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ABSTRACT
Streaming applications consist of a number of tasks that all
run concurrently, and that process data at certain rates. On
manycore processors, the tasks of the streaming application
must be mapped onto the cores. While load balancing of
such applications has been considered, especially in the MP-
SoC community, we investigate energy-efficient mapping of
such task collections onto manycore processors. We first de-
rive rules that guide the mapping process and show that as
long as dynamic power consumption dominates static power
consumption, the latter can be ignored and the problem re-
duces to load balancing. When however, as expected in the
coming years, static power consumption will be a notable
fraction of total power consumption, then an energy-efficient
mapping must take it into account, e.g. by temporary shut-
down of cores or by restricting the number of cores. We
validate our findings with synthetic and real-world applica-
tions on the Intel SCC manycore processor.

1. INTRODUCTION
Many applications in image processing can be described as
so-called streaming applications. Such an application con-
sists of a collection of tasks, each processing data at a certain
(computational) rate. The tasks also forward their results to
other tasks, or to outputs. A streaming application can be
described as a directed graph similar to a static task graph,
only that nodes and edges are anotated with rates instead
of times, and that all tasks are active all the time. Surpris-
ingly, also “classical” programs such as binary merge sort
can be described as streaming applications. In the MPSoC
community, efficient mapping of such applications has been
the subject of intensive research, although the techniques
seem often tailored to particular applications or are rather
ad hoc. Our previous research [13] has investigated mapping
of task collections onto manycore processors in such a way
that the load is balanced between the cores.

In our current research we investigate energy-efficient map-
ping of task collections onto manycore processors where the
different cores can be run at different frequencies, or even
shut off for some time. We consider both dynamic and static
power consumption, in contrast to related work that mostly
focusses on dynamic power consumption alone. However,
with shrinking feature sizes, the static power consumption
will comprise a notable part of the total power consump-
tion, so that it should be taken into account. We find that

energy-efficient mapping basically is achieved through load
balancing if dynamic power consumption alone is consid-
ered. If however static power consumption is taken into
account as well, switching cores off from time to time gets
more attractive, and using large numbers of cores at quite
low frequencies gets less attractive.

We implement a synthetic benchmark application and a
real-world application (computation of images from mandel-
brot sets) on the Intel SCC manycore processor and mea-
sure power consumption in different scenarios. The mea-
surements support our arguments qualitatively, in particular
that a balanced load leads to smaller energy consumption,
and that switching frequencies is not advantageous. How-
ever, as we can only measure power consumption for the
complete chip, without the possibility to distinguish between
cores, on-chip network and on-chip memory controllers, the
measurements are not exact enough to exactly reflect the
forecasts from the model.

The remainder of this paper is structured as follows. In
Section 2, we briefly review related work. In Section 3, we
derive requirements for an energy-efficient mapping of task
collections. Section 4 presents our experimental setting and
results, and Section 5 concludes.

2. RELATED WORK
Energy optimization for multiprocessors by speed scaling
(frequency and/or voltage scaling) and multi-objective op-
timization for energy and time has been considered in the
literature for various scenarios. A recent survey is given by
Albers [1]. Approaches for task graphs with precedence con-
straints such as [14] are less related because we consider the
steady state of a pipelined streaming computation where all
tasks are active concurrently and the optimization goal for
the time dimension is throughput rather than the makespan
of a single task graph execution. Speed scaling for periodic
real-time tasks with release times and deadlines comes closer
to our streaming scenario and has been considered e.g. by
Albers et al. [2] and Andrei [3].

Albers et al. [2] consider energy optimization for such re-
altime tasks scheduled preemptively using off-line and on-
line heuristics such as round-robin and earliest-deadline first.
The single-processor algorithm by Yao et al. [15] is used as
a subroutine within each processor. Static power consump-



tion and shutdown / sleep mode of processors are not con-
sidered. Also, we consider a slightly different problem: in
our case there are no specific deadlines, our streaming tasks
are active continuously and triggered by data flow; we can
thus only consider average loads for work and communica-
tion volume that are spread out equally over time. Hence,
our theoretical results derived in the following section (no
frequency changes within a processor for optimal energy us-
age) cannot be directly applied to the general scenario in [2];
in fact, [2] may perform dynamic frequency changes within
processors. Albers et al. [2] give a NP-completeness proof
that also includes the special case (arbirary task loads, all
releases identical, all deadlines identical) that comes very
close to our scenario considered in this paper.

