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1. Introduction 

This work covers the domain of many-core computing research. The computer industry and 
scientists all over the world are developing multi-core systems and adapted software for 
them in order to reach even higher performance figures with the increasing number of cores 
on a single processing system. This can easily be seen when buying a new PC or laptop. At 
least 2 cores are the minimum this device should have in order to support a sensible 
performance for the demanding multimedia applications. This trend also reached the 
graphic card market years ago. Nvidia and ATI improve their graphic card performance 
nowadays rather by doubling, tripling or quadrupling the count of so called shader units than 
by increasing the frequency or jump prediction. This is required for most of the high end 
computer games and simulators to make them run at acceptable frame rates. So the 
achievements of many-core research have already reached the consumer market. 

Today, the performance per processing unit has become less important as the speedup is 
mainly generated by more units than by faster ones. There are several reasons for this 
change of minds. The rise of the temperature caused by higher frequencies is one of the 
major factors. The thermal design power of the single-core CPU "Pentium 4 HT 550" (2004) is 
about 115 Watt. This is quite much and hard to cool - especially as energy saving 
optimizations of that time were much worse compared to today's ones. But this CPU offered 
a clock rate of 3.4 GHz. Current CPUs like the "Intel i7-2700K" operate at comparable 
frequencies but with 4 or more cores and tend to consume less power. The increased 
number of cores and internal improvements make this CPU much faster than factor 4 in 
several benchmarks. 

The challenge for software developers of high performance applications (e.g. computer 
games or big data tools) therefore became even higher. It is pretty complex to implement 
highly efficient but still correct parallel algorithms that make full use of all cores of the 
processing units the system offers. Of course, compiler and library developers put a lot of 
effort into extensions that are easier and saver to use. However, to develop a correct and 
fast parallel program is and will be a challenge for all software developers. This becomes 
even more obvious when taking a look at a typical server setup with several multi-core CPUs. 
For such configurations NUMA (non-uniform memory access) awareness becomes the key 
factor for efficient parallel software to maintain a high performance even when scaling the 
system. If not taken into consideration it might happen that by adding more cores to a 
process its performance slows down. 

This work focuses on a many-core research processer from Intel, the so called SCC (Single-
Chip Cloud Computer). It offers 48 cores placed on a single die. As the definitions of many 
and multi-core systems tend to differ from one author to another (some say at least 50 
cores, others say many more than 16, see also [9]), this work defines the Intel SCC as many-
core system. Each core of the Intel SCC is connected to an on-chip mesh network and can 
use this to communicate with other cores in a very fast way. With respect to external 
memory access the Intel SCC is a NUMA system as it uses 4 memory controllers. Each 
memory controller is responsible for 12 cores. The performance of the memory access is a 
function of the distance between the core and the memory controller. So to develop high 
performance software for this device is quite a big challenge. 
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Figure 1.1 - Intel SCC die, 45nm technology, Intel.com 

The purpose of this work is to investigate the influence of the memory controllers to a set of 
selected parallel algorithms that are executable on the Intel SCC. As the distance of the 
controllers to the cores is a crucial point, the placement of them on the Intel SCC die is taken 
a deeper look at. The original configuration is compared against a number of alternatives. 
This comparison is possible as for each algorithm a mathematical model with several cost 
factors is created. The model assumes the algorithm to consist of several tasks that run in 
parallel. The way those tasks are mapped to cores tends from being very inefficient to very 
promising. The best result based on the cost factors is the optimal one. This optimization is 
done by Integer Linear Programming (ILP) - a mathematical algorithm that can solve a 
number of inequalities that make up the model to optimality. 

As already explained the best result depends on the cost factors. This work considers 3 cost 
factors: Memory distance for core to memory communication, communication distance for 
core to core communication and the computational load per core that expresses how many 
tasks are mapped onto a single core. As several factors are used the weight between them 
has a strong impact on the outcome of the optimization. For example if the weight of the 
computational load factor is very small, the weight of the distance costs becomes higher 
which typically results in a high load for some cores and no load for others. With respect to a 
real life system this would mean to have a processor with very fast cores but a pretty slow 
communication network. There it doesn’t make sense to use all cores as the communication 
of the intermediate results to another core is too expensive. The weight factors are varied in 
order to simulate the most likely conditions that might occur when running an 
implementation of the algorithm on a real many-core system. 

The number of possible locations where the four memory controllers can be attached to is 
very high for a 48 core cluster. To avoid the calculation of the optimal placement of tasks for 
each memory controller configuration, Simulated Annealing is used in order to decrease the 
trial count drastically. As the optimization run for a single placement may take up to several 
hours depending on the complexity of the model, this approach is absolutely necessary. In 
addition to the location changes the number of controllers is also varied. Within this work 
the best memory controller locations for 4, 6, 8 and 12 memory controllers are investigated. 
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The result of the optimization runs is that the basic Intel SCC setup is not the overall winner 
which is kind of astonishing as one might think that the Intel labs are having a strong focus 
on performance. But as this die is only a proof of concept for future many-core CPUs and 
intended to be used by scientists only, the not optimal placement can be seen as a good 
challenge to further think about better designs for algorithms that circumvent such 
performance disadvantages by intelligent communication structures. A possible reason for 
this uncommon choice might be that the Intel designers decided to put the memory 
controllers to the non-optimal position with respect to performance because of more 
important hardware requirements like a short distance to die edges or less electrical 
interferences to and from other components of the die. 

Another and also expected result is that the addition of more memory controllers speeds up 
the performance of all algorithms. This can be explained best with the average distance of a 
node to a memory controller. The more memory controllers are given, the less the average 
distance of each core to the external memory becomes. 

This work is organized as following. The next chapter introduces the Intel SCC and its 
properties in more detail. Chapter 3 explains the first algorithm to be optimized which is 
merge sorting. It gives some links to papers that are the base for this thesis and 
demonstrates the ILP model used there. Chapter 4 is about the adaptation of this model to 
make it possible to vary the memory controller count and location. Also, the application of 
Simulated Annealing can be found there. The succeeding chapter 5 summarizes the results 
of the optimization runs for the merge sort model. Within this chapter the optimization is 
first done using the whole cluster and then for performance reasons only using a quarter of 
it. Chapter 6 applies all the ideas of chapter 3 to 5 to two further algorithms and compares 
their results to the previous ones. The first algorithm is Tiled-MapReduce and the second 
one is a mesh communication network. 
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2. Intel’s Single-Chip Could Computer 

The challenge for programmers and researchers today is to experiment with many-core 
systems to generate solution for current and future problems faster and more efficiently 
than ever before. This research became more important in the last years due to the 
challenge of still being able to double the performance of a CPU in the typical 18 months 
period (referring to David House). The "doubling of performance every 18 months" phrase is 
based on Moore's law who predicted the doubling of the transistor numbers on an 
integrated circuit every two years and David House who combined this with the increasing 
speed of the transistors itself. In 2010 Intel announced the end of that predicted 
development at the end of 2013 [2]. They stated that the transistor density can then only be 
doubled every three years. The currently most promising way forward back to the old 
performance development seems to be a combination of the classical more and better 
transistors together with improved logic on the CPU (e.g. branching prediction) and the 
addition of more cores on a single die. So by implementing such CPUs and finding an 
effective high-performance implementation of important and commonly used algorithms 
one can find the way making sure that future software can still become quicker and quicker 
the same way we're used to since decades. 

The Intel SCC ("single-chip cloud computer") is a many-core system even though its core 
count is not that high. Predecessors of it have already included up to 80 cores [11]. It is a so 
called cluster on-chip system and was published in the end of 2009 as prove of concept 
(POC) for researchers. It offers 48 computing cores which are placed on the die within 24 
tiles. The tiles are arranged in a mesh of 4 rows and 6 columns. In this context a tile can be 
seen as a modern multi-core CPU with two cores. The tiles are connected using a packet 
based mesh network. Each core is attached to a L1 cache of size 32KiByte (16/16 for 
data/code) and L2 cache of 256KiByte. An interesting thing about the caching is that there is 
no synchronization between the caches of different cores. This needs to be implemented by 
software means. The advantage of this decision beside less power consumption and less 
hardware complexity is the enforcement of message passing as this performs much better 
than the communication using the external memory. The cores itself are pretty old 
fashioned (IA32 P54C, published in 1993) and therefore a significant speedup compared to 
modern CPUs can only be reached by heavily making use of all the 48 cores. The die is 
manufactured in 45nm technology and can consume up to 125W of power. 

The routing of data packages between the tiles is done using X-Y-routing which is 
implemented by routers on the die. The main memory access and node to node 
communication is controlled by the mesh interface unit (MIU) that sends requests to and 
handles requests from the router. The core to core communication itself uses an extra on-
tile buffer of size 16KiByte which is called MPB (message passing buffer). The buffer is read 
and write accessible from all cores of the mesh. 
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The memory attached to the die is connected to 4 routers only. So the tiles next to the 
router are closest to the memory. Those tiles are located on the left and right side in each 
second row (seen from top to down). 

 

Figure 2.1 - Top level tile architecture, Intel.com 

The address width of the system is 36Bit so that up to 64GiByte of RAM can be used by all 
cores. This address space is referred to as system address space. A core itself can only 
address 4GiByte within the core address space of 32Bit. The MIU is responsible for 
translating local core addresses to and from global system addresses. 

 

Figure 2.2 - The Intel SCC on a special main board, Intel.com 

The programming and general control of the Intel SCC is done by a management console PC 
(MCPC). The "Rocky Lake system FPGA" connects the Intel SCC system with a normal PC by a 
PCIe link. The FPGA can also act as I/O hub. This enables services like disk or Ethernet access. 
So one can create a cluster of Intel SCC hosts or offer very fast algorithm implementations 
via a web service to the local organization. In the picture 2.2 the FPGA is located under the 
small fan, the Intel SCC die under the big fan and the PCIe and Ethernet port can be found 
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where the external devices are typically connected to. There is also a so called "Board 
management controller" (BMC). This runs a Linux system on a little ARM CPU and offers 
services like boot strapping the FPGA. It can be connected to via Telnet or SSH (see [10]). On 
the Intel SCC itself a special Linux distribution is running, too. 

  



Page 8 

  



Page 9 

3. Optimization of the merge sort algorithm for the Intel SCC 
The next chapters introduce an Intel SCC adaptation of the merge sort algorithm (see [4]) 
found by a group of researchers from the FernUniversität Hagen (Germany) in cooperation 
with the Linköping University (Sweden). 
The first sub chapter briefly summarizes the algorithm and the succeeding ones describe the 
required changes and retrieval of an optimized mapping of the algorithm onto the Intel SCC 
cores. 

