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Abstract 
 

Modern microprocessors get more and more suscepti-
ble to transient faults, e.g. caused by high-energetic par-
ticles due to high integration, clock frequencies, 
temperature and decreasing voltage supplies. A newer 
method to speed up contemporary processors at small 
space increase is simultaneous multithreading (SMT). 
With the introduction of SMT, instruction fetch- and issue 
policies gained importance. SMT processors are able to 
simultaneously fetch and issue instructions from multiple 
instruction streams. In this work, we focus on how dy-
namic bus arbitration and scheduling of hardware 
threads within the processors front-end can help to dy-
namically adjust fault coverage and performance. The 
novelties which help to reach this goal are: A multi-bus-
scheduling scheme which can be used to tolerate perma-
nent bus faults and single event disturbances (SEDs). The 
second novelty can be used in conjunction with the first: 
A dynamic fetch scheduling algorithm for a simultaneous 
multithreaded processor, leading to the introduction of 
dynamic multithreading. Dynamically multithreaded 
processors are able to switch between different SMT fetch 
policies, thus enabling a graceful degradation of the 
processors front-end.  
 

1. Introduction 

The growing performance requirements and application 
areas for modern microprocessors led to clock frequen-
cies beyond multiple Gigahertz [9] and Nanometer mini-
mum feature sizes. Now [6] a problem occurs at sea-level, 
which is known from aerospace: Heavy ions from deep-
space, reacting in the earth’s atmosphere to high-energetic 
neutrons. If they collide with silicon, they will cause a 
partial or total failure of the concerned component. The 
consequence is an increased susceptibility for transient 
faults induced by Single Event Effects (SEEs). SEEs can 
be separated in temporal faults, causing a temporary mal-
function or disturbance of digital information and perma-
nent faults. Downtime costs by temporal faults caused by 
Single Event Upsets (SEUs)[5] have increased dramati-
cally in the last years [10]. The rate of temporal errors in 

combinatorial circuits will increase by approximately 105 
from 1992 until 2011 [7]. For the next decade a total error 
rate of 104 FIT in combinatorial circuits is forecasted [8]. 
Thus, reliability is one of the factors to limit the trends 
from above, in the present and in the future - future mi-
croprocessors must be secured against SEUs.  
To reach this goal, this paper makes two main contribu-
tions: 
1. The dynamic arbitration of hardware threads in a SMT 

front-end to access a multi-bus system which will be 
able to tolerate permanent bus faults as long as there is 
at least one bus available. 

2. The dynamic reconfiguration between different SMT 
fetch policies, enabling the dynamical adjustment of 
performance/ fault coverage requirements to the in-
tended application environment.  

Independent instruction streams are denoted as software-
threads. A hardware-thread or thread is defined as all 
on-chip structures dedicated to hold data of a thread or 
have thread-specific control, assigned statically or dy-
namically. We assume a support for two hardware threads 
for the presented architecture.  The context of a hardware 
thread is denoted as the current state of a hardware thread 
including registers, program counter and memory access 
registers. A context switch is a change of the hardware 
register context so that a different hardware thread will be 
able to fetch and execute. 
The rest of the paper is organized as follows: Related 
work is discussed in Section 2. Section 3 presents the 
fault model. Section 4 describes the front-end including 
bus arbitration and shows how permanent bus faults can 
be tolerated. In Section 5 we show how the proposed 
fetch algorithm helps to regulate performance/ reliability 
requirements. Section 6 summarizes the paper.  
 

2. Related Work 

With simultaneous multithreading[2][3][4], fetch policies 
gained importance, since a SMT processor with enough 
front-end bandwidth is able to fetch different instructions 
from different threads simultaneously. For the sake of 
simplicity, this is not implemented in current SMT proc-
essors [16]. Here, only one thread will be allowed to ac-



cess the memory at a time. We share this opinion. Con-
currency is achieved by either significantly increasing the 
bus clock frequency, the number of busses, multiple fetch 
units or an improved instruction cache. Except the case of 
multiple busses/ greater bus width, it is obvious that in-
structions cannot be fetched in parallel, but for the rest of 
the pipeline it will appear as concurrency. The fetch and 
issue policy significantly determines the speed of con-
temporary SMT microprocessors. If instructions are 
fetched by using the wrong policy, a slowdown will oc-
cur, since then the execution units can not be smoothly 
provided with instructions any more. Instruction fetch- 
and issue policies for SMT processors were first analyzed 
by Tullsen et al. [1], thread-dependent issuing in [14]. 
Table 1 shows the most commonly used fetch policies.  
 

