
Exploring the Placement of Memory Controllers in
Manycore Processors: A Case Study for Intel SCC

Patrick Eitschberger
Jörg Keller, Frank Thiele

Faculty of Mathematics and Computer Science
FernUniversität in Hagen
58084 Hagen, Germany

firstname.lastname@fernuni-hagen.de

Christoph Kessler
Dept. of Computer and Information Science

Linköpings Universitet
58183 Linköping, Sweden

christoph.kessler@liu.se

ABSTRACT
We present an approach to find application-specific optimal
positions for memory controllers within the on-chip network
of a manycore processor. The approach uses benchmark
applications to represent target load, and considers com-
putational load balance, task-to-task communication, and
task-to-memory communication to model performance for a
particular memory controller configuration, where the rela-
tive priorities of those criteria can be chosen by the user. A
simulated annealing approach is used to find the best mem-
ory controller configuration. We use the on-chip network of
the Intel SCC as a test case and find that for several applica-
tions, the positions of the memory controllers are different
from their real positions. The approach can be extended
to also determine the appropriate number of memory con-
trollers, i.e. the minimum number to achieve a certain per-
formance level.

1. INTRODUCTION
Manycore processors are on their way to become the stan-
dard platform in computing systems, as a consequence of
the so-called power wall that makes further increase of op-
erating frequency infeasible because of power and heat con-
siderations. Manycore processors comprise the cores, an on-
chip network, and often on-chip memory controllers (MC) to
connect the manycore chip directly to one or several banks
of SDRAM memory. The on-chip network serves a double
purpose: to route core-to-core communications, and core-to-
memory communications. In order to fulfill this task in the
best possible way, the number and placement of the memory
controllers is a crucial design consideration.

In order to find an optimal or close to optimal MC place-
ment, automatic design space exploration can be used. De-
sign space exploration requires, in particular, a cost model
that typically is either analytic or based on simulation. The
former method has the disadvantage that simplifications are

MCC’13, November 25-26, 2013, Halmstad, Sweden.
Copyright held by the authors.

inevitable, such as about the communication structure of
applications, and thus is a rather general method. For ex-
ample, trying to minimize the sum of the distances from
cores to memory controllers is possible, but implicitly as-
sumes that an application is mapped in a way that all cores
have the same amount of core-to-memory communication,
while the influence of core-to-core communication is ignored
completely. The latter approach has the disadvantage of
very long runtime, especially if real-world applications are
used, so that only a restricted number of configurations can
be tested.

We propose to combine the advantages of both approaches:
higher speed than simulations, in order to explore many con-
figurations, but more accuracy than simplifying analytical
models. We achieve our goal by considering a set of parallel
task-based benchmark applications, of which the communi-
cation structure is predictable and known. For a given place-
ment of the memory controllers, we map the tasks in a way
that balances computational load on the cores, core-to-core
communication, and core-to-memory communication, with
the help of an integer linear program formulation that might
take latency and/or bandwidth of communications into ac-
count, and lets the user prioritize the different criteria to get
an optimal solution to a multi-criterion optimization prob-
lem. This optimization is used as a sub-routine in either
an integer linear program to optimally position the mem-
ory controllers, or a simulated annealing optimization that
moves the memory controllers and assesses the new place-
ment with the help of the sub-routine, until a locally or glob-
ally optimal positioning of the memory controllers is found.
Currently, different numbers of memory controllers are com-
pared by several runs of the above procedure, however the
simulated annealing approach might also be extended to add
or remove a memory controller in a fashion similar to genetic
algorithms.

Xu et al. [9] investigate a similar problem, yet they only
target core-to-memory communication and neither consider
computational load nor core-to-core communication. They
rate their designs with average hop count and use bench-
mark applications but evaluate with simulations. Abts et
al. [1] use also simulations to find a best placement of the
MCs. They consider only core-to-memory communication,
and concentrate on improving the routing algorithm to route
requests and replies differently to avoid hot spots. Awasthi
et al. [2] assume a fixed memory controller placement but



present an optimized assignment of data to memory con-
trollers instead of changing the placement. Our experiments
indicate that the runtime of the subroutine (several seconds)
is much shorter than a simulation. Yet in contrast to purely
analytic solutions, we take benchmark applications’ struc-
tures into account. Thus we believe that our approach com-
bines the best of both previous approaches.

We test our proposal with the Intel SCC [5], a manycore
processor with 48 cores, an on-chip mesh network, and four
on-chip memory controllers located on the border of the
grid. As the on-chip communications in Intel SCC are more
latency-constrained than bandwidth-constrained (as the cores
are rather old Pentium designs while the on-chip network
and the memory controllers were specifially designed for this
chip) we restrict our approach to modeling latency by dis-
tance. We find that the current placement, which might
have been dictated by technological constraints, could be
improved with respect to performance by moving the mem-
ory controllers to a neighboring position. We also find that
an increase in the number of memory controllers improves
performance, although not for reasons of increased band-
width, but for shorter distances.