3.1. Merge sorting 

The goal of merge sorting is to sort a number of sortable objects, e.g. ordinary integers. In 
the case of binary merge sorting this is done by dividing the original block of data into sub 
blocks of half the size (binary). If the new blocks have the size 2, the sorting is trivial and can 
be done directly. Otherwise, the new blocks are again divided. Two sorted blocks are then 
merged together based on the sorting order into one block of their aggregated size. 

This approach leads to a merge tree - in case of binary merge sorting to a binary merge tree 
that is illustrated with the following graph. A merge task represents a node of the tree. In 
the figure, the merge tasks are not painted. Only the blocks to be sorted are displayed. 

 

Figure 3.1A - Binary merge tree with 4 levels 

In a classical non-parallel way the algorithm is implemented recursively. Using Perl, the code 
could look like shown in the following code block: 
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sub mergeSort { 

 my @numbers = @_; 

 

 my $count = scalar @numbers; 

 

 if ($count > 2) { 

  my $half = int($count/2); 

 

  my @leftNumbers = @numbers[0..$half-1]; 

  my @rightNumbers = @numbers[$half..$count-1]; 

 

  my $sortedLeftNumbers = mergeSort(@leftNumbers); 

  my $sortedRightNumbers = mergeSort(@rightNumbers); 

 

  my @sortedNumbers = (); 

  for my $value (@sortedLeftNumbers) { 

   while (defined $sortedRightNumbers[0] && $value > $sortedRightNumbers[0]) { 

    my $rightValue = shift @sortedRightNumbers; 

    push @sortedNumbers, $rightValue; 

   } 

   push @sortedNumbers, $value; 

  } 

  push @sortedNumbers, @sortedRightNumbers; 

 

  return @sortedNumbers; 

 } 

 elsif ($count == 2) { 

  if ($numbers[0] > $numbers[1]) { 

   return ( 

    $numbers[1], 

    $numbers[0], 

   ); 

  } 

  else { 

   return @numbers; 

  } 

 } 

 

 return @numbers; 

} 

Figure 3.1B - Perl example of sequential merge sorting 

For the classical parallel execution the merge tree becomes important because the merge 
sort algorithm is then split into phases based on the levels of the tree. Within a phase one 
level of the merge tree is processed. 

In case of a 4 level binary merge tree (so 16 elements to be sorted), the fourth level is the 
first one to be processed. All 16 blocks of size one are sorted into 8 blocks of size 2. This is 
done in parallel by 8 workers. The next phase can be supported by 4 workers that process in 
parallel the 8 sorted two-element blocks into 4 sorted blocks of 4 elements each. This is 
done by merging the two sets together. The next level is level 2. Here, the 4 blocks are 
merged into 2 blocks by 2 workers. And the last phase handles level 1. Here, only a single 
worker merges the 2 blocks of size 8 into a single sorted result block of size 16. 
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There exist some approaches to further use all cores even though the number of blocks 
within a phase is smaller than the worker count divided by 2 (for a binary tree). 

In order to reduce the number of levels and the overhead in the first merges (little number 
of objects to be merged), the merge sort algorithm can be extended to sort the highest 
levels in the first phases using another sorting algorithm. This becomes important later when 
taking a look at the Intel SCC adaptations. An interesting point of the "complete" merge tree 
is the fact that even for small object numbers there are normally less workers than leafs so 
that the nodes of the leaf level are not processed in parallel. The same applies for the higher 
levels where more destination blocks than workers are present. 

If one assumes p workers, then the normal parallel merge sort tree that is processed level-
wise has p leafs so that all nodes of the leaf level can be processed in parallel. For each leaf 
there are 2 blocks of sortable objects in the binary case. This makes 2*p blocks of unsorted 
objects. Those blocks need to be sorted before starting to merge them in parallel. In the best 
case each block fits into the workers local memory (e.g. cache). If this requirement is 
fulfilled, a worker can sequentially sort (e.g. quick sort) a block without accessing the 
external memory (excepting the initial read from and final store to memory). After all 2*p 
blocks are sorted in parallel (in two phases) the parallel merge sort can start at the leaf level 
where all p workers merge 2*p sorted blocks into p sorted blocks. 

If the 2*p blocks are too large for the local memory of each processing unit, then one can 
normally not avoid accessing the external memory. How this can be achieved anyway is 
described in the following. The merge tree is further extended until for each leaf the size of 
its input blocks is less or equal than the local processing memory. Then the merge tree has m 
leafs and m is greater than p so that there are not enough workers to process the new leaf 
level in parallel. The way forward leads to the introduction of sub merge trees starting at the 
highest level with less or equal than p nodes (the "regular leaf level"). The leaf count of each 
sub merge tree must be less or equal then p (otherwise, the sub merge tree must be 
extended/split, too). Then every sub merge tree can be sorted by p workers in parallel as 
described above. The leaf nodes of the sub merge trees are sorted locally in parallel. Once all 
sub merge trees are processed, the regular leaf level can be processed in parallel. 
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3.2. Mapping approach 
 
In [3] one can find in detail how the merge sort algorithm was efficiently adapted and 
mapped to the Intel SCC. The following gives an overview of the ideas and the solution 
found. 
Implementing the parallel execution explained in chapter 3.1 is not very promising for one 
reason - the memory access performance. The memory bandwidth of the Intel SCC is limited, 
especially the write performance is very poor (less than 11MiByte per second and per core, 
see [5]). As the phase-wise execution requires the data to be fully read and fully written back 
into a new memory area, this approach is not feasible. 
The idea was to use pipelining which has the advantage that it can make full use of the much 
faster core to core communication. Pipelining describes the processing of data by a number 
of stream processing units in series. Stream processing means that an input data stream can 
be separated into logical blocks and each block can be processed by the processor 
independent of the next data block. The processing result can then be streamed in blocks to 
the next processing unit which can directly consume the data in parallel to its input units 
generating the next data blocks. This is referred to as pipelining. The following graphic shall 
demonstrate this from a high-level perspective. 

 

Figure 3.2 - A simple pipeline with 2 processes 

Process 1 reads the data stream block wise and outputs the resulting stream in blocks to 
process 2 that further processes the results and generates an output data stream, too. 
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This processing schema has the advantage that no external memory is required between the 
processing units. All data is holed in caches and registers. On the Intel SCC this means that 
the mesh network can be used to transfer the stream data from node to node directly. The 
main memory is so only accessed once when reading the unsorted data from and once again 
when writing the sorted data back to memory. This puts the memory bottleneck only to the 
border of the pipeline making the overall pipeline much faster as the waiting time for the 
memory operations is not aggregated any more from node to node. 

The pipeline processes were then defined to be the merge tasks of the merge tree. In level 4 
of figure 3.1A there are 8 merge tasks. The result of those can be streamed to the 4 merge 
tasks of level 3 and so on. 

Depending on the level the merge task is defined for, it has more or less work to do. For 
each level, the sum of the work load is equal. Assuming now the idea to map the tasks 
equally (with respect to load) to the cores of the Intel SCC, one would require a 48 level 
merge tree where all tasks of a level are mapped to a single core. This makes up a total of 
281e12 tasks. As each task requires some management data this way is not feasible. 

The way forward was then to cut the Intel SCC into 4 parts each being attached to one of the 
four memory controllers. So, each part has 2 rows and 3 columns of tiles, so 6 tiles or 12 
cores in total. This can be used to map two independent 6 level trees with 63 tasks each to 
the tiles/cores of the divided cluster. The merge sort of the resulting 12 merge trees so 
results in 12 sorted sets of data. This can then be sorted separately using a non-pipelined 
merge sort. 

But what level shall be put to which core? Does it make sense to put tasks of different levels 
to a single core? The answers to these questions are given in the next chapter. 

As indicated in chapter 3.1 one can presort the input in order to reduce the size of the tree. 
As the 48 level merge tree requires too many tasks, the presort needs to be done for the 
pipelined merge sort, too. The paper describes quick sort as the algorithm to be used to 
presort the data for the highest level. This means for the leaf level that instead of sorting 2 
elements 2 sorted sets of n elements are to be merged. Assuming a 6 level merge tree the 
number of tasks of the leaf level is 32. This means that 64 sorted sets of equal size are to be 
generated by quick sort. 
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3.3. Optimization approach 

Chapter 3.2 explained that pipelining the merge sort tasks is better than simply mapping 
them onto the Intel SCC cluster nodes and leaving the data transfer unchanged. How 
pipelining can be done as good as possible and what the optimal mapping of each task to a 
node is will be explained in this chapter. 

The basic idea is to design a mathematical model describing the influence of different cost 
factors on the overall performance. This model is then optimized and the best solution found 
which represents the Pareto optimal mapping of tasks to nodes can then be implemented. 
By using a mathematical optimization program called integer linear programming one can 
use a number of linear equalities and inequalities to describe and solve the model. There are 
a number of implementations (or solvers) for such models available, e.g. CPLEX and Gurobi. 
These solvers also support floating point variables and partly non-linear inequalities. Both 
have their own modeling language but there exists a framework called AMPL that is capable 
of mapping a common language into both models so one can easily compare different 
solvers with each other. The work [3] showed that for the required model Gurobi is much 
faster than CPLEX. 

Integer linear programming (ILP) tries to minimize or maximize an object function. The 
object function depends on variables that are bounded by linear constraints that are 
typically formulated using inequalities. So by finding constraints for the cost factors having 
an influence on the performance, one can define an object function summing up those costs. 
The goal is to find the minimum or maximum value of the object function called the 
objective. In our example this means to be able to see the perfect mapping of tasks onto the 
cores for which the total costs are minimized. 

The following cost functions have been found in [3]: 

 Maximum computational load: This defines the highest load per node. This makes 
sense as the node with the highest load requires the most time to finish its tasks. 

 Memory distance costs: [4] revealed that the distance of a node to the memory 
controller has significant impact on the read and write performance. The faster the 
data can be transferred, the faster the sorting can be finished. So by summing up the 
distances of the tasks mapped to an Intel SCC node that communicate with the main 
memory, one can approximate this influence. 

 Node communication costs: As for the memory distance, the latency from node to 
node has an influence on the data throughput. This latency becomes higher with 
higher distances. So by summing up the distances of tasks communicating with each 
other (father and its sons), one can approximate the influence. 