Andrei [3] considers dynamic voltage scaling for cores and
buses with communicating realtime tasks on embedded MP-
SoC. His energy optimization by voltage scaling considers
both dynamic and static energy, and also shutdown (sleep
mode) of cores. In contrast to Albers [2] he also considers
the time and energy overheads of switching and shutdown.
A NP-completeness proof is given, and both offline (using
mixed integer linear programming) and online optimization
algorithms are provided.

3. ANALYSIS
Starting from an abstract level, the power consumption of
a semiconductor device (such as a processor core) can be
described by a dynamic part that depends on frequency and
voltage, and a static part that only depends on the sup-
ply voltage. In most devices, frequency and voltage are not
set independently, but for a given frequency, the minimum
possible voltage is used. As the static power consumption
is linear in the supply voltage if the threshold voltage is
not approached [4, Eq. 10] and assuming that the minimum
possible supply voltage for a given frequency can be approx-
imated by a linear relationship, a high-level power model of
a device running at frequency f can be formulated as

pcore(f) = pdyn(f) + pstat = b · fa + s · f , (1)

where a, b and s are device specific constants and a typically
is assumed to lie between 2 and 3. For manycore processors,
where multiple cores, an interconnection network and mem-
ory controllers are integrated on a chip, one has to extend
this model for the other components. If we assume that the
memory controllers and the network are running at a fixed
frequency, their power consumption can be considered to be
a constant S given that the application is fixed. Then, if the
cores run at frequencies fi

pmany(f0, f1, . . .) = S +
∑
i

pcore(fi) .

To derive energy consumption over a time interval T , we
multiply power consumption and time if the frequency is
fixed. If the frequency varies, we sum up over the partial
intervals where the frequency is fixed.

We begin our analysis by considering a single core. We will
assume b = 1 for better readability. If we map a certain load
f0 to a core, then we assume that the core can carry this
load if it continually runs at a frequency f0. We restrict our
analysis to a time interval T . We could vary the operating
frequency of the core within this interval. If the core runs at

frequency f1 ≤ f0 for a fraction α of the time interval T , then
for the remaining time (1 − α)T it must run at frequency
f̄1 = (f0 − α · f1)/(1 − α) ≥ f0 in order to perform the
same amount of work as running with constant frequency
f0 during the whole interval T . Then the dynamic energy
consumption in the case of using the constant frequency is
E0 = fa

0 · T , while the dynamic energy consumption in the
other case is

E1(f1) = α · T · fa
1 + (1− α) · T · f̄1a .

For any fixed α ∈ [0; 1], E1(f1) is minimized for f1 = f0 as
can be seen by computing the first derivation. Thus, if a
core is running, it should always run at the same frequency.

If we ignore static energy consumption, the above also means
that a processor should never be switched off (f1 = 0). If
we include static energy consumption, then a core running
for a time interval T with frequency f0 consumes energy
E0 = (fa

0 + S) · T , while if the core is switched off (f1 = 0)
for a fraction α of that time interval, it must run at frequency
f̄1 = f0/(1−α) for the rest of the time and consumes energy

E1(β) = β · T · ((f0/β)a + S) = T · (fa
0 /β

a−1 + S · β)

for β = 1− α. This is minimized for

β0 = f0 · a
√

(a− 1)/S

Thus, as long as the static power consumption at frequency
f0 does not supersede the dynamic power consumption, β0 >
1, and thus the minimum energy consumption is reached for
β = 1 or α = 0, as E′1 is negative in the interval [0;β0]. This
means, that in this case the core should not be switched off.
However, if the static power consumption is more than half
of the total power consumption at frequency f0, then the
core should be run at frequency f0/β0 for a time span β0 ·T ,
and then be switched off.

If we consider two cores running at frequencies f1 and f2,
where f1 + f2 = c is a constant, then the energy consump-
tion fa

1 + (c − f1)a is minimized for f1 = f2, i.e. the load
should be balanced between cores as far as possible. This
can be seen by computing the first derivative. With respect
to the number p of cores to be used in case a load can be
equally partitioned among any number of cores, the energy
consumption decreases with an increasing number of cores,
if static power consumption is not taken into account, i.e.
E(p) = T · p · (f/p)a. However, if static power consumption
is taken into account, the formula changes to

E(p) = T · p · ((f/p)a + s) .

