MARC SYMPOSIUM AACHEN, NOV 2012

Towards Converting POSIX Threads Programs for
Intel SCC

Patrick Cichowski, Gabriele Iannetti, and Joerg Keller

Abstract—The Intel SCC is a multiprocessor-on-chip with 48
cores interconnected by an on-chip communication network, and
an off-chip shared memory. As each core is running its own linux
operating system instance, executing a POSIX threads program
using multiple SCC cores is not possible directly. Thus, in spite of
SCC’s shared memory, communication between cores normally
happens in message passing style via the RCCE library. We
investigate how to transform the source code of a POSIX threads
program, so that, with the help of a small runtime library, it can
be compiled and executed on multiple cores of the Intel SCC.
We validate a proof-of-concept implementation with the help of
a synthetic benchmark program, and report on the speedups
obtained.

Index Terms—Shared memory programming, POSIX threads,
Intel SCC, multiprocessor-on-chip

I. INTRODUCTION

ARALLEL programming can roughly be classified in

shared memory programming and message passing pro-
gramming, where the programming styles typically correspond
to the structure of the underlying parallel machine. A promi-
nent variant of shared memory programming is the use of
POSIX threads [1] (or pthreads for short) in C programs, with
lots of application codes available. The Intel SCC [2] is an
experimental 48-core multiprocessor-on-chip created by Intel.
It comprises 48 cores (IA32 architecture) forming 24 tiles,
each containing two cores with separate caches and message
passing buffers, interconnected by a 6 x 4-mesh network-
on-chip. The network also connects to four on-chip memory
controllers that provide access to off-chip main memory. Each
core normally runs its own instance of a linux operating sys-
tem. Thus, although a shared memory physically is provided
and can be accessed via the RCCE communication library [3],
the direct use of Pthreads is restricted to one core at a time.
Communication normally happens in message-passing style
via the RCCE or the iRCCE libraries [4]. We refrain from a
more detailed description and refer to the literature on SCC
hardware and programming [2], [3].

Our goal is to provide a possibility to compile and run C
programs with Pthreads on multiple cores of the Intel SCC. We
assume that the source code of the program is available, and
that we do not modify the operating systems. Thus, we target a
user-space solution. Our approach is to provide a small runtime
library for functionality not present so far, and a source-
to-source transformation. The transformed program then is

All authors are with the Faculty of Mathematics and Computer
Science, FernUniversitit in Hagen, 58084 Hagen, Germany. e-mail:
(firstname.lastname @ fernuni-hagen.de).

Manuscript received Oct 14, 2012; revised XX XX, 2012.

compiled and linked with the runtime library, and executed
on the Intel SCC. While the transformation so far is done
manually (thus only the transformation rules are available),
we provide a prototype implementation of the runtime system
for basic functionality such as thread creation. Thus, this is
a work in progress. We evaluate the prototype with the help
of a synthetic benchmark program. The experiments indicate
that speedups are achieved over running the pthread program
on one core.

The remainder of this article is structured as follows. In
Section II, we analyze the problem how to bring pthreads to
Intel SCC and derive possible solutions. In Section III, we
sketch the prototype implementation of a runtime library to run
transformed pthread programs on Intel SCC. In Section IV,
we present our preliminary experimental evaluation of the
prototype. In Section V, we conclude and mention future work.

II. PTHREADS AND INTEL SCC

In a program written in the language C that uses the pthread
API, initially one thread exists, that executes the main-function
(including function calls). At any point in the program, another
thread can be spawned by calling pthread_create. This
call specifies the function that the new thread is to execute.
Upon completion of that function, the thread terminates. The
threads run either asynchronously (detached), or the spawning
thread eventually calls pthread_join and blocks until the
called thread terminates. All global variables are shared among
the threads, i.e. only allocated once in the shared memory
and visible to all threads. The same holds for dynamically
allocated memory, if a pointer to it is held in a global
variable. Local variables, or in general the function stack, are
allocated separately for each thread, and are visible only to the
thread that created them. Access to shared memory by several
threads must be coordinated explicitly, for example by a mutex
variable. For further details, we refer to a textbook on pthread
programming, e.g. [5].

In this section, we will mainly deal with thread creation and
shared memory access in the SCC, and only sketch solutions
for coordination functions like mutexes.