As the relative share of the 3 different cost functions depends on the implementation and 
hardware capabilities it is unknown. So one needs to make assumptions and formulate those 
using factors. This leads to the introduction of epsilon (eps) and zeta. Both have a floating 
point value between 0 and 1. Eps defines the relation between the maximum computational 
load and the distance costs. This means that the 2 distance related cost factors are grouped 
together. If eps is 1 then the computational load is the only relevant cost factor. If eps is 0 
then only the distance is taken into account. Zeta defines the relation between memory and 
node to node distance costs. If zeta is 1 then the memory distance costs are the only 
relevant distance cost factor. Of course, the results of an optimization with two different eps 
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and zeta values can be very different. Testing those different results shows up what eps and 
zeta values are more realistic for a given system. But this is not part of this work. 

An important idea of the work was to define co-tasks. Co-tasks exist for the root node and 
for the leaf tasks of the merge tree. The co-tasks are used to model the calculation of the 
distance from the root and leaf tasks to the memory controllers. Due to pipelining the root 
and leaf tasks are the only tasks that communicate with the external memory. 

The following AMPL model presents the result of the mentioned thoughts. It does not take 
into consideration that only one quarter shall be looked into. It assumes the full Intel SCC 
and is presented here as it is the base for chapter 4. It contains some fixes to the original one 
used in [3]. 

option show_stats 1; 

option omit_zero_rows 0; 

option omit_zero_cols 0; 

option eexit 1; #bail out on exit 

option solver gurobi_ampl; 

option gurobi_options 'outlev=1 timing=1'; 

Figure 3.3.1 - AMPL model for full cluster optimization - part 1 

The first code block is about setting run time options that affect the output and behavior of 
the solver. As Gurobi has been found to be a fast solver, it is bound here as the solver to be 
used when running the model. 

param k integer; 

param b integer; 

set V = 1..(b**k-1)/(b-1); 

set Vinner = 1..(b**(k-1)-1)/(b-1); 

set Vext = 0..(2*(b**k)-(b**(k-1))-1)/(b-1); 

set Vco = ((b**k-1)/(b-1)+1)..(2*(b**k) - (b**(k-1)) -1)/(b-1); 

set Vleaf = (b**(k-1)-1)/(b-1)+1..(b**k-1)/(b-1); 

set B = 1..b; 

Figure 3.3.2 - AMPL model for full cluster optimization - part 2 

The pipelined merge sort model has some parameters. Two of them are "k" and "b". "k" 
represents the levels of the tree. "b" represents the forking factor. It is 2 in all further 
chapters what means the tree is always binary. So each father task has two sons. Both 
parameters are of type integer. 

The introduced parameters are then used to define so called sets. Sets are comparable to 
arrays and one can iterate over them. The sets defined here are used later. The syntax is 
related to the programming language Perl where a list of all numbers from 1 to 10 is 
generated with the expression "(1..10)". 

The set "V" defines the set of all tasks belonging to a normal merge tree, starting with the 
root task 1 and ending with the last leaf task. The other "V*" sets are extending the task set 
V or form a subset of it or are at least related to V. "Vinner" contains all the tasks of "V" 
having sons. This means that leaf tasks are not part of this set. "Vext" contains all tasks of 
"V" plus the co-tasks of the root and leaf tasks. "Vco" contains the co-tasks of the leaf tasks. 
So "Vco" is a subset of "Vext" but not of "V". "Vleaf" contains only leaf tasks. "Vleaf" plus 
"Vinner" together form "V". 
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And the last set defined is "B" which is holding the set of links of an anonymous father to is 
sons. For the case "b=2" each father can have 2 sons. So "B" contains the (input) link 1 and 2. 

param NRows integer; 

param NCols integer; 

set Rows = 1..NRows; 

set Cols = 1..NCols; 

 

param secondMIC binary; 

Figure 3.3.3 - AMPL model for full cluster optimization - part 3 

The first two parameters describe the Intel SCC cluster layout. "NRows" holds the row count 
and "NCols" holds the column count of the tile cluster. The single cores of each tile are not 
modeled. Derived from the parameters the sets "Rows" and "Cols" are defined and contain 
an entry for each row respectively column of the cluster. 

The last parameter "secondMIC" is also about the Intel SCC configuration. This is a flag (so of 
type binary) expressing whether or not the rightmost Intel SCC cluster column is attached to 
memory controllers. This flag was introduced to experiment with other memory controller 
settings and is normally set to 1 (true). 

param eps in [0,1.0]; 

param zeta in [0,1.0]; 

param work {1..(b**k-1)/(b-1)} in [0,1.0];  

Figure 3.3.4 - AMPL model for full cluster optimization - part 4 

The remaining merge sort parameters are given here. The meaning of eps and zeta has 
already been discussed. They are defined as floating point variables between 0 and 1. 

The "work" parameter is defined as array of type floating point. It contains the work or load 
per task. The task definition is the same as for the set "V". This means for each normal task 
(no co-tasks) an entry exists. This also implies that a co-task has no load. It is just used to 
model the memory distance of its corresponding root or leaf task. The addressing of tasks in 
the work and some other later defined arrays works by numbering the tasks like in the "V" 
set and using those numbers as array indexes. The zero index of the arrays is normally in 
contrast to most programming languages 1 instead of 0. 

The root entry "work[1]" typically has the load 1. The entry value of its two sons 1 and 2 is 
typically 0.5 as the number of objects (not blocks) received from the father is the same as 
the sum of the objects the sons have sorted. This means the load per tree level is equal. This 
is made sure by the executor program filling this parameter array. 

var x{v in Vext, row in Rows, col in Cols} binary; 

var quad{v in V, q in 1..NRows} binary; 

Figure 3.3.5 - AMPL model for full cluster optimization - part 5 

Now, variables are introduced. Those contain the equality and inequality argument values 
and are changed by the optimizer so that the objective function is improved. 

The first variable is "x". It is a variable set and models the mapping of each task onto the 
cluster tiles. This means that "x" must be a three dimensional array. The first dimension 
carries the task index, and the other two the row and column number of the cluster. The 
tasks to be mapped are all tasks including co-tasks. This is why "Vext" is given. The mapping 
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value is a flag. If it is 1 the task is mapped to the given row and column. If it is 0 it is not 
mapped to the given row and column of the cluster. 

The "quad" variable set helps to bind the co-tasks to the same quadrant as the 
corresponding task. 

var sumDistComm in interval[0.0,10000.0]; 

var sumDistMem  in interval[0.0,10000.0]; 

var maxCompLoad in interval[0.0,10000.0]; 

 

minimize obj: 

  eps*maxCompLoad 

  + (1-eps)*(1-zeta)*sumDistComm 

  + (1-eps)*(zeta)*sumDistMem; 

Figure 3.3.6 - AMPL model for full cluster optimization - part 6 

Here, the cost variables are defined. The objective function named "obj" is stated here. It 
combines the cost variables with the weight factors eps and zeta. The minimum value 
(keyword "minimize") of the object function shall be found and represents the objective. 

subject to MappingOnce {v in Vext}: 

  sum {row in Rows, col in Cols} x[v,row,col] = 1; 

Figure 3.3.7 - AMPL model for full cluster optimization - part 7 

The constraints are called "subjects" in the AMPL modeling language. Here the first can be 
seen. It is about the constriction that each task must be mapped exactly to one tile. 
Expressed with linear equations this means that for each task (see subject definition "v in 
Vext") the sum of all entries (meaning all positions in the cluster expressed by row and 
column number) of the mapping variable set "x" is equal to 1. So there is no unmapped or 
multiple times mapped task. 

subject to DefineMaxCompLoad { row in Rows, col in Cols }: 

  maxCompLoad >= sum{v in V} work[v] * x[v,row,col]; 

Figure 3.3.8 - AMPL model for full cluster optimization - part 8 

The variable "maxCompLoad" is set here. Therefore, for each tile (row and column, see 
subject definition) the mapping variable set "x" is checked whether a normal merge task is 
mapped to it. This "fact" (can be 0 or 1) is weighted by multiplying it with the load for that 
task ("work" array). The single results are summed up by "sum{v in V}". Please note that the 
sum is then only set as an upper bound to "maxCompLoad" (">="). But as the objective 
function shall be minimized, the "greater or equals to" becomes effectively an equals ("="). 
This is typical for ILP solvers. 
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subject to notinthisrow0even { r in 1..NRows/2 }: 

    sum { c in Cols } x[0,2*r,c] <= 0; 

subject to notinthisrow0odd { r in 1..NRows/2 }: 

    sum { c in 2..NCols-secondMIC } x[0,2*r-1,c] <= 0; 

 

subject to notinthisrowcoeven { v in Vco, r in 1..NRows/2 }: 

    sum { c in Cols } x[v,2*r,c] <= 0; 

subject to notinthisrowcoodd { v in Vco, r in 1..NRows/2 }: 

    sum { c in 2..NCols-secondMIC } x[v,2*r-1,c] <= 0; 

Figure 3.3.9 - AMPL model for full cluster optimization - part 9 

Those subjects are all about co-task mapping constraints. The first two force the root co-task 
(index 0) to be mapped only to the first and last column of each odd row (counting starts 
with 1 at bottom) of the cluster. There, the memory controllers are attached to the router of 
the so addressed tile. This becomes a little bit more complicated by the parameter 
"secondRow" defining whether the last column contains a memory controller or not. If it is 0, 
the root task cannot be mapped to the last column. "Cannot be mapped" is expressed as 
"x[0, row, column] <= 0". All entries that are not touched by the sum around this expression 
are not bounded and can therefore contain the root task (if not further restricted by later 
subjects). 

The other two subjects are equal to the first two subjects but here it is about the leaf co-
tasks. The difference can be found in the task index and in the subject header that now also 
contains the leaf set "Vco" to iterate over. 

In general, one can see that using the "NRows" parameter one can influence the memory 
controller count as for each odd row at least one memory controller exists. 

subject to DefineQuadrant {v in V, memcrow in 1..NRows/2, memccol in 0..1} : 

  quad[v,2*memcrow-1+memccol] <= sum { r in memcrow*2-1..memcrow*2, 

                     c in 

(memccol*floor(NCols/2)+1)..(memccol*floor(NCols/2)+NCols/2) } x[v,r,c]; 

subject to DefineQuadrant2 {v in V}: 

  sum { memcrow in 1..NRows/2, memccol in 0..1 } quad[v,2*memcrow-1+memccol] >= 1; 

Figure 3.3.10 - AMPL model for full cluster optimization - part 10 

This code block fills the quad variable set. It aims on setting the entry "quad[v, z]" to 1 for a 
normal task v if the task v is mapped to the quadrant z. z is a value from 1 to "NRows" 
where: 

 z is 1 for row 1 and 2 and for the left row part [column 1 to NCols/2 (integer division)] 

 z is 2 for row 1 and 2 and for the right row part [column NCols/2+1 to NCols] 

 z is 3 for row 3 and 4 and for the left row part [column 1 to NCols/2 (integer division)] 

 z is 4 for row 3 and 4 and for the right row part [column NCols/2+1 to NCols] 

 ... 