The remainder of this article is structured as follows. In
Section 2, we briefly summarize facts about the Intel SCC.
In Section 3, we discuss how to model computational and
communication loads of applications in linear programs, and
present our optimization method. In Section 4, we present
our experiments, and in Section 5 we draw some conclusions
and give an outlook onto future work.

2. INTEL SCC
The Single-Chip Cloud Computer (SCC) [5] is an experi-
mental processor created by Intel Labs. It consists of 48
independent cores that are organized in 24 tiles. The tiles
are interconnected by an on-chip high performance mesh
network that also connects them to four DDR3 memory con-
trollers to access an off-chip main memory.

Figure 1: SCC: overall organization and tile.

Fig. 1(left) provides a global schematic view of the chip. The
tiles are linked through a 6× 4 mesh on-chip network. Each
tile (cf. Fig. 1(right)) contains two cores as well as a com-
mon message passing buffer (MPB) of 16KiB (8KiB for each
core). The MPB is used for direct core-to-core communica-
tion. The communication is realized via non-adaptive X-Y-
routing. Thus the overall distance between communicating
cores or between cores and memory controllers corresponds
to the number of hops. The cores are IA-32 x86 (P54C)
cores which are provided with individual L1 and L2 caches
of size 32KiB (16KiB code + 16KiB data) and 256KiB, re-
spectively, but no SIMD instructions. Each link of the mesh
network exhibits a 4 cycles crossing latency including the

routing activity and is 16 bytes wide.

The overall system supports a maximum of 64GiB of main
memory accessible through the four DDR3 memory con-
trollers. The memory controllers offer an aggregated peak
bandwidth of 21GB/s [5]. For each core a private memory
domain is assigned in the main memory, whose size depends
on the total memory available (682 MiB in the system used
here). Six tiles (12 cores) share one of the four memory
controllers to access their private memory. The remaining
part of the main memory is shared between all cores; its
size can vary up to several hundred megabytes. Note that
private memory is cached on cores’ L2 cache but caching
for shared memory is disabled by default in Intel’s frame-
work RCCE. The SCC offers no coherency among the cores’
caches to the programmer when caching of shared memory
is enabled. This coherency must be implemented through
software methods, e.g. by flushing caches.

There are two ways to program the SCC: a baremetal version
for OS development, and using Linux. In the latter setting,
each core runs its own Linux kernel instance, where any
Linux program can be executed. For parallel programming,
Intel provides the RCCE library which contains MPI-like
routines to synchronize cores and allows them to exchange
messages via the MPB.

3. NEW APPROACH
We consider streaming-task based applications where all tasks
are initially generated and concurrently run to termination.
The tasks communicate with each other and access off-chip
memory. Thus the application can be represented as a di-
rected graph G = (V,E), where the nodes represent the
tasks, and the edges the communications. Each node is
annotated with a computational rate that models the cor-
responding task’s computational requirements. Each edge
is annotated with a communication rate that models the
sending task’s bandwidth requirement. The communication
rates can represent constant or average bandwidth. Note
that even in the case that only latency is considered, the
bandwidth can be used to represent this communication
link’s importance. To model memory accesses, each task
that accesses memory is assigned a second task called co-
task. The edges between a task and its co-task represent the
bandwidth of the task’s memory reads and writes respec-
tively. Note that we only consider data access here, but not
access to load program code. The co-tasks have computa-
tional rate 0. As an example, the task graph of a 3-level
binary merge tree from a sorting application is depicted in
Fig. 2.

The underlying machine is represented as a graph H =
(V ′, E′) as well that models the on-chip interconnection net-
work, where the nodes represent the routers and cores, and
the edges the communication links. The memory controllers
could be represented as extra nodes, yet normally it is conve-
nient to have them represented by the router to which they
are attached. The distance to the MC then is constantly
reduced by 1, which is irrelevant for optimization purposes.

The mapping of the application can be understood as a
graph embedding [4], where the application graph is the
guest graph whose nodes are mapped to the host or machine



Figure 2: Task graph for a 3-level binary merge tree.
Co-tasks are indicated by dashed circles. Edge rates
are averaged over time.

graph by m : V → V ′. The only restriction is that co-tasks
can only be mapped to nodes in the machine graph that also
represent a memory controller. The classical terms of load,
dilation1 and congestion2 can then be used to reason about
the quality of this embedding. For example, the tasks from
the example in Fig. 2 might all be mapped onto one core
that is neighboring a memory controller, where all the co-
tasks are mapped. In this case, task-to-task communication
is minimized, as it can all be done without using the on-chip
network (if we assume some on-chip buffer such as the MPB
in Intel SCC). The latency for task-to-memory communica-
tion is minimized as well, however the memory requests are
all directed to one memory controller, while the others sit
idle. However, the load is spread in the most uneven way:
all cores except one sit idle. If we prefer to spread the load
evenly, we map the tasks of each level onto one core, which
results in all communications going via the on-chip network.

