
Energy-Efficient Mapping of Streaming Tasks for
Crown Scheduling on Many-Core Systems

Nicolas Melot, Christoph Kessler
Linköping University, Sweden

〈name.surname〉@liu.se

Jörg Keller
FernUniversität in Hagen, Germany

joerg.keller@FernUni-Hagen.de

ABSTRACT
The allocation, mapping and frequency scaling problem for
malleable tasks for multiprocessors with discrete frequency
scaling proved to be very challenging. Crown scheduling
simplifies the problem by recursively partitioning the cores
of a multiprocessor system into groups whose number scales
only linearly with the number of cores, and to which par-
allel tasks can be mapped. It allows to optimize resource
allocation, task mapping to processors and discrete task
frequency scaling either separately or together in an inte-
grated manner. In this article, we show that the mapping
phase of phase-separated crown scheduling benefits from
load-balancing tasks over processors, as reducing makespan
gives more optimization opportunities to the frequency scal-
ing phase. We provide an optimal load-balancing method
based on integer linear programming and we introduce the
Longest Task, Lowest Group (LTLG) heuristic as a general-
ization of the Longest Processing Time (LPT) algorithm to
achieve load-balancing of parallel tasks. Our experiments in-
dicate that our heuristic produces makespan close to optimal
and this benefits the global phase-separated crown schedul-
ing technique.

1. INTRODUCTION
Modern manycore processors exploit parallelism to achieve
high computation throughput or low power consumption.
Beside using more scalable parallel algorithms, significant
performance improvement can be achieved with good tech-
niques for resource allocation, mapping and scheduling. How-
ever, computing optimal solutions to maximize throughput
or minimize energy consumption is an NP-hard problem.
Optimizing resource utilization of processing units, memory
or communication channels while taking into account archi-
tecture constraints is thus not practical using optimal algo-
rithms. The problem worsens when the number of tasks or
resources are increased with growing computational power
demand and future processor architectures.

Kessler et al. [2] explore the problem of energy-efficient pe-
riodic scheduling of parallel streaming tasks. They describe
crown scheduling as a task resource allocation, core map-
ping, scheduling and discrete frequency scaling methodology
to optimize off-line a given task collection’s energy consump-
tion, given a throughput constraint. It assumes a multipro-
cessor system whose cores are identical and whose running
frequency can be scaled individually for each task they run.
It schedules malleable and sequential tasks together, assum-
ing that the overall number of processors is a power of b (we

Figure 1: Crown decomposition of 8 cores into 15

recursive groups

use b = 2). We call malleable a task whose execution time
is a function of the number of processors allocated to it [3].
Crown scheduling decomposes recursively a multiprocessor’s
cores into groups of exponentially decreasing size, and like-
wise exponentially increasing number of groups of a given
size (Fig. 1). Crown scheduling assumes that the tasks it
schedules run only on entire groups i.e. power-of-b number
of processors1. This aims to reduce the mapping problem
exploration space, making the problem easier and faster to
solve. Crown scheduling can select discrete frequencies for
tasks across their assigned core and models the cost of tasks’
parallelization through task-individual efficiency functions.
This implicitly models communication and synchronization
necessary to parallelize a task. However, Kessler et al. [2]
do not yet consider the cost of core-to-core communications
in their energy consumption and performance model.

In this paper, we describe an optimal ILP formulation to
load-balance tasks mapped to groups at mapping time. We
introduce the LTLG heuristic that creates load-balanced
mappings for malleable tasks. We demonstrate that our
heuristic can accelerate a phase-separated crown scheduler
and produces mappings whose load balance is close to op-
timal. We show further that load-balanced mappings con-
tribute to more energy-efficient crown schedules.

The paper is organized as follow: In Section 2, we summa-
rize crown scheduling. We argue that a good load-balancing
strategy can enhance the scheduling solutions it generates
and we provide an ILP formulation for an optimal load bal-
ancing in the mapping step. Section 3 describes in detail
the LTLG heuristic. In Section 4, we evaluate the optimiza-
tion time and the improved mapping quality resulting from
optimal and heuristic-based load balancing, and we observe
that our heuristic produces makespans close to optimal. Sec-

1This limitation can be relaxed in practice through a crown
configuration [2]



(a) Load balanced among
groups only.

(b) Load balanced among
all cores only.