The mathematical expression for z can be found in the subjects. If there are 4 rows, then 
there are 4 quadrants. 2 additional "quadrants" can be found for 6 rows and so on. 

The first subject defines the upper bound and the second the lower bound. The first 
therefore depends on the task mapping variable set "x". If a task is not mapped to the 
quadrant, the entry shall be less or equal to 0 (as binary this means equal to 0). If the task is 
mapped to the quadrant, the entry can be less or equal to "1". And the second subject is 



Page 20 

comparable to the subject "MappingOnce". It requires the "quad" variable set to contain 
exactly one non-zero entry for each task of "V". 

The next figure shows where the quad variable set is used. 

subject to force1 { memcrow in 1..NRows/2, memccol in 0..1, v in Vleaf }: 

    x[ v+b**(k-1), memcrow*2-1, memccol*(NCols-1) + 1 ] 

      <= quad[v,memcrow*2-1+memccol]; 

subject to force2 { memcrow in 1..NRows/2, memccol in 0..1 }: 

    x[ 0, memcrow*2-1, memccol*(NCols-1) + 1 ] 

      <= quad[1,memcrow*2-1+memccol]; 

Figure 3.3.11 - AMPL model for full cluster optimization - part 11 

Subject "force1" restricts the leaf co-tasks (leaf task index + number of nodes in last level) to 
be mapped to the same quadrant as its corresponding leaf task. The second subject applies 
the same rule to the root co-task. 

var yh{v in Vext, r1 in Rows, r2 in Rows} binary; 

var yv{v in Vext, c1 in Cols, c2 in Cols} binary; 

 

subject to Horizontal {u in Vinner, i in B, r1 in Rows, r2 in Rows}: 

  yh[b*(u-1)+i+1, r1, r2] >= sum{c in Cols} x[b*(u-1)+i+1, r1, c] 

                           + sum{c in Cols} x[u,           r2, c] - 1; 

subject to Vertical {u in Vinner, i in B, c1 in Cols, c2 in Cols}: 

  yv[b*(u-1)+i+1, c1, c2] >= sum{r in Rows} x[b*(u-1)+i+1, r, c1] 

                           + sum{r in Rows} x[u,           r, c2] - 1; 

Figure 3.3.12 - AMPL model for full cluster optimization - part 12 

The node to node communication distance calculation is calculated in two phases. In the first 
phase, for each task "child(u, i) := b*(u-1)+i+1" it is stored from which row "r1" to which row 
"r2" and from which column "c1" to which column "c2" it is sending data. "i" is the child link 
number (see set "B"). "u" is the father node that receives the data from its children. The 
information is stored as a flag in the variable sets "yh" (horizontal) and "yv" (vertical). The 
mapping of each task to a tile and the function "child(u, i)" to get the communication path 
are the input parameters for the derivation. The derivation works as following: 

 If a son of "u" is mapped to row "r1" and "u" is mapped to row "r2", then the entry of 
"yv[child(u, i), r1, r2]" is greater or equal 1. This means that the son of u is sending 
from row r1 to row r2 data. 

 If a son of "u" is mapped to row "r1" and "u" is not mapped to row "r2", then the 
entry of "yv[child(u, i), r1, r2]" is greater or equal 0. 

 If a son of "u" is not mapped to row "r1" and "u" is mapped to row "r2", then the 
entry of "yv[child(u, i), r1, r2]" is greater or equal 0. 

 If a son of "u" is not mapped to row "r1" and "u" is not mapped to row "r2", then the 
entry of yv[child(u, i), r1, r2] is greater or equal 0 (normally -1, but binary values are 
allowed only). 

"Greater or equal" becomes "equal" due to the global minimization of the object function. 
The same applies for the "yh" variable set. 

The node to node communication exists only for the destination tasks of the set "Vinner". 
Excluded are the leaf tasks as they have no children other than co-tasks that send data to 
them. 
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The second phase of the node to node communication distance calculation is to deduce the 
distance from the communication information variable sets. This can be seen in the figure 
3.3.15. 

The leaf tasks have no children. But they get their data from the leaf co-tasks and so from 
the memory. The root task sends its data via the root co-tasks to the memory. As already 
stated the co-tasks are just a helper to model the distance to memory. The co-tasks are 
mapped to the tile that is closest to the memory controller. If one now derives the distance 
from co-task to its corresponding task and sums this up, the memory distance is the result. 
The same approach as for node to node communication can be used here. The first phase of 
that is shown in the following two figures. The last phase can be found in figure 3.3.16. 

subject to Horizontal0 {i in B, r1 in Rows, r2 in Rows}: 

  yh[1, r1, r2] >= sum{c in Cols} x[1, r1, c] 

                 + sum{c in Cols} x[0, r2, c] - 1; 

subject to Vertical0 {i in B, c1 in Cols, c2 in Cols}: 

  yv[1, c1, c2] >= sum{r in Rows} x[1, r, c1] 

                 + sum{r in Rows} x[0, r, c2] - 1; 

Figure 3.3.13 - AMPL model for full cluster optimization - part 13 

The source of the memory communication in level 1 is the root. The receiver is task 0, the 
root co-task. So as like as in figure 3.3.12 the communication information is stored in "yh" 
and "yv". 

subject to HorizontalCoTask {v in Vleaf, i in B, r1 in Rows, r2 in Rows}: 

  yh[v+b**(k-1), r1, r2] >= sum{c in Cols} x[v+b**(k-1), r1, c] 

                          + sum{c in Cols} x[v,          r2, c] - 1; 

subject to VerticalCoTask {v in Vleaf, i in B, c1 in Cols, c2 in Cols}: 

  yv[v+b**(k-1), c1, c2] >= sum{r in Rows} x[v+b**(k-1), r, c1] 

                          + sum{r in Rows} x[v,          r, c2] - 1; 

Figure 3.3.14 - AMPL model for full cluster optimization - part 14 

The sources of the memory communication in the level k are the leaf co-tasks sending data 
to the leaf tasks in level k. So as like as in figure 3.3.12 the communication information is 
stored in "yh" and "yv". 

subject to DefineSumDistComm: 

  sumDistComm = 

          # inner task to parant task 

                sum {u in Vinner, i in B, r1 in Rows, r2 in Rows} 

                   yh[b*(u-1)+i+1, r1, r2]  *  abs(r2 - r1)  *  work[b*(u-1)+i+1] 

              + sum {u in Vinner, i in B, c1 in Cols, c2 in Cols} 

                   yv[b*(u-1)+i+1, c1, c2]  *  abs(c2 - c1)  *  work[b*(u-1)+i+1]; 

Figure 3.3.15 - AMPL model for full cluster optimization - part 15 

Having stored what task is sending data from one place to another, the information is 
evaluated in this subject for all tasks that use a pipelined communication. If the task is 
sending data from row "r1" to "r2" then the positive difference of "r1" and "r2" is weighted 
by multiplication with the load of the source. This weights the sent data with its distance. 
The overall sum represents the weighted node to node communication distance. 
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subject to defineSumDistMem: 

  sumDistMem = 

          # root task to co-root task 

                sum {i in B, r1 in Rows, r2 in Rows} 

                   yh[1, r1, r2]  *  abs(r2 - r1)  *  work[1] 

              + sum {i in B, c1 in Cols, c2 in Cols} 

                   yv[1, c1, c2]  *  abs(c2 - c1)  *  work[1] 

          # co-leaf task to leaf task 

              + sum {v in Vleaf, i in B, r1 in Rows, r2 in Rows} 

                   yh[v+b**(k-1), r1, r2]  *  abs(r2 - r1)  *  work[v] 

              + sum {v in Vleaf, i in B, c1 in Cols, c2 in Cols} 

                   yv[v+b**(k-1), c1, c2]  *  abs(c2 - c1)  *  work[v]; 

Figure 3.3.16 - AMPL model for full cluster optimization - part 16 

Similar to before, this subject is about distance calculation. But this time it is about the root 
and leaf tasks and their distance to the off-chip memory. 
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4. Optimization of the Intel SCC for the merge sort algorithm 

4.1. Motivation 

The Intel SCC has been designed to allow developers and scientists to test their theoretical 
models and ideas on hardware that is likely to be commonly used in the next years. 
Unfortunately, this hardware is fixed. One cannot predict how an implementation would 
behave if the amount of cores is doubled, what impact it would have if the mesh network 
performance is changed or the network itself becomes a hierarchical network with core and 
sub networks. 

In order to investigate the influence of some of the possible parameters the following 
chapters explain how the merge sort AMPL model can be changed and used to determine 
the effect of varying those parameters. 

4.2. ILP model adaptations 

In contrast to the original model where the memory controller positions are fixed to 2 
respectively 4 positions ("secondMIC" parameter) for 4 rows, the new model has been 
extended to allow the memory controllers to be placed freely. With the new model, the 
memory controller location and count can be configured. If required, the memory 
controllers can even be placed within the inner area of the board. As the preceding model 
was already capable of configuring different row and column numbers, there is no upgrade 
required. 

The extensions also include some changes with respect to memory distance calculations 
which are required due to the relaxation of the memory controller locations. 

The following figures show the AMPL model bit by bit. 

#include "tree-scc-map-latency-mem4-v3.define" 

option show_stats 1; 

option omit_zero_rows 0; 

option omit_zero_cols 0; 

option eexit 1; // bail out on exit 

option solver gurobi_ampl; 

option gurobi_options GUROBI_OPTIONS; // This parameter is defined in the *.define 

file 

Figure 4.2.1 - Extended merge sort model - part 1 

The initial option setup is equal to the chapter 3 model. The only difference is the C 
preprocessor directive "#include" that is parsed and interpreted before the model is run. It is 
used to automatically create dynamic code like a time limit after which the solver stops 
optimizing and returns the intermediate results. 
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param k integer; 

param b integer; 

 

set V = 1..(b**k-1)/(b-1); 

set Vinner = 1..(b**(k-1)-1)/(b-1); 

set Vext = 0..(2*(b**k)-(b**(k-1))-1)/(b-1); 

set Vco = ((b**k-1)/(b-1)+1)..(2*(b**k) - (b**(k-1)) -1)/(b-1); 

set Vleaf = (b**(k-1)-1)/(b-1)+1..(b**k-1)/(b-1); 

 

set B = 1..b; 

 

param NRows integer; 

param NCols integer; 

set Rows = 1..NRows; 

set Cols = 1..NCols; 

 

param eps in [0,1.0]; 

param zeta in [0,1]; 

param secondMIC binary; 

param rootweight in [0,1]; 

param wscale in [0,b]; 

param work {1..(b**k-1)/(b-1)} in [0,1]; 

Figure 4.2.2 - Extended merge sort model - part 2 

This is equal to chapter 3 and requires no further explanation. 

param memoryControllerCount integer >= 1; 

set memoryControllers = 1..memoryControllerCount; 

param memoryControllerMapping {group in memoryControllers, r in Rows, c in Cols}; 

param rootGroup; 

Figure 4.2.3 - Extended merge sort model - part 3 

This code block is new and presents the implementation of the variable memory controller 
count and location. It is realized with the parameter set "memoryControllerMapping" that 
describes to what tile a memory controller (or better: router of the tile) is placed to. The 
parameter "memoryControllerCount" and the corresponding set "memoryControllers" have 
also been introduced for that. The parameter set "memoryControllerMapping" contains for 
each memory controller (called group here) a two dimensional array that has a "1" at exactly 
that tile entry where the memory controller is connected to. This must be made sure by the 
caller of the model defining the content of the parameters. 