Table 1: Common SMT Fetch Policies 
Policy Description 

BRCOUNT Number of branches of a thread. 

LDCOUNT Number of loads of a thread. 

MEMCOUNT Number of memory accesses of a 
thread. 

ICOUNT Number of instructions of a thread in 
fetch buffer, decode and rename stage, 
and instruction queue. 

ACCIPC Accumulated IPC of a thread 

STALL-
COUNT 

Number of total stall counts. 

RR Round-robin. 

 
Round-robin (RR) cannot be seen as a real strategy be-
cause it does not consider any system conditions. Here, 
instructions are alternately fetched from threads. Because 
it is simple to implement, it is used in current processor 
realizations [16]. However, multimedia-based experi-
ments [13] showed that RR seems to be the worst policy 
regarding the number of instructions per cycle (IPC) in 
comparison with a modified ICOUNT and BRCOUNT 
strategy. ICOUNT gives priority to threads with fewer 
number of instructions in the decode/ rename stage and 
the instruction queues (ISQ). As ICOUNT implementa-
tion, we suggest to use counters for the number of in-
structions of a thread in each stage. The counters are 
compared and the results (00=less, 01=equal, 10=greater) 
forwarded to the fetch stage. Here, we use a majority 
voter to determine the next thread. The BRCOUNT strat-
egy gives higher priority to threads which are least likely 
to be on a wrong path, supposing speculative execution. 
The analysis in [13] suggested that combining strategies 
such as ICOUNT and IQPOSN is a better choice than to 
select a single strategy. Since RR has the worst IPC in 
comparison to other schemes and a combination of two 

fetch policies leads to a higher IPC, this could indicate, 
that the more causes are considered, the higher the per-
formance will get. However, the analysis in [13] did not 
regard the intended clock frequency and complexity of a 
fetch policy. A VLSI implementation will also have to 
regard the time to determine the thread which will be al-
lowed to fetch and the space requirements. Inauspi-
ciously, the forwarding of results over/ the counting of 
instructions in multiple stages is not a good idea in high 
integration, since this could easily take multiple cycles. 
Furthermore, it is unclear how and if the fetch policies 
from Table 1 regard multiple concurrent accesses to e.g. 
caches. Note, that the term dynamic multithreading 
(DMT) in [15] completely differs from the one used in 
this work. DMT will create threads dynamically at loops 
and procedure calls and does not involve the dynamic 
selection of multithreading strategies.  

 

3. The Fault Model 

The Stuck-at Fault Model is the most common and gen-
eral fault model for permanent logical faults. It assumes 
that a circuit fault manifests through the effect that one or 
more circuit nodes are stuck at 0 or 1 (SA01). Permanent 
faults are not the main cause for errors in semiconductors. 
The probability for temporal errors is 5 to 100 times 
higher [8]. Apart from radiation, they can be caused from 
power fluctuations, loosely coupled units, timing-faults, 
meta-stable states and environmental influences (tempera-
ture, humidity, and force). Single Event Upsets (SEUs) 
are transient faults in memory elements, e.g. caused by 
high-energetic particles hitting the die. SEUs are modeled 
by bit-flips (flip-to 0/ flip-to 1) of the corresponding 
latches or memory cells. Single Event Disturbances 
(SEDs) cause a temporal disturbance of digital informa-
tion. We assume SEDs in the form of data faults on the 
busses and one fault at a time in one component since 
multiple bit faults are extremely seldom. A component is 
defined as a single pipeline stage or a single bus.  
Three basic error manifestations can be distinguished: 
1. Latent: errors which are neither effective nor over-

written within a specified observation interval. 
2. Overwritten: an error which is overwritten by a cor-

rect value before the wrong value was read. 
3. Effective: an error is effective, if it manifests within 

the specified observation interval. 
The applied fault model is based on a generic processor 
fault model [12]. We will use this model, because it has 
been validated through applying it to various models of 
commercial processors. It is based on the simpler stuck-at 
and bit-flip models.   