A. Thread creation

As a first basic decision, we decided to use the existing
pthread API available on each core, to ease implementation.
Because any thread can spawn another thread, the question
arises whether the thread should be created on the core where
it was spawned, and later migrated to another core for the
purpose of load balancing, or whether the thread should



MARC SYMPOSIUM AACHEN, NOV 2012

be created where it should run later, thus avoiding thread
migration. As we did not want to interfere with the operating
system, we decided for the latter possibility. This necessitates
that we need a thread description (which function is to be
executed with which argument) that can be sent to the target
core, and be used to create the thread there. A similar thing
happens upon termination of a thread. The return value must
be sent back to the thread that spawned it, to be used in a
join-function.

In order to free the cores as far as possible from these
administrative tasks, such as finding an appropriate core to
run a new thread on, we decide for a central instance, to
which all descriptions of newly spawned threads and return
values of terminated threads are sent, and which distributes
these descriptions to target cores where the respective threads
shall be created and run, and which forwards the return values
to the spawning thread. Thus, the proposed solution fits the
master/worker pattern, see e.g. [6].

In the pthread program, every call to pthread_create
and pthread_join is replaced by a call to the respective
library functions. The main-function is renamed, and a new
main-function is added that starts the cores as master or
worker, and lets the master start the first thread, that executes
the original main-function.

B. Shared memory access

On the SCC, shared memory must be allocated explicitly
before it can be accessed. The allocation is done with a
shmalloc-call by all participating cores. We use the shared
memory without caching because the SCC hardware does not
support any cache coherence protocol. Implementing cache
coherency in software is a problem independent of pthread
programming, and thus not in the focus of our research. It
has been addressed in a number of approaches since Li and
Hudak’s seminal paper [7], and has been investigated also for
the Intel SCC [8].

All global variables must be placed in this shared memory.
This can be realized by accessing each variable via its offset
in the shared memory. Additionally, dynamic allocations of
shared memory, i.e. a call to malloc where the returned
pointer is at some time assigned to a shared variable, must
be realized with the above allocated shared memory. As
we already have proposed a centralized solution for thread
creation, and as malloc-calls typically are as infrequent as
thread creation, we use the master also for managing the
dynamically allocated memory. Thus, a thread executing a
malloc sends a message with the required size to the master,
which performs the allocation and returns in another message
the offset of the allocated memory within the shared memory.

In the pthread program, the transformations for variable
access can be extensive if the address operator is used.
Otherwise, each occurence of a shared variable is replaced
by an expression of the form pointer to shared memory plus
offset of variable. The analysis to find the malloc’s of shared
memory can also be difficult, as the returned pointer might first
be assigned to a private thread-variable, and only assigned to a
shared variable after several intermediate steps. If the analysis

cannot be performed satisfactorily, a work around is to declare
all malloc-calls as malloc of shared memory.

C. Coordination functions

For coordination functions like a mutex variable, which are
typically called much more frequently than thread creation
or memory allocation, a centralized solution does not seem
preferable. Therefore, we envision hybrid solutions, where first
the threads in each core coordinate, e.g. try to get a local
mutex, and then the local “winners” coordinate themselves
with the help of a distributed algorithm for leader election (see
e.g. [9]), and create a global winner. An example of an efficient
implementation of a global minimum computation with the
help of the message-passing buffers can be found in [10].

The SCC also provides hardware support for synchroniza-
tion primitives such as special registers that can be test and
set atomically [8], so that such an approach seems feasible.

We are aware that some more complex coordination func-
tions might need more elaborate approaches.

III. PROTOTYPE IMPLEMENTATION

The implementation of the runtime system uses one core to
run the master and a configurable number of cores (up to 47) to
run the workers, where one of the worker cores is reserved for
the main function of the original program, i.e. the first thread.
This is done to ensure enough computational power for the
main thread, as the original pthread program often exhibits a
master-worker pattern. Initially, all cores execute the shmalloc
function of the RCCE library, to allocate a part of SCC’s
shared memory. All shared variables, i.e. the variables that
are globally defined, are placed there, and this shared memory
also serves calls to malloc where the address of the allocated
memory at some point will be stored in a shared variable,
to form some dynamically allocated shared memory. Those
malloc-calls are transformed into messages to the master, see
below.

The master receives information about each created thread
in a message. The information consists of an identifier for the
function that the new thread shall execute, and the argument
pointer to that function. To achieve this, the master regularly
polls for messages that have newly arrived, with the help of a
function from the iRCCE library.