Let d(e) denote the dilation of edge e with rate we from the
task graph, and let l(c) denote the load of core c, i.e., the
sum of all tasks’ loads mapped to c. Then we can define

ldmax = max
c∈V ′

l(c)

comtask =
∑

e=(u,v)∈E, both u,v are tasks

d(e) · we

commem =
∑

e=(u,v)∈E, one of u,v is co-task

d(e) · we

The quality of a certain mapping m can be expressed by

q(m) = ε · ldmax +(1−ε)(ζ ·comtask +(1−ζ) ·commem) (1)

where ε, ζ ∈ [0; 1] represent the user’s priorities with respect
to the mapping. If ε is close to 1, then balancing the com-
putational load has highest priority, while ζ represents the
relative priorities of the two communication types. As in In-
tel SCC communication is more dominated by latency than
by bandwidth [6], and latency correlates with distance [6],
we optimize communications by minimizing their latency.
The bandwidth could be considered in a similar way, e.g. by
computing the maximum over the host graph’s edges’ con-
gestions. Note that commem resembles the sum of distances
between cores and controllers, as used in [9], yet here we
build distances to tasks, weight them with their bandwidth,

1Dilation of edge (u, v) of G: length of path (m(u),m(v)) in
H.
2Congestion of edge f in H: weighted sum of all paths
(m(u),m(v)) comprising f , where e = (u, v) ∈ E.

and also consider task-to-task communication. Note further
that balancing the load minimizes the power consumption
in real-time scenarios, because then the deadline can be met
with lowest processor frequencies.

Our goal is to find a mapping m∗ such that q(m∗) is minimal
over all possible mappings. Assume that we can compute
such a mapping (see below) for given number and positions
of memory controllers. We define a valid memory controller
configuration mc as one where all memory controllers sit on
distinct positions of the host graph. Furthermore, and in
contrast to Xu et al. [9], we only place memory controllers
at the border of the grid. This has two reasons. First,
it might be technologically difficult to place memory con-
trollers, which are connected to the chip’s pins, in the mid
of the die. Second, the routers get simpler as the border
routers have free links anyway to connect the controllers.
However, this restriction can be removed for target archi-
tectures where our objections are not relevant. The neigh-
borhood n(mc) of a configuration mc is the set of all valid
configurations mci where one controller from mc is moved to
a neighboring node of the host graph. More complex neigh-
borhoods are possible, where e.g. several memory controllers
are moved at once, or where controllers can be added or re-
moved to also determine the optimal number of controllers.

The definition of a neighborhood allows to apply a steepest-
descent optimization: we determine the neighbor configura-
tion mi∗ with the best quality, i.e.

i∗ = argmin{m(mci) : mci ∈ n(mc)} ,

and continue with this configuration if its quality is better
than that of mc, until no further descent is possible. In
order to escape local minima, we apply a simulated anneal-
ing approach, i.e. with a certain probability the decreases
geometrically over time, we use the best neighboring config-
uration even if its quality is worse than that of mc.

To compute an optimal application mapping for a configu-
ration, we construct an integer linear optimization which we
solve with the gurobi solver (plus AMPL as frontend): To
minimize the target function (1) for given ε and ζ, we use
binary indicator variables xt,c where t is a task and c a core,
and xt,c = 1 iff task t is mapped to core c. The constraint∑

c

xt,c = 1

ensures each task t to be only mapped once. The constraint∑
t

l(t) · xt,c ≤ ldmax

for each core c, where l(t) is the constant computational rate
of task t from the task graph, ensures that the computa-
tional load is balanced evenly. For comtask and commem we
use similar constraints, where the distance function is mod-
elled with the help of auxiliary binary indicator variables.
Note that instead of a combination of simulated annealing
and linear program, we could extend the linear program to
find optimal memory controller positions, and we could use
a heuristic instead of an ILP-solver for large problem in-
stances. Details about the integer linear programs, the pa-
rameters of the simulated annealing, and the optimization
runtimes can be found in [8].



Figure 3: Optimal SCC controller placement.

Figure 4: Task graph for tiled MapReduce from [3].