4. The Front-End 

Figure 1 shows a block diagram of the front-end includ-
ing the instruction fetch and predecode stage. The bus 
controller is the main interface to the system bus. The 
fetching is done by the integrated fetch unit. The fetch 
unit determines the priority a thread can access the bus, 
furthermore the current mapping of a thread onto a bus. A 
novelty here is not to use a fixed fetch block width [22], 
since a fixed fetch block width is not able to tolerate any 
permanent bus faults. Figure 1 shows that the pipeline is 
asynchronous. The asynchronous design will help to pre-
vent faults to become effective, since the latches/ registers 
will not be activated periodically. The probability of a 
transient fault in the clock tree is reduced due to less 
space occupation of the handshake logic and wiring. Less 
energy is consumed, because units will not be activated 
on each rising or falling clock edge. The problem of dif-
ferent signal arrival times can be solved e.g. by applying 
timing constraints during the routing of the concerned 
wires and/or by applying Muller-C elements [24]. 
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Figure 1: The Front-End 

 
After reset the front-end can be configured externally to 
run in different fault-tolerant (F) or non fault-tolerant 
modes. Fault-tolerant modes include the cycle-by-cycle or 
the latency-oriented scheduling of redundant threads. This 

enables the processor to start-up and run in environments 
with different performance/reliability requirements. The 
signals S, T, B and F in Table 2 are used for the mode 
selection (shown in Figure 1).  

Table 2: Mode signals 

B F S T Description 
   0 Single-threaded.  
   1 Dual-threaded. 
  0  Cycle-by-cycle scheduling. 
  1  Block-oriented scheduling. 
 0   Disable redundant execution. 
 1   Enable redundant execution. 

0    One address and data bus. 
1    Two address and data busses. 

 
Naturally, only the transitions B=1→0; S={0|1}→{1|0}; 
T=0→1 should be possible during runtime if we only 
want to allow a transition from a less to a more depend-
able mode. On F=1, we assume equal code and data to be 
fetched from the RAMs. The RAMs are partitioned in a 
code and data area. We assume a maximum of two physi-
cally busses to access the RAMs. Both hardware threads 
will fetch and execute the same code and data from dif-
ferent RAMs.  
Over INTFAULT  the processor will signal that is in fail-
safe mode. Failsafe mode is reached if an internal proces-
sor failure was detected so that the processor will not be 
able to safely continue its execution. Reaching failsafe 
mode will not power-off the processor. The failsafe signal 
is connected to each pipeline stage. Signaling from stage 
to stage is enabled by handshaking if one stage requests 
the other (REQ) or acknowledges (ACK) requests. Ena-
bling failsafe mode will stop this signaling. Although 
simple, we show the failsafe-stop mechanism in Figure 2 
for clarity. 

Failsafe Req

Ack Ack

Req

 
Figure 2: Failsafe mode stopping pipeline operation 

 
Additionally, clocked units will be deactivated since they 
are gated through the failsafe signal. External components 
can signal a fatal error by EXTFAULT . The processor 
will then immediately go into failsafe mode. A thread will 
be deactivated if it completely lost credibility. The credi-
bility of a thread is determined by the history voting de-
scribed in [11]. Additionally, we determine the credibility 
for a bus, since we can have a multi-bus configuration. If 
the credibility of a bus is zero, it will be deactivated, as-
suming a permanent fault. The bus configuration is stored 



in a (stable) storage. It determines which thread accessed 
which bus the time the error was detected. Then we dec-
rement the credibility of that bus. Note, that the credibil-
ity of a bus is independent from the thread accessing the 
bus. If the credibility is zero, the bus will be deactivated 
and all accesses be scheduled to the non-faulty bus. In the 
following sections, we describe the modes from Table 2 
in detail. In all fault-tolerant modes involving (F=1), the 
checksum computation over the pipelined execution[19] 
and microcode timing[20] is enabled. 
 