Another parameter defined here is the "rootGroup" parameter. This will be explained later. 

var x{v in Vext, row in Rows, col in Cols} binary; 

var yh{v in Vext, r1 in Rows, r2 in Rows} binary; 

var yv{v in Vext, c1 in Cols, c2 in Cols} binary; 

Figure 4.2.4 - Extended merge sort model - part 4 

The meaning of those variable sets has already been described in chapter 3 and requires no 
further explanation. 
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var sumDistComm in interval[0.0,10000.0]; 

var sumDistMem  in interval[0.0,10000.0]; 

var maxCompLoad in interval[0.0,10000.0]; 

 

minimize obj: 

  eps*maxCompLoad 

  + (1-eps)*(1-zeta)*sumDistComm 

  + (1-eps)*(zeta)*sumDistMem; 

Figure 4.2.5 - Extended merge sort model - part 5 

This is equal to chapter 3 and requires no further explanation. 

subject to MappingOnce {v in Vext}: 

  sum {row in Rows, col in Cols} x[v,row,col] = 1; 

   

subject to DefineMaxCompLoad { row in Rows, col in Cols }: 

  maxCompLoad >= sum{v in V} work[v] * x[v,row,col];  

Figure 4.2.6 - Extended merge sort model - part 6 

This is equal to chapter 3 and requires no further explanation. 

// co-tasks are mapped to the memory controller nodes. 

subject to zeroTaskIsMappedToMemoryControllerNode {col in Cols, row in Rows}: 

#ifdef USE_ROOT_GROUP 

    x[0, row, col] <= memoryControllerMapping[rootGroup, row, col]; 

#else 

    x[0, row, col] <= sum {memGroup in memoryControllers} 

memoryControllerMapping[memGroup, row, col]; 

#endif 

Figure 4.2.7 - Extended merge sort model - part 7 

Here, the root co-task location restriction is modeled depending on whether the 
"USE_ROOT_GROUP" feature is enabled or not (via C preprocessor directive, so defined by 
caller). The first runs of the model revealed a significant performance improvement of the 
model run time by permanently setting the root co-task to a dedicated memory controller 
node. This fixation is now configurable and can be turned off if required. So if the 
"USE_ROOT_GROUP" feature is enabled, the root co-task (0) is forced to a certain memory 
controller tile (to be more precise: to the router of that tile). In this case, the parameter 
"rootGroup" is evaluated. If the feature is not enabled, this parameter is ignored and the 
subject is just about mapping the root co-task to exactly one of the configured memory 
controller tiles. 

The quad variable set has been removed as it further complicates the model. 
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subject to leafCoTasksAreMappedToMemoryControllerNode {v in Vco, col in Cols, row 

in Rows}: 

    x[v, row, col] <= sum {memGroup in memoryControllers} 

memoryControllerMapping[memGroup, row, col]; 

Figure 4.2.8 - Extended merge sort model - part 8 

The constraint of mapping the leaf co-tasks to the memory controller tiles is implemented 
here. This is implemented differently than in chapter 3 as here is no rule known any more to 
express the memory controller positions (before: every odd row contains 1 or 2 memory 
controllers). Now the "memoryControllerMapping" parameter set is summed over for each 
tile and controller. If for a certain tile the entry of a memory group is 1 then the leaf co-task 
can be mapped to that tile. Otherwise this is not allowed. 

subject to Horizontal {u in Vinner, i in B, r1 in Rows, r2 in Rows}: 

  yh[b*(u-1)+i+1, r1, r2] >= sum{c in Cols} x[b*(u-1)+i+1, r1, c] 

                           + sum{c in Cols} x[u,           r2, c] - 1; 

subject to Vertical {u in Vinner, i in B, c1 in Cols, c2 in Cols}: 

  yv[b*(u-1)+i+1, c1, c2] >= sum{r in Rows} x[b*(u-1)+i+1, r, c1] 

                           + sum{r in Rows} x[u,           r, c2] - 1; 

Figure 4.2.9 - Extended merge sort model - part 9 

This can also be found in chapter 3. Both subjects are about the first part of the node to 
node distance calculation. 

subject to Horizontal0 {r1 in Rows, r2 in Rows}: 

  yh[1, r1, r2] >= sum{c in Cols} x[1, r1, c] 

                 + sum{c in Cols} x[0, r2, c] - 1; 

subject to Vertical0 {c1 in Cols, c2 in Cols}: 

  yv[1, c1, c2] >= sum{r in Rows} x[1, r, c1] 

                 + sum{r in Rows} x[0, r, c2] - 1; 

Figure 4.2.10 - Extended merge sort model - part 10 

This figure and the next one are equal to chapter 3. They are about the first part of the 
distance to memory calculation. 

subject to HorizontalCoTask {v in Vleaf, r1 in Rows, r2 in Rows}: 

  yh[v+b**(k-1), r1, r2] >= sum{c in Cols} x[v+b**(k-1), r1, c] 

                          + sum{c in Cols} x[v,          r2, c] - 1; 

subject to VerticalCoTask {v in Vleaf, c1 in Cols, c2 in Cols}: 

  yv[v+b**(k-1), c1, c2] >= sum{r in Rows} x[v+b**(k-1), r, c1] 

                          + sum{r in Rows} x[v,          r, c2] - 1; 

Figure 4.2.11 - Extended merge sort model - part 11 

subject to DefineSumDistComm: 

  sumDistComm = 

          // inner task to parant task 

                sum {u in Vinner, i in B, r1 in Rows, r2 in Rows} 

                   yh[b*(u-1)+i+1, r1, r2]  *  abs(r2 - r1)  *  work[b*(u-1)+i+1] 

              + sum {u in Vinner, i in B, c1 in Cols, c2 in Cols} 

                   yv[b*(u-1)+i+1, c1, c2]  *  abs(c2 - c1)  *  work[b*(u-1)+i+1]; 

Figure 4.2.12 - Extended merge sort model - part 12 
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The final subject that calculates the sums of the node to node communication costs is equal 
to the one of chapter 3. No changes were required. The same applies to the last figure below 
where the distance to memory is finally aggregated. 

subject to defineSumDistMem: 

  sumDistMem = 

          // root task to co-root task 

                sum {r1 in Rows, r2 in Rows} 

                   yh[1, r1, r2]  *  abs(r2 - r1)  *  work[1] 

              + sum {c1 in Cols, c2 in Cols} 

                   yv[1, c1, c2]  *  abs(c2 - c1)  *  work[1] 

          // co-leaf task to leaf task 

              + sum {v in Vleaf, r1 in Rows, r2 in Rows} 

                   yh[v+b**(k-1), r1, r2]  *  abs(r2 - r1)  *  work[v] 

              + sum {v in Vleaf, c1 in Cols, c2 in Cols} 

                   yv[v+b**(k-1), c1, c2]  *  abs(c2 - c1)  *  work[v]; 

Figure 4.2.13 - Extended merge sort model - part 13 
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4.3. Tile and memory controller addressing 

The location of the memory controllers can now be changed freely. In order to make clear to 
what tile the memory controller is attached to without using an illustration an addressing 
schema is required. 

This can be done by giving each tile an address. Within this work the tiles are named using 
one of the following two addressing schemes: 

 The tile in the top left vertex is named "1,1" or "0". The left tile in the second row is 
addressed with "2,1" or "6" assuming a column count of 6. 

o The first address contains two numbers separated by a comma: 
 The first number is the row index of the cluster (counting from top to 

down, starting with 1). 
 The second number is the column index of the cluster (counting from 

left to right, starting with 1). 
o The second address is the linear transformation of the first address type. It 

can be calculated as following: "(rowIndex - 1) * 
columnCount  +  columnIndex - 1". 

 The left tile in the second row is addressed with "2,1" or "6" assuming a column 
count of 6. 

 The right tile in the second row is addressed with "2,6" or "11" assuming a column 
count of 6. 

 And so on… 

Applied to the Intel SCC this means: 

 There are tiles from "0" (top left vertex) to "23" (bottom right vertex). 

 The tiles "6", "11", "18" and "23" have a memory controller attached to their router. 

If the memory controller of the bottom right vertex "23" ("4,6") is moved to the top right 
position, then the new address of it would be "5" or "1,6". 
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4.4. Optimizer selection 

The selection of the optimizer is crucial with respect to the time within the optimal solution 
of a model is found. At least this is the first idea one could have when trying to find a good 
solver for the merge sort model. But finding the optimal solution is not the only important 
property that should be considered when comparing different optimizers and versions. The 
approach used to find the best model is explained in detail later. For now, it is enough to say 
that the best configuration of a huge set of possible memory controller positions for the 
model is approximated. Inherent to this principle is not to find the best but a good local 
solution which is described in the next chapters. With respect to that one can define the 
perfect optimizer for the merge sort model to be the one with the fastest and best 
candidate. That means the intermediate results are good enough compared to a given value 
and do not necessarily need to be optimal. 

As already stated in the previous chapters Gurobi is a very fast solver for the merge sort 
model. This is why this work will not consider other optimizers. Instead of that, only different 
versions of Gurobi are compared against each other. As the model is written in the 
description language of AMPL only the published versions of the combination of AMPL and 
Gurobi are tested. There are many more Gurobi standalone versions which cannot be 
considered here. 

The following table represents the results of 6 runs for 4 different versions of AMPL with 
Gurobi. Each run uses a certain memory controller configuration. As each run for a given 
configuration behaves very much equal when repeated only one trial is used. The first 4 
digits of the "setup" column define the controller positions, the last one the root memory 
controller index ranging from 1 to 4 (as 4 memory controllers are used). 