4. EVALUATION
We evaluate our approach with three benchmark applica-
tions. In all experiments we use ε = 0.9 and ζ = 0.5; using
a smaller ε leads to a “collapsed” mapping onto one core as
described in Sect. 3. The first benchmark is a part of parallel
merge sort, where we map eight 6-level merge trees (similar
to that in Fig. 2 to fully utilize the SCC (cf. [7]). We exploit
symmetry and map two merge trees per 3× 2-quadrant. As
each tile comprises two cores, it suffices to use one merge
tree as the task graph, and one quadrant with one memory
controller as the host graph. The optimal result is depicted
in Fig. 3. In contrast to the Intel SCC, our approach does
not place the memory controller in quadrant corners, lead-
ing to a reduction of the target function by 1%. The second
benchmark is tiled MapReduce [3], which leads to a task
graph depicted in Fig. 4. Symmetry considerations allow
an optimization on a quadrant. The optimal result looks as
in Fig. 3. The third benchmark is a 4 × 3-grid task graph,
where the 10 border tasks read from and write to mem-
ory, with computational rates 3 and communication rates 1.
Here, no symmetry was applied, so that the problem was
much larger than before. Also here the best configuration is
like that in Fig. 3, and the target function is about 5% better
than for the real placement. We also investigated configu-
rations with 8 and 12 memory controllers. For 8 MCs, the
“winning” configurations had two controllers on the middle
of each side. For 12 MCs, each longer side had 4 MCs in the
middle and the shorter had 2 MCs in the middle. Thus, the
corners are avoided.

5. CONCLUSIONS
We have presented an approach to map applications opti-
mally to a manycore processor with respect to computa-
tional load balance, task-to-task and task-to-memory com-
munication, with user-chosen priorities. In communication,

both latency and bandwidth can be considered, although we
only use latency, cf. [6]. This approach is used in a simulated
annealing optimization to find an optimal placement of the
on-chip memory controllers. We restrict ourselves to posi-
tions at the border of the network, however the approach
can also be used for arbitrary controller positions. Starting
the optimization with different numbers of controllers, or
extending the neighborhood function to also add or remove
controllers, can be used to also find the optimal number of
memory controllers. We apply this approach to evaluate the
memory controller positions in the Intel SCC with the help
of three benchmarks: binary merge sort, a MapReduce vari-
ant, and a grid communication application. We find that the
optimal positioning in our model is different from the real
configuration. Future work will comprise to test the scala-
bility of our approach for larger networks, and to consider
the effects of bandwidth considerations.

Acknowledgements
The authors thank Intel for providing the opportunity to
experiment with the “concept-vehicle” many-core processor
“Single-Chip Cloud Computer”. C. Kessler acknowledges
partial funding by Vetenskapsr̊adet and SeRC.

6. REFERENCES
[1] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and

M. H. Lipasti. Achieving predictable performance
through better memory controller placement in
many-core CMPs. In Proc. 36th Int.l Symp. Computer
Architecture (ISCA ’09), 2009.

[2] M. Awasthi, D. Nellans, K. Sudan,
R. Balasubramonian, and A. Davis. Handling the
problems and opportunities posed by multiple on-chip
memory controllers. In Proc. 19th Conf. Parallel
Architectures and Compilation Techniques, 2010.

[3] R. Chen, H. Chen, and B. Zang. Tiled-MapReduce:
Optimizing resource usages of data-parallel applications
on multicore with tiling. In Proc. 19th Conf. Parallel
Architectures and Compilation Techniques, 2010.

[4] A. Grama, A. Gupta, G. Karypis, and V. Kumar.
Introduction to Parallel Computing. Addison-Wesley,
2003.

[5] J. Howard et al. A 48-Core IA-32 message-passing
processor in 45nm CMOS using on-die message passing
and DVFS for performance and power scaling. IEEE J.
of Solid-State Circuits, 46(1):173–183, Jan. 2011.

[6] N. Melot, K. Avdic, C. Kessler, and J. Keller.
Investigation of main memory bandwidth on Intel
Single-Chip Cloud Computer. In Proc. Intel MARC3
Symposium, Ettlingen, 2011.

[7] N. Melot, C. Kessler, K. Avdic, P. Cichowski, and
J. Keller. Engineering parallel sorting for the Intel SCC.
In Proc. 4th WEPA at ICCS, pages 1890–1899, 2012.

[8] F. Thiele. Optimization of cluster-on-chip architectures.
Master’s thesis, FernUniversität in Hagen, Fac.
Mathematics and Computer Science, 2013.
http://www.fernuni-hagen.de/imperia/md/content/
fakultaetfuermathematikundinformatik/pv/mt.pdf.

[9] T. C. Xu, P. Liljeberg, and H. Tenhunen. Optimal
memory controller placement for chip multiprocessor.
In Proc. 7th Int.l Conf. Hardware/software codesign
and system synthesis, pages 217–226, 2011.


