltagirone and K. Anantha, “High throughput, paral-
lelized 128-bit AES encryption in a resource-limited FPGA,”
in Proc. 15th ACM Symposium on Parallel Algorithms and
Architectures, 2003, pp. 240–241.

[20] J. Bonwick and B. Moore, “ZFS
— the last word in file systems,”
http://opensolaris.org/os/community/zfs/docs/zfs last.pdf.

[21] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure:
A library in C/C++ facilitating erasure coding for storage
applications - Version 1.2,” University of Tennessee, Tech.
Rep. CS-08-627, Aug. 2008.