Table 4.4.1 - Results of a comparing run between different Gurobi versions 

VERSION SETUP VALUE TIME 5% 3% 1% 0% 

4.6.1a 0_1_6_12_1 1.1875 1800.01s 1762s 1762s 1800s 1800s 
5.0.0 0_1_6_12_1 1.1875 1800.06s 73s 76s 1368s 1368s 
5.0.2 0_1_6_12_1 1.2109375 

(+2.0%) 
1800.48s 77s 82s 82s 109s 

5.1.0 0_1_6_12_1 1.203125 
(+1.3%) 

1800.02s 19s 19s 46s 1591s 

  
4.6.1a 0_1_6_12_2 1.1875 1384.13s 55s 64s 1095s 1095s 
5.0.0 0_1_6_12_2 1.203125 

(+1.3%) 
1800.03s 15s 19s 65s 92s 

5.0.2 0_1_6_12_2 1.203125 
(+1.3%) 

1800.04s 15s 20s 66s 93s 

5.1.0 0_1_6_12_2 1.1875 997.41s 42s 42s 42s 53s 
  
4.6.1a 2_3_20_21_1 1.2421875 961.07s 60s 841s 889s 889s 
5.0.0 2_3_20_21_1 1.2421875 888.92s 99s 785s 785s 839s 
5.0.2 2_3_20_21_1 1.2421875 919.48s 63s 63s 851s 876s 
5.1.0 2_3_20_21_1 1.25 

(+0.6%) 
1802.61s 77s 80s 164s 164s 

  
4.6.1a 2_3_20_21_2 1.2421875 976.19s 53s 66s 123s 879s 
5.0.0 2_3_20_21_2 1.2421875 934.65s 49s 97s 869s 884s 
5.0.2 2_3_20_21_2 1.2421875 809.45s 43s 679s 765s 765s 
5.1.0 2_3_20_21_2 1.2421875 982.21s 24s 850s 850s 850s 
  
4.6.1a 6_12_11_17_1 1.2734375 961.64s 106s 800s 800s 830s 
5.0.0 6_12_11_17_1 1.3359375 1800.02s 57s 57s 1546s 1546s 
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VERSION SETUP VALUE TIME 5% 3% 1% 0% 

(+4.9%) 
5.0.2 6_12_11_17_1 1.2734375 1179.37s 705s 1059s 1113s 1113s 
5.1.0 6_12_11_17_1 1.2734375 1414.19s 141s 141s 141s 157s 
  
4.6.1a 6_12_11_17_2 1.2734375 1264.88s 38s 131s 131s 131s 
5.0.0 6_12_11_17_2 1.2734375 1800.01s 676s 676s 743s 899s 
5.0.2 6_12_11_17_2 1.2734375 1800.02s 674s 694s 694s 709s 
5.1.0 6_12_11_17_2 1.2734375 929.40s 25s 35s 823s 905s 

The intermediate values reached while running are displayed in the range columns, e.g. 38s 
in the 5% column means that after 38s the intermediate solution was within a 5% range of 
the final (but not necessarily optimal) solution of the run. Red markers show that the time 
limit of 30 minutes was hit. Green markers express that the value is the best of the current 
range. Orange markers are used to show that the range was hit faster than for the green 
ones but the overall result compared against is worse (see value column). 

In order to compare the results against each other, the green and orange markers are 
summed up where green markers are weighted with the factor 1 and orange ones with 0.5. 
The overall winner out of that is Gurobi v5.1.0 with 10 points. The second winner with 9 
points is version 5.0.0. The others have less than 7 points. 

As the number of tests is pretty small and the weighting factors are kind of arbitrary the 
informational value can be questioned. But due to time limitations this should be 
acceptable. 
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4.5. Optimization 

In this chapter it shall be explained how the Intel SCC can be optimized. A precondition for 
an optimization is the knowledge about what can be changed in order to achieve better 
results at all. Therefore, the "setup" of the model to be optimized needs to be defined. This 
setup includes the definition of the hardware (cluster) and software (merge sort) 
parameters: 

 hardware specific parameters 
o memory controller count (4 for Intel SCC) 
o row count (4 for Intel SCC) 
o column count (6 for Intel SCC) 

 merge sort specific parameters 
o eps (weight of computation over communication costs) 
o zeta (weight of memory controller distance over node distance costs) 
o k (number of merge tree levels) 
o work load per task 

In principle one can now try to find the best result for a fixed setup by changing the 
hardware layout within the requirements of the setup. In this case, the memory controller 
positions are modifiable as only their count is defined. But running the model with all 
possible values takes too much time. For example for a model with 4 rows, 6 columns and 4 
memory controllers there are 4 x 6 = 24 positions where a memory controller can be placed. 
As there are 4 memory controllers the number of possible combinations is 24! / (20!*4!) = 
10626. This needs to be multiplied by 4 as for each combination the root co-task can be 
placed to one out of four controllers. In sum about 42k alternatives to be calculated. 
Assuming only very optimistic 100 seconds for each run would result in nearly 50 days of 
calculations. 

Assuming that memory controllers can only be attached to the edges of the cluster the 
situation becomes more relaxed as for 16 possible locations only about 8.5 days of 
processing time are required. But this is still too much as the run needs to be done several 
times, e.g. for different eps and zeta values or to make sure that the result is really very 
good. 

As running the model for all possible memory controller positions resulting from a given 
setup is unacceptable the following chapters describe one possible way to find good but not 
optimal solutions. 

4.5.1. The idea 

The basic assumption is that the optimal configuration won't get much worse just by slightly 
changing the memory controller positions. This also applies to configurations of the setup 
that are not optimal. There is always a neighboring configuration B of A so that B is either as 
good as A or at least pretty close to A. 

This does not automatically apply to the root controller node (where the root co-task is fixed 
to) for odd configurations. An odd configuration means here an odd memory controller 
distribution. But to make the optimization as easy as possible this can be accepted. 

There are a number of optimization algorithms that could be used to find a good solution by 
searching them randomly and testing their neighborhood for even better values. One of 
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those is Simulated Annealing. Because of its easy application to the problem it has been 
chosen to find the optimal solution for a certain model setup. 

Based on the idea of the controlled annealing of metal to minimize the occurrence of defects 
this algorithm uses a start temperature that cools down from iteration to iteration. Here, 
iteration refers to an optimization run that produces a specific result for the current 
configuration of the model setup. From iteration to iteration a neighbor of the current best 
configuration is selected and tested. The current best configuration is adapted if the current 
configuration is either equal or better than the current best configuration or if the 
probability p of the difference (to the current best) and the current temperature is higher 
than a randomly chosen value in the range of 0 and 1. 

The further the annealing process progresses the lower the temperature and therefore the 
lower the chance to accept a worse configuration as the current best configuration becomes. 
The function of p is predefined as e^(-diff/T). 

How to cool down, how to select a neighbor and when to stop is to be decided based on the 
specific model and its parameters that shall be optimized. The next chapters explain how 
this is done within this work. 

4.5.2. Cooling function 

Two options for the temperature cooling are investigated. The first is the linear temperature 
curve. It uses a start temperature and decreases this linearly with the current iteration 
number down to zero. 

The second curve is based on a power function. It also uses this start temperature but 
decreases the temperature by dividing the start value by the current iteration number. 

The following figure shall demonstrate both temperature functions inserted in the 
probability function e^(-diff/T). The first 3 examples in the legend use the power function, 
the last 3 ones use linear cooling. The difference is set to 0.1 as this corresponds to a 
difference in the subject of about 10 to 15% for the later introduced test. Early test runs of 
this work showed that the best result found was about 10 to 15% better than the result for 
the Intel configuration. So setting the value to 0.1 results in a probability function than can 
be interpreted as the likelihood that a very good configuration is replaced by a result that is 
just as good as the original Intel configuration. 
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Figure 4.5.2.1 - Graph displaying the probabilities for linear and power function based temperature annealing 

One can see that the different options lead to two different behaviors for the same start 
temperature and a given difference. The linear function leads to steady changes for a long 
time whereas the power function represents the opposite - worse values become much 
earlier unacceptable. The higher the start temperature is set the higher the iteration count 
becomes for the same probability. 

Experiments with a small statistic show that for the Intel SCC merge sort model the power 
function with temperature 8 (the second in the legend of above) delivers more frequently 
good results. The following table summarizes those tests. In this table the header is to be 
read like that: "P_8" means that the power function is used with a start temperature of 8. 
"L_7" means that the linear function is used with a start temperature of 7. 

Table 4.5.2.1 - Results of annealing runs with both linear or power function and 2 different start temperatures, 
10 times each 

Subject cluster P_8 P_16 L_5 L_7 

(1.12 - 1.15) 1 - - - 
(1.15 - 1.18) 2 - 3 1 
(1.18 - 1.20) 6 3 2 8 
(1.20 - 1.23) 1 5 3 1 
(1.23 - 1.26) - 2 2 - 

The outcome of this experiment is normally only valid for the special model setup used (Intel 
SCC, eps=0.5, zeta=0.5, k=7). To speed up the required calculations, the algorithm and 
starting temperature is used anyway for all the other possible model setups having the same 
number of merge tree levels and memory controllers. This might have an impact on the 
degree of improvement over the original model. But as long as it can be improved this 
approach is acceptable. 

If the mentioned parameters change the start temperature and iteration count are adapted 
by a little rule of thumb: "Higher parameter numbers require higher temperatures and more 
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iterations". This fuzzy rule can be used and applied to generate a plot like in the previous 
figure to define the values. E.g. when running models with 6 memory controllers, the 
temperature is doubled to 16 but the iteration count is only increased by 50% to 60. For 8 
memory controllers, the temperature is set to 24 and 70 iterations are used. In both cases, 
the function curve looks similar to the one with a start temperature of 8. 

One other side note: By extending the memory controller count or the number of merge 
tree levels, more and more inequalities are to be considered by Gurobi. This typically 
requires a higher waiting time. The waiting time is also adapted with the same rule as for the 
temperature and iteration count and like there it cannot be considered as a perfect 
adaptation. 

4.5.3. Neighbor selection 

The neighborhood of a configuration needs to be defined in order to select a neighbor of it. 
This can be done as following: 

 A configuration X of a setup specifies the not already fixed model parameters. They 
are: 

o The memory controller indexes MC[i] where i is a number between 1 and the 
memory controller count n. One such index is of the range [0, 
rowCount*colCount-1] and represents the location of the memory controller. 

o The root index r that describes to what memory controller the root co-task is 
attached. So r is a number between 0 and the memory controller count n 
minus 1 (see also chapter 4.2). 

 The neighborhood N(X) of a configuration X can then be defined as the set of 
configurations for which a parameter value differs by maximum one unit compared 
to the same parameter of X. 