5. Fetch Scheduling 

The fetch scheduling in a SMT processor front-end de-
termines, which hardware thread can use the bus(es) next. 
It basically has to fulfill two different tasks: execute re-
quests from the memory stage and fetch instructions. Fur-
thermore, the priorization between memory accesses from 
the memory stage (reading or writing) and the fetch unit 
has to be considered. We distinguish three basic methods 
of fetch scheduling, which are known from former multi-
threaded systems [23].  
• Cycle-by-cycle: threads are fetching alternately in 

each cycle. This is a special case of block-by-block 
scheduling with a fixed block size of 1. In our asyn-
chronous case we have no dedicated clock, so we 
schedule threads alternately. 

• Block-by-block: a thread is fetching instructions for a 
fixed number of b cycles. This is closely related to 
the ICOUNT fetch policy. 

• Instruction-dependent: this is the classical control-
driven multithreading. In this work, we assume the 
criterions for context switches to be encoded in the 
instruction stream. These are branches, loads and 
stores. This will preserve binary compatibility so that 
the ISA must not be changed.  

We will take a look at coherences in Subsection 5.5, 
showing a global overview of the fetch scheduling 
schemes which are described in the following sections 
and Figure 3.  
 
 

5.1. Single-Threaded Configuration 
Single-threaded execution is enabled on the mode combi-
nation (T=0; B={0|1}; S=X; F=0). Here, one thread is 
active and no scheduling will occur. This mode is equiva-
lent to the traditional uniprocessor execution. The only 
difference is that we can have two available busses. No 
fault-tolerance is activated in this mode although the com-
bination (T=0;B={0|1};F=1;S={0|1}) is imaginable, since 
it would correspond to a virtual duplex system. The dif-
ference to cycle-by-cycle execution is that the number of 

threads NUM_THREADS=1, so we do not do any con-
text switches. 
 

5.2. Cycle-by-Cycle (Redundant) Execution 

Cycle-by-cycle execution will be enabled on S=0, 
whereas threads are scheduled alternately to access the 
bus(ses). On F=1, the mode is comparable with a tradi-
tional virtual duplex system, working on a fine-grained 
time basis. In fact, the system appears to be lockstepped - 
no system conditions are considered for the selection of 
threads in this mode.  
 

5.3. Redundant (Simultaneous) Multithreading 
Redundant multithreading is applied in many academic 
papers [17][18]. It basically consists of executing the 
same instructions twice on the same processor in different 
hardware threads and is enabled on T=1;B={0|1}; 
F=1;S=1. A delay buffer is used to forward results be-
tween threads. Results can be branch targets of condi-
tional and unconditional branches and values. Threads are 
separated in a leading and a trailing (redundant) thread. It 
has been shown that a more sophisticated structure, the 
temporal memory can be used to forward results faster 
and how the branch target buffer (BTB) can be integrated 
[21]. A faulty leading thread could write a faulty value to 
main memory. The trailing thread could fetch this value, 
leading to the fact that no error can be detected. There-
fore, the temporal memory is used to maintain consis-
tency. Stores will be committed onto this memory by the 
leading thread. When a checkpoint is generated and the 
checksums produced by both threads are equal, this will 
lead to a writeback of the values in the temporal memory 
to main memory. Schemes like AR-SMT[17] use the 
ICOUNT policy to maintain an equal amount of instruc-
tions between the leading and the trailing thread. This 
amount of instructions is fixed. In this work, we will not 
use the ICOUNT policy to determine if the leading or the 
trailing thread can access the memory. Instead, we use the 
filling of the delay buffer/ temporal memory and instruc-
tion queues. We do not consider changing the role of a 
trailing into a leading thread and vice-versa because this 
will not bring any advantage in performance or fault-
coverage. In contrary, the situation will be much more 
complicated, because both threads must have the same 
amount of write ports e.g. to the temporal memory.  
 