Now there exists a minimum at p = a
√

(a− 1)fa/s, so that
there is a maximum number of cores to be used for minimum
energy consumption.

So far, we have assumed that we can choose core frequen-
cies freely, and that we can divide the load as required. If
this is not the case, then the balancing problem is a variant
of the variable-sized bin packing problem. The task loads
correspond to the item volumes and the cores at different
frequencies correspond to the bins of different sizes. The
cores’ power consumption corresponds to the bin costs. If
there are p processors which can run at k different frequen-



cies, then there are p ·k bins, of which only p are to be used.
There are several efficient heuristics for this problem [6, 7].

4. EXPERIMENTAL RESULTS
The Intel Single Chip Cloud Computer (SCC) consists of 48
independent cores, which are organized in 24 tiles. The tiles
are interconnected by a 6 × 4 mesh on-chip network, which
also connects them to four on-chip memory controllers to
access up to 64 GB of off-chip DDR3-RAM. For dynamic
voltage and frequency scaling (DVFS), the cores of the SCC
are organized in 24 frequency islands, one island for each tile,
and 6 voltage islands, each for a group of 4 tiles. The net-
work and memory controllers are frequency islands of their
own [9].

In our previous work [5] we defined a parameterized model
of power consumption by cores for the Intel SCC. In order
to obtain the model’s parameters, we devise microbench-
mark programs and different machine settings, measure the
power consumption of the SCC and subject the differences
between the measurements and the power model to a least-
squares error analysis. We devise, that for each core the
parameter for the dynamic power consumption is around
bc = 2.015 · 10−9 Watt/MHz3 and the parameter for the
static power consumption is around sc = 10−6 Watt/MHz.
The other components like the network and the memory
controllers consume around S = 23 Watt. The static power
consumption (leakage) of the Intel SCC comprises between
15% of the total power at high frequency (1 GHz, 125 W to-
tal) and voltage and 35% at low frequencies (125 MHz, 25 W
total) and voltage [8].

In our current experiments, we employ the same microbench-
mark programs and settings as in our previous work. Fur-
thermore we implemented the parallel computation of an
image representing a mandelbrot set as a realistic expensive
application. To change the frequency and voltage of the
cores during runtime we use the power management func-
tion RCCE iset power() from the RCCE library, which is
provided with the SCC. With this function one is able to
change the frequency of the cores and let the voltage au-
tomatically scale to the lowest stable state. In this case,
there are only 6 power domains, which are equal to the
voltage islands [11]. Thus we scale frequencies for groups
of 8 cores. We first run all cores at the same frequency
with an equal load, measure the power consumption of the
entire SCC and compare it to the power consumption of
the SCC with a mixed variant, where a fraction α of the
cores run at frequency f1 and (1 − α) cores at frequency
f2. We don’t change the frequencies for the on-chip network
and the memory controllers. Consequently we choose for α
the values 0/6, 1/6, 2/6, ..., 6/6, which are corresponding to
the different number of power domains with the same fre-
quency f1. Then, the other power domains (1 − α) run at
frequency f2. As low frequencies (f1) we use the values 100
and 200 MHz and as high frequencies (f2) the values 400,
533 and 800 MHz. The cases α = 0/6 and α = 6/6 are spe-
cial cases, in which all power domains run at the same low
or high frequency, respectively.

In the microbenchmark program the two groups of high and
low frequency domains are in a first step scaled to their cor-
responding (user-defined) frequencies. After that, we use

a barrier to ensure that all voltage and frequency scalings
have finished and all cores can begin with the second step
simultaneously. In the second step, we perform an integer
summation for 10 seconds within a loop and measure the
power consumption every 10th ms with the FPGA on the
Rocky Lake Board, which supports direct measurement of
voltages and currents of the domains [10]. We repeat the
experiment 5 times and average over all power measure-
ments. The power consumption only varies within a 5%
range around the average. We use four different settings to
perform the integer summation, which differ in the use of
caches, and intensity and regularity of memory access (see
Tab. 1). However, our previous work shows that this has a
negligible effect on the power consumption.