The master chooses the worker core that currently runs
the smallest number of threads and sends this information
in a message to that worker. Such a strategy does not incur
additional overhead as the master is informed about all thread
creations and terminations.

While we avoid dynamic load-balancing with thread migra-
tion, we still balance the number of threads per core. As the
runtime of threads is rather long, i.e. creation and termination
are infrequent events, this also balances the core workload
as long as the threads are not too heterogeneous in their
performance characteristics.

Each worker runs a coordination thread that waits for
messages from the master and manages the internal state
of this worker process. If the coordination thread receives a
message to start a thread, it spawns a thread locally as detached



MARC SYMPOSIUM AACHEN, NOV 2012

if necessary (see below). Each started thread receives a pointer
to a structure that contains the function to be executed, the
argument pointer to that function and a place to store the
return value of that function. The thread calls the function
with the argument pointer, and upon return from that function,
stores the return value in the structure, and sends a completion
message to the master, after it has finished the execution of
a function. For the purpose of reuse and a reduced overhead
which is associated with each thread creation and destruction,
each worker holds at least one thread to execute functions from
incoming create-messages. If a so called basic worker thread
is busy, while executing a function already, the coordinating
worker thread spawns a new thread to create a function. If the
base worker thread returns from the execution it blocks until
it is assigned a new function by the coordinating thread of the
worker.

The existence of a coordination thread on each core ensures
that only one thread from each core retrieves messages from
the master. As the RCCE and iRCCE libraries are not thread-
safe, sending of messages is coordinated by a mutex variable.

If a thread of the transformed program reaches a
pthread_join, then it sends a message to the master and
waits for an answer. The master, when it has received such a
message, will send back the terminated thread’s return value
as soon as it has received it, i.e. as soon as the thread is
terminated. This message is received by the worker core’s
coordination thread, that forwards the return value to the
waiting thread with the help of a local mutex variable.

If a thread of the transformed program reaches a malloc,
it sends a message with the required size to the master,
that allocates the memory and returns the offset in another
message. The forwarding of the offset within the worker core
occurs similarly to the return value in case of a join.

There have not been implementations for coordination func-
tions so far.

IV. EXPERIMENTS

To validate the prototype implementation of the runtime
library, we use a synthetic benchmark program that starts with
a main thread. There is only one function: If the maximum
recursion depth r is not yet reached, a thread executing this
function performs the following two steps k times: spawn
another thread and perform a complex summation loop after-
wards. Then the thread terminates and returns the result of the
summation. If the maximum recursion depth is reached, the
thread terminates immediately without any calculation. The
number of threads thus is regulated by the two parameters r
and £, and the total number of threads is

s ) T+1_1
Sl
. k—1
1=0

The rationale behind the benchmark’s structure is to create
a larger number of threads, where the number is growing
over time and where shared memory access does not play
a prominent role, so that the influence of the slow, uncached
shared memory on performance is low. For £k = 3 and r = 5,
a total of 364 threads (including the main thread) are created.

6000000
5000000 \
4000000

3000000

Puntime (us)

2000000
1000000

o
1 2 4 8 12 16 20 24 28 32 36 40 46

Cores

e Original Program == Transformed Program

Fig. 1. Benchmark runtime depending on number of workers

We execute the manually transformed benchmark program on
the SCC using different numbers of workers. The maximum
number of useable worker cores is 46, because one worker
exclusively runs the main thread, and one core is reserved for
the master process. We repeat each experiment multiple times
and compute the average runtime. For comparison, we also
execute the original pthread-program on one core of the SCC
and measure its runtime. For all experiments, we use a core
frequency of 533 MHz and a network frequency of 800 MHz.

The runtime results are depicted in Fig. 1. Note that the
worker core that exclusively runs the main thread of the
transformed program is omitted. We see that already for 2
workers (plus 1 master and the core for the main thread, i.e. 4
in total), the transformed program achieves a speedup over the
runtime of the original pthread program on a single core. We
also note, that beyond 16 workers, i.e. 18 participating cores,
the runtime improvements become very small.

To analyze the runtime data, we model our benchmark
experiment in the following way. We consider the computation
to proceed in discrete steps, where each step takes as long
as the complex summation (i.e. several hundred thousands of
instructions). Each thread on a recursion level of less than r
lives for k steps, threads on the last recursion level live for one
step. At the beginning of each step, each active thread on a
recursion level r. < r also creates another thread at recursion
level . + 1. A created thread gets active after a certain delay
d. This delay is the only overhead for thread management that
we consider. Active threads are assumed to be load-balanced.
Figure 2 depicts the number s; of active threads in each step
1 for two rather extreme values of d. On the one hand, d =0
means that threads can start without delay, i.e. models an ideal
case. On the other hand d = 1 means that the delay from thread
creation to thread start equals the duration of one step, which
is rather long.