Figure 2: mapping quality with or without load-

balancing

tion 5 discusses related work and Section 6 concludes and
proposes future work.

2. CROWN SCHEDULING
Crown scheduling takes one root group of p processors and
divides it in b > 1 groups of size p/b. It further divides these
groups recursively until obtaining p groups of size 1. A group
contains the cores of all groups it has been divided into. We
obtain a total (b · p− 1)/(b− 1) groups, and logb(p) different
group sizes. Crown allocation [2] allocates a number of wt

processors to each of each tasks t (in total n tasks) where wt

is the size of an existing group. At the mapping phase, each
task t is mapped to exactly one group of size wt. A task t has
workload loadt and runs for timet = loadt/ft time steps at
frequency ft using one processor. A group g has load loadg,
which is the sum of all tasks’ loadt mapped to g (Eq. 1) and
time timeg the cumulative timet of all its tasks. Similarly,
a processor p has loadp the sum of the loads loadg of all
groups in Gp = {g : p ∈ g} it belongs to (Eq. 2) and timep
the cumulative time of all its groups. We call a group g’s
height heightg the sum of its load, all its ancestors except
group 1, and the maximal height of its b children (Eq. 4).

A crown scheduler must fulfill a makespan constraint, that
is, timep must be lower than a target makespan M for all
cores p, and minimize the energy consumption of the sched-
ule. The energy consumption of a crown schedule grows
linearly with cores’ idle and execution time. Furthermore,
the energy of an execution time unit grows cubically with
its running frequency. Therefore, a crown scheduler tries
to reduce tasks’ running frequencies while satisfying the
makespan constraint.

Crown schedulers have been implemented using two variants
of ILP models [2]. One integrates the allocation, mapping
and frequency scaling into a single complex problem. The
second relaxes the problem by separating all these phases
and sequentially computes an optimal solution for each of
them [2]. The integrated variant produces better solutions,
but the phases-separated implementation runs faster. This
variant minimizes only the groups’ load at mapping time; al-
though it benefits from minimizing processors’ load (Fig. 2),
this considerably increases its runtime. We can achieve an
optimal processor load at the mapping step by adding the
maxload variable to its ILP formulation, defining it as at
least as large as each processors’ load (Eq. 3) and minimiz-
ing maxload. Section 3 describes a polynomial-time heuris-
tic for this problem.

Figure 3: Priority queues of a 8-core system on the

left, sorted after the current state of the schedule

on the right. The arrow shows the current height of

groups 3, 6 and 12.

∀g ∈ [1;
b · p− 1

b− 1
] : loadg =

n
∑

t=1

loadt · yt,g (1)

∀i ∈ [1; p] : loadp =
∑

g∈Gp

loadg (2)

maxload = max
p∈[1;p]

loadp (3)

3. HEURISTIC CROWN MAPPING WITH

LOAD-BALANCING
We describe the Longest Task, Lowest Group (LTLG) map-
ping heuristic for the load balancing problem modeled in
Sec. 2. The algorithm is based on three informal intuitions
to produce better load-balanced mappings:

1. The assignment of each task t to the group g of least
heightg among groups of size wt limits load imbalance
while building a schedule.

2. The insertion of tasks of highest parallel running time
first (with wt processors) lowers the risk of creating
load imbalance when adding the last tasks to a sched-
ule.

3. If tasks have the same parallel running time, inserting
tasks of highest width first keeps lowest width tasks
available to later fill in the crown’s holes and better
balance it.

The algorithmmaintains logb p priority queues, one per group
size. The priority of groups is defined by their height, or
their group number if both groups have the same current
height (Eq. 5). Since tasks of size wt = p do not create load
imbalance and as the root group is the only group of size p,
we don’t use priority queues for it (Fig. 3). The algorithm
first sorts the tasks in descending order; the tasks are com-
pared with both their parallel running time and their width
using Eq. 6. Considering tasks in this order, we then assign
task t to the highest priority group g of size wt as given by
its priority queue. Then we update the load and the height
of g as well as all all its children groups, recursively. If the
new height of g is the maximum height among all children
of group g′ = ⌊g/b⌋, then the height of g′ is also updated,
and this is repeated for g′ until the root group is reached.