Table 1: Different benchmark settings
Bench- Description
mark

0 Step 1: One variable, initially set to 0
Step 2: Variable is incremented by 1

1 Step 1: array[size 106], initially set to 0
Step 2: array elements added up successivly

2 Step 1: array[size 106], initially set to max int
Step 2: array elements added up successivly

3 Step 1: array[size 106], initially set to index
Step 2: array elements added up in the follow-

ing order: (7· index + rank) mod
array size

In the first setting an integer variable (initially set to 0) is
incremented by 1 within the loop. This represents a mi-
crobenchmark with use of ALU and caches, and few mem-
ory accesses. In the other settings we use an array with one
million elements, which are initally set to 0 for the second
setting, to the maximum integer value for the third setting
and to the index of the element in the fourth setting. The
second and third settings add up the array elements suc-
cessively. This represents microbenchmarks with cache and
memory accesses, and different ALU use (adding up zeroes,
adding up ones). The last setting uses a more unstructured
access pattern (7 · index + rank mod array size) to add up
the array elements, which represents higher cache miss rate
and thus higher memory traffic [5].

To measure the power consumption of the balanced frequen-
cies f , which result from α ·f1 +(1−α) ·f2 ∼ f , we can only
use such values that are supported by the RCCE library.
Thus, we use the values 200, 400 and 533 MHz and compare
it with the power consumption of the measurements with
mixed frequencies. As a consequence, there are only 5 pairs
of f1 and f2, which are nearly equal to the corresponding
balanced frequency f as depicted in Tab. 2.

In this table we can see that in the first two cases the power
consumption of the balanced and mixed variants are nearly
identical. In contrast, the power consumption of the mixed
variants in the last three cases is much higher than for the
balanced variants. This results from the different voltage
level, which RCCE uses for the different frequencies. There
are totally 6 possible voltage levels, but only 3 voltage levels
(0.7V, 0.8V and 1.1V) are used for the frequency scaling with
the power management function RCCE iset power(). 0.7V



Table 2: Comparison between the power consump-
tion of the SCC for the microbenchmarks with a
mixed and a balanced frequency for the cores

α freq. freq. freq. Watt Watt
low high balanced balanced mixed
(f1) (f2) (f)

4/6 100 400 200 25.6324 25.5430
2/6 100 533 388, 67 ∼ 400 30.0648 29.8622
4/6 200 800 400 30.0250 42.0186
2/6 100 800 566, 67 ∼ 533 32.8098 57.0382
3/6 200 800 500 ∼ 533 32.1484 50.4092

is used in a range from 100 to 400 MHz, 0.8V for 533 MHz
and 1.1V for 800 MHz. As expected the influence of the
voltage scaling on the power consumption is much higher
than the influence of the frequency scaling on the power
consumption. Another aspect comes from the network and
memory controller, because with a higher core frequency
more data can be sent over the network to the memory,
such that the usage rate of both increases.

Our real-world application is structured like the microbench-
mark. After the frequency scaling and the barrier, the man-
delbrot set computation is done in the second step. An im-
age of size 6000 × 8000 pixels is generated, for each pixel the
maximum number of iterations is set to 2047. Each task, i.e.
each core, computes a sequence of pixels determined stati-
cally. The sequences are geometrically interleaved in order
to distribute pixels with high and low iteration counts over
the cores as evenly as possible with a static distribution.
During the first 10 seconds the computation, we measure the
power consumption of the chip every 10 ms, i.e. 1000 times.
We repeat each experiment 5 times. We compute the aver-
age power consumption for each experiment as the average of
5,000 measurements. Although the work in this application
is fixed, we measure only the first part of the computation,
so that we match the model of continuously running tasks
with given (average) computational rates. Tab. 3 depicts
the power consumption of the 5 pairs of f1 and f2 for the
real-world application.