5.4. Performance mode 
On (T=1;B={0|1};F=0;S=1), we assume the independent 
execution of processes in both hardware threads. No 
fault-tolerance is applied in this mode. We can configure 
independent threads without using additional instructions 
in the ISA if we use a small additional memory, holding 
the start PCs of the threads. In this mode, the system ap-
pears as dual-processor system, whereas hardware threads 
share the same hardware. We will not regard consistency 
in this mode so that the OS, compiler or the programmer 
has to take care if a thread accesses a memory area dedi-
cated to another thread. In performance mode we only 
consider the forwarding of results between threads. As we 
see from Figure 3, the scheduling in this mode will be 
determined by the filling of the delay buffer and the in-
struction queue. 
 
 

5.5. Coherences and Resolving Conflicts 
From the gray box in Figure 3 we see that only one thread 
can access the busses at a time and that we assume two 
hardware threads. Since a thread can fetch instructions 
over both busses simultaneously, there can be multiple 

concurrent context switch criteria. In this Subsection we 
show which conflicts can occur and how they can be 
solved. Let us take a closer look at the instructions in the 
predecode stage. The instructions types a thread can read, 
influencing the context switching are: branches (condi-
tional-CB or unconditional-UB) and loads and stores 
(reading “R” or writing “W”). Table 3 clarifies the access 
scheduling for this case. 
 

Table 3: Instruction types and scheduling. 

Type 
PC PC+4 

Strategy 

UB UB/ 
CB 

Take branch at PC. Store branch 
target from PC+4 in BTB. 

CB CB 
R/W 

Comp. cond., branch target at PC. 
Store branch target PC+4 in BTB. 

UB R/W Take branch at PC. Store branch 
target from PC+4 in BTB. 

R CB/ 
UB 

Comp. mem. Addr., mem. req. 
Comp. cond./br. target@PC+4. 

W UB Leading: Compute mem. address, 
fulfill mem. req. on temp. storage.  
Trailing: Writeback temp. storage 
Take branch at br. target@PC+4. 

BUSAVAIL1&
BUSAVAIL2?N Y

B=3

BUSAVAIL1?N Y

BUSAVAIL2?N YINTFAULT

INTFAULT||
EXTFAULTN Y STOP

B=1

ISQ_FULL(a)? YN

Thread1_CONF||
Thread2_CONF=0Y N

ADDRBUS(B)<=PC(a)
PC(a)<=PC(a)+4

REQ_FROM_MEM(a)?N Y

ADDRBUS(B)<=MEM(a)

a<=a+1%NUM_THREADS Thread1_CONF||
Thread2_CONF ptY N

B=3N Y

REQ_FROM_MEM(a)?N Y

ADDRBUS(map(a))<=PC(a)
PC(a)<=PC(a)+4

ADDRBUS(map(a)+1%NUM_BUSSES)<=PC(a)
PC(a)<=PC(a)+4

ADDRBUS(map(a))<=MEM(a)
ADDRBUS(map(a)+1%NUM_BUSSES)<=PC(a)

PC(a)<=PC(a)+4

DELAY_FULLY Na<=2

B=2

a<=a+1%NUM_THREADS

 
Figure 3: Thread and bus scheduling 



6. Summary 

To fight transient faults is one of the major challenges for 
microarchitects and manufacturers in the present and fu-
ture. This work presented a front-end architecture to mask 
permanent bus faults. We introduced dynamic multi-
threading, a mixture between fine-grained and (implicit) 
simultaneous multithreading. The ISA of the underlying 
processor must not be changed. Thus, the implemented 
fault-tolerance and multithreading mechanisms are com-
pletely transparent to the application, it does not have to 
know if it is executed fault-tolerant or not. The front-end 
can be configured to run in different fault-tolerant (FT) or 
non fault-tolerant modes with failsafe support. This en-
ables the processor to run in environments with different 
performance/ reliability requirements. It is able to recon-
figure itself between different fault-tolerant modes ena-
bling an adaptation of fault-coverage or performance to 
the current working environment.  
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