∀g ∈ [1;
b · p− 1

b− 1
] : heightg = loadg +

⌊logb g⌋
∑

i=1

load⌊ g

bi
⌋ +max({heightg′ : g

′ ∈ [g · b; (g + 1) · b]}) (4)

cmp(g1, g2) =

{

heightg1 > heightg2 if heightg1 6= heightg2,

g1 > g2 otherwise.

(5)

cmp(t1, t2) =

{

loadt1 > loadt2 if loadt1 6= loadt2,

wt1 > wt2 otherwise.
(6)

4. EXPERIMENTAL EVALUATION
We implement the LTLG heuristic in C++. We substitute
the mapping step of the phase-separated variant [2] with
our heuristic and we use the same set of randomly-generated
synthetic task collections as benchmark. We group synthetic
task collections in different categories defined by the number
of cores (p ∈ {1, 2, 4, 8, 16, 32}), the number of tasks (10,
20, 40 and 80 tasks), tasks’ work distribution (triangular or
uniform random distributions), and tasks’ maximum width
Wt: serial (Wt = 1 for all t), low (1 ≤ Wt ≤ p/2), average
(p/4 ≤ Wt ≤ 3p/4), high (p/2 ≤ Wt ≤ p) and random
(1 ≤ Wt ≤ p), always in a uniform distribution. The target
makespan of each task collection is defined by Eq. 7.

M =

∑

t
task load(t)

2 ·min freq
+

∑

t
task load(t)

2 ·max freq
(7)

We run both the ILP solver and our heuristic on a quad-core
system i7 Sandy Bridge processor at 3GHz and 8GB of main
memory. We use Gurobi 5.10 and ILOG AMPL 10.100 with
5 minutes timeout to solve the ILP models and we compile
the C++ implementation with gcc 4.4.3 on Ubuntu 10.04.

We measure the overall runtime and schedule quality of the
crown scheduler using an optimal load-balanced mapping
solver as well as our LTLG heuristic. We compare it to
the integrated and the non-balanced, phase-separated ILP
implementations [2]. We also measure the runtime of the
mapping step alone of non-balanced, optimally balanced and
LTLG heuristic-based implementations. We perform the
same comparisons using task collections of classic streaming
algorithms: FFT, parallel-reduction and mergesort. FFT is
characterized by 2p − 1 parallel tasks of a balanced binary
tree. In level l ∈ [0; log2 p− 1] of the tree, there are 2l tasks
of width p/2l and work p/2l so all tasks can run in constant
time. Parallel reduction involves log p tasks of maximum
width 2l and work 2l for l ∈ [1; log2 p]; they can also run in
constant time. Finally, a mergesort task collection is similar
to FFT, but all tasks are sequential.

Figures 4 and 5 show mean values for 1,2,4,8,16 and 32
cores, 10, 20, 40 and 80 tasks and across all width classes
{Serial, Low,Average,High,Random}. Figures 4(a) and 4(b)
show that our heuristic is considerably faster (3.9× on av-
erage) than the phase-separated ILP variant. Both plots

(a) Overall runtime by num-
ber of cores

(b) Mapping makespan by
task collection class

(c) Energy prediction by task
collection class

(d) Mapping makespan by
task collection class

Figure 5: Overall runtime, mapping runtime,

makespan and energy prediction for FFT, mergesort

and parallel-reduction

are similar, although Fig. 4(a) yields a small offset over
Figure 4(b)’s. This shows that the overall computation is
mostly dominated by the mapping step.

We observe on Fig. 4(c) and 4(d) that the optimal load-
balanced mapping does not bring significant energy improve-
ments (average 0.01%) over non-balanced implementation.
However, the LTLG-based phase-separated crown scheduler
produces schedules of the same quality as the optimal ILP
implementation. The integrated solutions are consistently of
a higher quality than all other variants. Figure 4(c) shows
that the difference seems to grow with the average degree of
parallelism of tasks to schedule.

The LTLGmapping heuristic produces makespans very close
to optimal (Fig. 4(e)) for sequential tasks and tasks of low
and average degrees of parallelism (0.001% worse on aver-
age). For highly parallel task collections, the LTLG heuristic
produces better solutions than the optimal load-balanced
mapping implementation could produce within the 5 min-
utes timeout. In addition, Fig. 4(f) demonstrates that our
heuristic is much faster than ILP non-balanced (8.16× on
average) and ILP balanced (580× on average).