Table 3: Comparison between the power consump-
tion of the SCC for the real-world application with
a mixed and a balanced frequency for the cores

α freq. freq. freq. Watt Watt
low high balanced balanced mixed
(f1) (f2) (f)

4/6 100 400 200 27.0316 26.1008
2/6 100 533 388, 67 ∼ 400 32.3016 31.6888
4/6 200 800 400 32.9238 45.4560
2/6 100 800 566, 67 ∼ 533 36.8874 64.8296
3/6 200 800 500 ∼ 533 36.2624 55.8794

The results of the power consumption for the real-world ap-
plication are very similar to the results for the microbench-
marks. They differ only in that the power consumption with
a mixed and a balanced frequency for each pair is a little bit
higher than for the microbenchmarks. One reason for this
behavior is, that there is no time control during the calcula-
tion and thus the cores compute more instructions than in
the microbenchmarks.

Another performance test is to let all cores first run with
the low frequency f1 and after that with the high frequency
f2. In this case, when we for example assume that the bal-
anced variant runs for a time interval of one second, we
can also devise the average power consumption (i.e. energy
consumption divided by the timespan) for different time pe-
riods with the high or low frequency. Thus we can see, if a
longer time periode with a high frequency has a positive ef-
fect on the power consumption, because the total time for a
run decreases. As an example Fig. 1 depicts the energy con-
sumption of the microbenchmark for a balanced frequency of
200 MHz, a low frequency of 100 MHz and a high frequency
of 400 MHz.

Figure 1: Energy consumption of the SCC for a mi-
crobenchmark run for one second

Seen in isolation, it is more efficient to run for some time
with a high frequency and switch the cores off when the
work is done. For α = 0 (no low frequency time period) for
example the energy consumption is around 15 Joule (dotted
line in Fig. 1) compared to the 25 Joule of the balanced
variant. The SCC cores can be turned off completely, but
only under laboratory conditions and not with the RCCE
library. Thus at least the energy consumption from static
power must be added for the rest of the time. Even if we
assume, that one could turn off the cores completely, the
memory controllers can not be switched off, because in this
case the memory contents would be lost and thus the cores
can not be turned on again. Hence the power consumption
for that time lies around 23 Watt for the network and mem-
ory controllers, contributing α · 23 Joule to the energy con-
sumption. So in these cases, where the calculation finished
earlier than with the balanced variant, the energy consump-
tion of the mixed variant (dark solid line in Fig. 1) is slightly
higher than the energy consumption of the balanced variant.
Thus it is not advantageous to run a program with mixed
frequencies.



5. CONCLUSIONS AND FUTURE WORK
We have investigated how to map task collections in stream-
ing applications onto manycore processors such that energy
consumption of the cores is minimized. We have treated
the problem formally and experiments support our forecasts
qualitatively.

So far, we have not yet taken into account the influence of
the on-chip network. As a first measure, one could solve the
core optimization problem, and then choose the lowest pos-
sible frequency for the on-chip network such that all tasks
still perform as requested, i.e. are not penalized by waiting
too long for outstanding memory requests or data communi-
cations. A more advanced measure could take the structure
of the communication between the tasks into account dur-
ing the mapping process, i.e. communicating tasks could be
mapped onto the same core as long as the computational
load remains balanced. This constitutes a multi-criterion
optimization problem, which might be solved by integer lin-
ear programming similar to [12] as soon as the number of
cores to be used are fixed. An even more advanced scheme
would require to model the energy consumption of the on-
chip network depending on load and frequency (if we assume
that the operating frequency of the on-chip network can be
chosen independently of the core frequencies) and solve the
non-linear optimization problem of mapping the communi-
cating tasks such that the total energy consumption by cores
and network is minimized.

6. ACKNOWLEDGMENTS
The authors thank Intel for providing the opportunity to
experiment with the “concept-vehicle” many-core processor
“Single-Chip Cloud Computer”. C. Kessler acknowledges
partial funding by Vetenskapsr̊adet and SeRC.

7. REFERENCES
[1] S. Albers. Algorithms for dynamic speed scaling. In

Proc. 28th Symp. on Theoretical Aspects of Computer
Science (STACS’11), pages 1–11, 2011.

[2] S. Albers, F. Müller, and S. Schmelzer. Speed scaling
on parallel processors. In Proc. 19th Annual Symp. on
Parallelism in Algorithms and Architectures
(SPAA’07), pages 289–298, June 2007.

[3] A. Andrei. Energy Efficient and Predictable Design of
Real-Time Embedded Systems. PhD thesis, Dept. of
Computer and Information Science, Linköping
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