We see that in both cases, even with immediate thread start,
only a fraction of the steps has a thread count that is higher
than the number of cores. The maximum possible speedup for
n steps is

n—1
1
S=—- E in(s;, 46
s min(s;, 46)

as a maximum of 46 workers limits the speedup per step.
For d = 0, S = 31, and for d = 1, S ~ 23. For a really



MARC SYMPOSIUM AACHEN, NOV 2012

[—+—dely g=0 —=—delay -1

NN
80 / \ /
60 / y \
A
\\

140

120

no. of active threads

v

steps

Fig. 2. Number of active threads at different timesteps

huge delay d = 2, the maximum possible speedup would
go down to 22. We see that the structure of the benchmark,
which reflects Pthreads’ limitation of being able to create only
one thread at a time, leads to a rather restricted speedup. The
speedup in the real experiment is lower as it reflects additional
overhead in thread management not present in the model. The
restricted parallelism available also explains why almost no
further speedup can be gained in the experiment when more
then 16 workers are used.

V. CONCLUSIONS

We have presented the concept and a prototype implemen-
tation of a runtime library to transform and execute C pro-
grams with POSIX threads on the Intel SCC. Our preliminary
experimental validation indicates that speedups over a single
core execution can be achieved. Future work will comprise
the implementation of more functions of the POSIX threads
API, e.g. mutex locks, the implementation of an automated
source-to-source transformation, and to improve the efficiency
of the basic mechanisms of our implementations. For example,
a better compromise between simple thread distribution and
load balancing could be found by placing the workers’ task
queues in the shared memory and employing a work-stealing
algorithm.

ACKNOWLEDGMENT

The authors would like to thank Intel for providing the
opportunity to experiment with the “concept-vehicle” many-
core processor “Single-Chip Cloud Computer”.

REFERENCES

[1] Institute of Electrical and Electronics Engineers, “POSIX.1c, Threads
extensions (IEEE Std 1003.1c-1995),” 1995.

[2] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erra-
guntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, and R. Van Der Wijngaart, “A 48-Core IA-
32 message-passing processor in 45nm CMOS using on-die message
passing and DVEFS for performance and power scaling,” IEEE J. of
Solid-State Circuits, vol. 46, no. 1, pp. 173-183, Jan. 2011.

[3]

[4]

[5]
[6]
[7]

[8]

[9]
[10]

T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig, P. Brett, P. Haas,
W. andKennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe,
“The 48-core SCC processor: The programmers view,” in Proc. 2010
ACM/IEEE Conf. on Supercomputing (SC10), 2010.

C. Clauss, S. Lankes, J. Galowicz, S. Pickartz, and T. Bemmerl, “iRCCE:
A Non-blocking Communication Extension to the RCCE Communica-
tion Library for the Intel Single-Chip Cloud Computer — User Manual,”
Chair for Operating Systems, RWTH Aachen University, Tech. Rep.,
November 2011.

D. R. Butenhof, Programming with POSIX Threads.
1997.

T. G. Mattson, B. A. Sanders, and B. L. Massingill, Pattern for Parallel
Programming. Addison-Wesley, 2010.

K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Trans. Comput. Systems, vol. 7, no. 4, pp. 321-359,
1989.

P. Reble, S. Lankes, F. Zeitz, and T. Bemmerl, “Evaluation of Hardware
Synchronization Support of the SCC Many-Core Processor,” in
Proceedings of the 4th USENIX Workshop on Hot Topics in Parallelism
(HotPar 12), Berkeley, CA, USA, June 2012. [Online]. Avail-
able: https://www.usenix.org/system/files/conference/hotpar12/hotpar12-
final9.pdf

G. Tel, Introduction to Distributed Algorithms, 2nd ed.
University Press, 2000.

C. Clauss, S. Lankes, and T. Bemmerl, “Mapping the PRAM model
onto the Intel SCC many-core processor,” in Proc. High Performance
Computing and Simulations Conf., 2012, pp. 395-402.

Addison-Wesley,

Cambridge