 For the memory controller indexes and the root index this needs to be extended by 
the inclusion of the wrap around case: The difference between the maximum and the 
minimum value of a parameter is 1. 

This definition includes the configuration in its own neighborhood. 

There are two different parameters classes: Memory controller and root co-task index. For 
each class an array can be defined that contains all parameter values of a class. 

Now one can define the neighbor selection with the following Perl program: 
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    sub getNeighbors { 

        my ($parameterClassConfig, $probility, @valuesBefore) = @_; 

 

        my $max = $parameterClassConfig->{Max}; 

        my $min = $parameterClassConfig->{Min}; 

        my @newValues = (); 

        my %valueIsUsed = (); 

 

        for my $currentValue (@valuesBefore) { 

            my $newValue = _changeByOneUnit($probility, $currentValue); 

            $newValue = _normalizeValue($newValue, $min, $max); # wrap around 

 

            my $shallInc = _shallDo(0.5) ? 1 : 0; 

            while ($valueIsUsed{$newValue}) { 

                $newValue += $shallInc ? 1 : -1; 

                $newValue = _normalizeValue($newValue, $min, $max); # wrap around 

            } 

 

            push @newValues, $newValue; 

            $valueIsUsed{$newValue} = 1; 

        } 

 

        return @newValues; 

    } 

Figure 4.5.3.1 - Neighbor selection algorithm 

The input of that algorithm is the parameter class configuration which contains the 
minimum and maximum values for the parameters and a probability value and the value 
array that represents the current configuration. The result contains a neighbor. This can be 
the same as the input configuration. The algorithm makes sure that the values of the array 
are distinct as it doesn't make sense to map two memory controllers to a single node. 
This function is used to get a neighbor for the two parameter classes. In the implemented 
final algorithm the probability value used is 0.7. 

An optimization applied here is the avoidance of calculating a result for the same or a 
mirrored configuration twice. If this case is detected, the probability value used to change 
the neighbor values is increased to 1. Also, the neighbor selection uses another base 
configuration. Instead of using the current best result, the last neighbor found is then used 
to find the next neighbor. This maximizes the likelihood to get another unique neighbor and 
minimizes the calculation time. 

4.5.4. When to stop 

The stop conditions for the annealing algorithm applied are: 

 time limit for the whole optimization, e.g. 1 hour 

 iteration limit, e.g. 30 iterations 

The "better than X" limit has not been implemented as this could hide even better 
configurations. 
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5. Execution results and analysis 

Now the best model configuration for a model setup is tried to be found. The goal is to 
achieve better values than for the original Intel SCC model configuration. In theory, memory 
controllers (MC) can be placed anywhere around the cluster. This work simulates in this 
chapter a realistic hardware layout by putting the memory controllers to the edges of the 
cluster. 

The tasks of the model are mapped to the tiles of the cluster and not to the cores of a tile. 
This is because otherwise the model would consist of 8 rows and 6 columns and some other 
changes related to memory controller placement would be required. As this leads to higher 
complexity and solution times, the calculation is simplified by just mapping tasks to tiles. 
More details can be found in chapter 3.2. 

The following sub chapters describe the retrieval of a cluster configuration that is better 
than the Intel SCC. This is done in 4 different ways. 

First, the best configuration is tried to be found using the full cluster. This has the 
disadvantage that because of the high complexity of a 24 level merge tree only a 7 level 
merge tree is used which results in a very poor load distribution. But the result is anyway 
interesting as the best memory controller setup found is an odd one. The second chapter 5.2 
extends the chapter 5.1 by adding more memory controllers to the cluster and investigates 
the influence on the performance. 

Chapter 5.3 is about the manual definition of the memory controller positions. The reason 
behind this manual selection is to find an even configuration that is better than the original 
Intel SCC configuration. 

The next chapter uses another approach in order to get a perfect cluster usage. Therefore, 
chapter 5.4 introduces the mirrored configuration which automatically results in even 
memory controller configurations. The best results of the optimization runs for the merge 
sort model are shown here. 
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5.1. Optimization with 4 MC 

The following tables and figures present and summarize the output of two annealing runs. 
The following model setup was used: eps={0.1, 0.5, 0.9} and zeta={0.1, 0.5, 0.9}. 

A1) communication costs predominate computation costs AND node distance costs 
predominate memory controller distance costs 

Table 5.1.A1 - results of eps=0.1, zeta=0.1 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 0.7 7 0 0 

Best configuration 0.7 7 0 0 

 

Figure 5.1.A11 - Intel SCC task and memory controller mapping 

This drawing was automatically generated from the result dump of the Gurobi model 
execution. Its 4 rows and 6 columns represent the node structure of the Intel SCC. One node 
stands for 2 cores or one tile. The colored ones are the tiles with an attached memory 
controller. The green one is the root node meaning the one node where to root co-task is 
mapped to. As there is no communication between the nodes for this configuration, there is 
no such information available here. The legend at the top part summarizes the run details. 
Most are self-explaining. The parameter "optimalResultCalculated" tells whether the Gurobi 
run did fully finish the linear optimization or was stopped after a time limit (in most of such 
runs 2 hours). 

As the computation costs are not important here, the relation between the communication 
and the memory controller distance becomes the key factor. If the communication costs 
relation is as high as here, it doesn't matter where the memory controllers are placed. All 
tasks are mapped to a single node to enforce the low node communication costs subject. 
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A2) communication costs predominate computation costs AND node distance costs are 
weighted equally to memory controller distance costs 

Table 5.1.A2 - results of eps=0.1, zeta=0.5 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 0.7 7 0 0 

Best configuration 0.625 4 0.5 0 

 

Figure 5.1.A21 - Intel SCC task and memory controller mapping 

One can see that there is no difference to the setup with zeta=0.1. 

 

Figure 5.1.A22 – Best task and memory controller mapping 

This picture demonstrates the communication part as well. "tU" means to upper nodes, "tD" 
means downward, "tL" to left nodes and "tR" means to send data to the right tile. The 
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communication path illustrated in the figures also includes the memory controller 
communication part which is 0 here but becomes important later. 

Compared to zeta=0.1 this result makes more use of parallelization as 3 memory controllers 
are next to each other and the communication costs part has less influence over the other 
subject parts. Of course, two memory controllers next to each other would be sufficient as 
the third one is not mapped to by any task. As the importance of a low memory controller 
distance is now even bigger, the mapping of leaf tasks and the root task remains the same. 
They are still bounded to the memory controller tiles. 

The result of optimizing the cluster is a lower subject and therefore faster sort algorithm for 
this configuration. 

 

A3) communication costs predominate computation costs AND memory controller 
distance costs predominate node distance costs 

Table 5.1.A3 - results of eps=0.1, zeta=0.9 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 0.375 1.5 2.5 0 

Best configuration 0.3159375 1.5 1.84375 0 

 

Figure 5.1.A31 - Intel SCC task and memory controller mapping 

Now one can see that if the node distance costs are making up only 1 tenth of the distance 
costs, also the merge tree mapping of the original Intel SCC leads to some communication 
between the nodes. 
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Figure 5.1.A32 - Best task and memory controller mapping 

The important point to note here is the usage of all memory controllers. As they are close 
enough to each other they are all used. 

The memory controllers of the best cluster configuration are pretty close to each other and 
they are lying in the lower left edge of the cluster. Like above, the values of the optimized 
cluster are better than the one of the Intel SCC. 

 

B1) communication costs are weighted equally to computation costs AND node distance 
costs predominate memory controller distance costs 

Table 5.1.B1 - results of eps=0.5, zeta=0.1 

 Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 1.3875 1.5 1.34375 0.65625 

Best configuration 1.3875 1.5 1.34375 0.65625 
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Figure 5.1.B11 - Intel SCC task and memory controller mapping 

Compared to the figures before where eps was set to 0.1, the memory distance costs are 
non-zero now. This means, that the root and leaf tasks are mapped to nodes other than the 
memory controller. This is caused by the higher share of computation costs over distance 
costs. 

 

Figure 5.1.B12 - Best task and memory controller mapping 

Although the mapping is different and the memory is attached to other nodes, the subject 
was not improvable. For this merge tree setup, the Intel SCC is optimal. 
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B2) communication costs are weighted equally to computation costs AND node distance 
costs are weighted equally to memory controller distance costs 

Table 5.1.B2 - results of eps=0.5, zeta=0.5 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 1.25 1.5 1.40625 0.59375 

Best configuration 1.1875 1.5 1.5 0.25 

 

Figure 5.1.B21 - Intel SCC task and memory controller mapping 

 

Figure 5.1.B22 - Best task and memory controller mapping 
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By moving one memory controller from the right to the left side of the cluster, the merge 
tree mapping is improvable. This also leads to higher memory distance costs but the overall 
subject is better. 

 

B3) communication costs are weighted equally to computation costs AND memory 
controller distance costs predominate node distance costs 

Table 5.1.B3 - results of eps=0.5, zeta=0.9 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 0.69375 1 3.875 0 

Best configuration 0.6375 1 2.75 0 

 

Figure 5.1.B31 - Intel SCC task and memory controller mapping 
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Figure 5.1.B32 - Best task and memory controller mapping 

Compared to B1 and B2, the memory controller distance costs are now zero again. This is 
caused by the higher share of that cost part. 

Another interesting change is that for both configurations the maximum computational load 
decreases from 1.5 to 1. This is caused by the lower importance of the node distance costs 
over the other ones. 

By moving all memory controllers to one half of the cluster, the subject can be improved 
compared to the Intel configuration. 

 

C1) computation costs predominate to communication costs AND node distance costs 
predominate memory controller distance costs 

Table 5.1.C1 - results of eps=0.9, zeta=0.1 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 1.095 1 2 1.5 

Best configuration 1.0925 1 2 1.25 
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Figure 5.1.C11 - Intel SCC task and memory controller mapping 

 

Figure 5.1.C12 - Best task and memory controller mapping 

The higher the computation costs share, the more nodes are used by the merge tree. This 
became already visible for B1 to B3 and improved here as well. 

The overall subject over the Intel SCC configuration was only improved a little by moving one 
of the memory controllers to the right side of the cluster. 
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C2) computation costs predominate to communication costs AND node distance costs are 
weighted equally to memory controller distance costs 

Table 5.1.C2 - results of eps=0.9, zeta=0.5 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 1.071875 1 2.8125 0.625 

Best configuration 1.0375 1 2.5 0.25 

 

Figure 5.1.C21 - Intel SCC task and memory controller mapping 

 

Figure 5.1.C22 - Best task and memory controller mapping 
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The Intel SCC configuration makes more use of the cluster (8 instead of 7 nodes are used), 
but the overall subject of the best configuration is better. Both memory distance and node 
distance costs have decreased over the original configuration. 