Figure 5(a) shows a slight overall runtime improvement (av-
erage 15% faster) to compute the schedule of real tasks
collections, whereas Fig. 5(b) shows faster (2.2× average)
mapping optimization time for our heuristic. This shows
that the overall scheduling runtime is now dominated by
the frequency scaling step. We see from Fig. 5(c) and 5(d)
that any load-balancing method only improves the mapping
makespan and schedule quality of parallel-reduction tasks
collections. Parallel-reduction benefits from load balancing,
as in the situation shown in Fig. 2. FFT and mergesort do
not benefit from additional load balancing.



(a) Overall optimization time by number
of tasks

(b) Mapping step runtime by number of
tasks

(c) Energy prediction by task collection
class

(d) Energy prediction by number of
tasks

(e) Mapping makespan by task collection
class

(f) ILP-based non-balanced, balanced
and LTLG runtime at mapping step

Figure 4: Runtime, mapping runtime, makespan and energy prediction for the synthetic tasks collection

5. RELATED WORK
This load-balancing problem is different from bin packing:
bin packing minimizes the number of bins where bins are
constrained by the load they admit; instead, the LTLG
heuristic minimizes the load of bins and is constrained by
the number of bins or groups. Also, bin packing assumes
independent bins, but the crown structure makes processor
groups dependent on their children and ancestors.

The LTLG heuristic is a generalization of the LPT (Longest
Processing Time) algorithm [1], constrained by the crown
structure. Considering the mapping of sequential tasks only,
priority is given to map tasks running for the longest time,
greedily mapping to singleton groups of the least load. As
the LPT algorithm is a 4/3-approximation of optimal load-
balancing, so is LTLG in the case of sequential tasks. Home
Scheduling [4] dynamically distributes tasks based on data
locality, to the least loaded thread whose cache holds the
data the task operates on. Sanders and Speck [5] consider
energy-efficient scheduling of n independent continuously mal-
leable tasks and continuous, unbounded frequency scaling
under a deadline constraint. Under these assumptions, they
propose a near linear time algorithm that finds an optimal
solution.

6. CONCLUSION AND FUTURE WORK
We described a load-balancing method for the mapping step
of phase-separated crown scheduling and show how it can
improve the quality of its solutions. We presented the Longest
Task, Lowest Group heuristic (LTLG), a generalization of
the LPT-algorithm, to produce load-balanced mapping of
malleable tasks. We demonstrate that using this heuristic
lowers the overall phase-separated crown scheduling runtime
when the ILP runtime is dominated by the mapping step.
We show that it contributes to computing more energy ef-
ficient schedules. Future work will introduce a heuristic for
the frequency scaling step in order to achieve a fast, scalable,
efficient crown scheduler. Such heuristic could also be used
to dynamically rescale a crown schedule if one or several
tasks are not data-ready in a round. Finally, we plan to im-

plement a benchmark set on concrete many-core platforms
such as the SCC or MPPA and compare the performance
of our crown scheduler to other non-crown schedulers for
malleable tasks.

Acknowledgments
Partial funding by Vetenskapsr̊adet and SeRC, and by the
CUGS graduate school at Linköping University.

References
[1] R. Graham. Bounds on multiprocessing timing anoma-

lies. SIAM Journal on Applied Mathematics, 17(2):416–
429, 1969.

[2] C. Kessler, N. Melot, P. Eitschberger, and J. Keller.
Crown Scheduling: Energy-Efficient Resource Alloca-
tion, Mapping and Discrete Frequency Scaling for Collec-
tions of Malleable Streaming Tasks. In Proc. of 23rd Int.
Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS 2013), 2013.

[3] W. T. Ludwig. Algorithms for Scheduling Malleable
and Nonmalleable Tasks. PhD thesis, Univ. Wisconsin-
Madison, 1995.

[4] A. Muddukrishna, M. Brorsson, and V. Vlassov. A lo-
cality approach to architecture-aware task-scheduling in
OpenMP. In Proc. of Fourth Swedish Workshop on Mul-
ticore Computing, Linköping University, pages 23–25,
November 2011.

[5] P. Sanders and J. Speck. Energy efficient frequency
scaling and scheduling for malleable tasks. In Proc. of
the 18th Int. Conference on Parallel Processing, Euro-
Par’12, pages 167–178, Berlin, Heidelberg, 2012.