 

C3) computation costs predominate to communication costs AND memory controller 
distance costs predominate node distance costs 

Table 5.1.C3 - results of eps=0.9, zeta=0.9 

  Subject maxCompLoad sumDistComm sumDistMem 

Intel SCC 0.93875 1 3.875 0 

Best configuration 0.9275 1 2.75 0 

 

Figure 5.1.C31 - Intel SCC task and memory controller mapping 
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Figure 5.1.C32 - Best task and memory controller mapping 

As for C2, the usage of the cluster nodes is better than for the best configuration found. 
Now, 9 nodes are used instead of 7. But like before, the best configuration found has a 
better subject, but the gap is smaller than before. As for B3, the higher share of memory 
distance costs leads to this part of the costs to be zero. All leaf tasks and the root task are 
mapped to the tiles with an attached memory controller. 

 

Results 

In 7 out of 9 cases the Intel SCC configuration was improvable. In the cases where the 
memory controller distance costs have only a very small influence (zeta=0.1), in two out of 3 
cases there was no improvement reachable. What one also can see is that the annealing run 
results are not optimal. For example when looking into the best configurations for C1 and C2 
one can see that if the best configuration found in C2 is applied to the setup defined in C1, 
this would lead to an even better result as all 4 instead of only 3 memory controllers would 
be used. 

The distribution of the tasks over the cluster is very poor. The higher the share of 
computation costs, the better the distribution becomes. But even the best configuration 
uses only 7 nodes whereas the Intel SCC configuration uses up to 9 nodes (see C3). The 
reason for that is the little k value of 7. In the best case the computational load is equally 
distributed over the mapped tiles. If so, the load per node is 1 as the root tasks load is 1 and 
this is why in the best case only 7 nodes are mapped to by merge tasks. 
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Trying to increase the k value anyway to 9 for the original configuration leads to the 
following load distribution: 

 

Figure 5.1.k=9 - Intel SCC configuration result for k=9 

As the load is not fully equally shared over the mapped nodes, the number of mapped nodes 
is 11 instead of 9. But the best configuration would probably have an equal load distribution 
(see C2/3) so that only 9 nodes would be used. 

So by setting k to 22 or higher, an equal distribution could be reached. But this doesn't make 
sense as then too many merge tasks (4.194.303 = 2^K-1) are to be maintained in a real 
implementation so that this idea can be skipped. Another approach increasing the cluster 
utilization is to divide the cluster into sub clusters. This is done in chapter 5.4. 
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5.2. Optimization with 6 and 8 MC 

As a next step in further improving the architecture one can add more memory controllers 
to the cluster. 

The following table summarizes a selected set of results of the annealing runs with 6 and 8 
memory controllers. Selected means that results with no change to chapter 5.1 are omitted 
here. This refers to the setups 0.1_0.1 and 0.1_0.5. The row header represents the different 
combinations of eps and zeta, e.g. "0.1_0.9" means that eps is 0.1 and zeta is 0.9. The table 
values are encoded with the following schema: 
$subject_$maxCompLoad_$sumDistComm_$sumDistMem. 

Table 5.2 - Results for higher MC numbers 

Costs Intel 4 MC 6 MC 8 MC 

0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.2988_1.75_1.375_0 0.285_1.5_1.5_0 

0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.375_1.5_1.344_0.406 see MC6 

0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.117_1_2.344_0.125 see MC6 

0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.625_1_2.5_0 0.623_1_2.469_0 

0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.088_1_2_0.75 1.085_1_2_0.5 

0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.023_1_2.219_0.25 1.025_1_2.469_0.031 

0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.925_1_2.5_0 see MC6 

The improvement with 6 and 8 memory controllers over the configuration with 4 memory 
controllers for eps=0.1 and zeta=0.9 is misleading as the one with 8 memory controllers uses 
only 4 of them actively. The only reason for the best configuration with 4 memory 
controllers to not have the same result is the nature of the annealing algorithm not to try 
every single neighbor of the current best solution. The following figure demonstrates that. 

 

Figure 5.2.A3_8 - Best task and memory controller mapping for 8 MC 
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One can see that only 4 memory controllers out of 8 are used. So the same result could be 
achieved with only 4 memory controllers, too. The same applies to the runs with eps=0.5 
and zeta=0.1 as well as to eps=0.9 and zeta=0.1. 

The following picture illustrates the result of a real improvement with 6 memory controllers. 

 

Figure 5.2.B2_6 – Best task and memory controller mapping for 6 MC 

Here one can see that the placement of all 6 memory controllers in the first row of the 
cluster is superior over configurations with 4 MC. 

The following two figures present the best configuration found for eps=0.5 and zeta=0.9. 

 

Figure 5.2.B3_6 - Best task and memory controller mapping for 6 MC 
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Figure 5.2.B3_8 - Best task and memory controller mapping for 8 MC 

The next picture only shows the result for eps=0.9 and zeta=0.5 with 6 memory controllers 
as the annealing run with 8 memory controllers has a worse result. 

 

Figure 5.2.C2_6 - Best task and memory controller mapping for 6 MC 

The last picture shows the best configuration for eps=0.9 and zeta=0.9 with 6 memory 
controllers only as the annealing run with 8 memory controllers has the same subject. 
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Figure 5.2.C3_6 - Best task and memory controller mapping for 6 MC 

The addition of two memory controllers only makes sense under certain circumstances. For 
this model, there one can find 7 setups (eps and zeta) where an improvement is achievable, 
especially for eps=0.5 and zeta=0.5 the improvement is significant. But adding even more 
memory controllers seems not to have the same effect. In the simulation a speedup is found 
in only 3 out of 9 cases. Of course, this could be caused by the fact that the annealing 
algorithm has not enough time (100% more time is given for 8 MC compared to 6 MC) to 
sufficiently investigate the neighborhood. But the time must be limited in order to get 
results at all. 

Later investigations in chapter 5.4 demonstrate, that adding more than 6 memory 
controllers to the cluster has actually a very positive impact - at least if a lot more tasks are 
to mapped. 
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5.3. Certain model configurations 

Another approach in finding a better configuration is to manually define a "good" one and 
test it. The following figures and tables present the outcome of that idea. The summary can 
be found after the result listing. 

 

Figure 5.3.A - MC positions 1_4_19_22, root is 1 

The row headers and the values of that table are to be read as like as in chapter 5.2. Green 
marked entries in the "current" column represent values that are better than the Intel SCC 
configuration. Red ones stand for the opposite. 

Table 5.3.A - MC positions 1_4_19_22, root is 1 

  Intel Best Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.7_7_0_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.37_1_3_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.417_1.5_1.344_1.25 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.234_1_2.813_0.125 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.65_1_3_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.099_1_2.063_1.375 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.047_2.813_0.125 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.93_1_3_0 
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Figure 5.3.B - MC positions 0_1_22_23, root is 0 

 

Table 5.3.B - MC positions 0_1_22_23, root is 0 

  Intel Best Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.625_4_0.5_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.371_2.25_1.625_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.438_1.5_1.344_1.656 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.328_1.438_1.813_0.625 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.723_1.031_4.156_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.111_1_2.188_1.438 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.088_1_2.344_1.406 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.943_1_4.25_0 
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Figure 5.3.C - MC positions 0_2_21_23, root is 0 

 

Table 5.3.C - MC positions 0_2_21_23, root is 0 

  Intel Best Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.7_7_0_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.375_1.5_2.5_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.447_1.5_1.344_1.844 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.344_1.438_2.25_0.25 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.713_1_4.25_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.11_1_2_3 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.075_1_2.719_0.781 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.939_1_3.875_0 
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Figure 5.3.D - MC positions 0_2_21_23, root is 2 

 

Table 5.3.D - MC positions 0_2_21_23, root is 2 

  Intel Best Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.7_7_0_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.369_1.438_2.5_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.359_1_2.625_0.813 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.675_1_3.5_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.095_1_2_1.5 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.078_1_2.906_0.656 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.935_1_3.5_0 
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Figure 5.3.E - MC positions 0_5_18_23, root is 0 

 

Table 5.3.E - MC positions 0_5_18_23, root is 0 

  Intel Best with 4 MC Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.7_7_0_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.41_2.188_2.125_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.438_1.5_1.344_1.656 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.375_1.5_2_0.5 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.7_1_4_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.11_1_2_3 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.075_1_2.5_1 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.94_1_4_0 
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Figure 5.3.F - MC positions 0_6_12_18, root is 0 

 

Table 5.3.F - MC positions 0_6_12_18, root is 0 

  Intel Best with 4 MC Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.625_4_0.5_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.346_1.375_2.313_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.417_1.5_1.344_1.25 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.234_1_2.438_0.5 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.663_1_3.25_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.104_1_2.063_1.875 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.048_1_2.219_0.75 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.933_1_3.25_0 
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Figure 5.3.G - MC positions 1_2_3_4, root is 1 

 

Table 5.3.G - MC positions 1_2_3_4, root is 1 

  Intel Best with 4 MC Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.625_4_0.5_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.346_1.375_2.313_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.380_1.5_1.344_0.5 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.234_1.313_2.031_0.281 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.669_1_3.375_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.093_1_2_1.25 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.048_1_2.422_0.547 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.935_1_3.5_0 
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Figure 5.3.H - MC positions 1_2_3_4, root is 2 

 

Table 5.3.H - MC positions 1_2_3_4, root is 2 

  Intel Best with 4 MC Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.625_4_0.5_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.299_1.75_1.375_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.367_1.5_1.344_0.25 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.148_1.5_1.344_0.25 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.638_1_2.75_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.097_1_2.094_0.844 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.036_1_2.406_0.313 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.928_1_2.75_0 
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Figure 5.3.I - MC positions 2_3_20_21, root is 2 

 

Table 5.3.I - MC positions 2_3_20_21, root is 2 

  Intel Best with 4 MC Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.625_4_0.5_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.368_2.188_1.656_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.392_1.5_1.344_0.75 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.25_1_2.547_0.453 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.65_1_3_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.103_1_2_2.25 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.048_1_2.656_0.313 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.93_1_3_0 
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Figure 5.3.J - MC positions 6_11_12_17, root is 6 

 

Table 5.3.J - MC positions 6_11_12_17, root is 6 

  Intel Best with 4 MC Current 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.625_4_0.5_0 0.625_4_0.5_0 
0.1_0.9 0.375_1.5_2.5_0 0.316_1.5_1.844_0 0.371_2.25_1.625_0 
0.5_0.1 1.388_1.5_1.344_0.656 1.388_1.5_1.344_0.656 1.459_1.5_1.344_2.094 
0.5_0.5 1.25_1.5_1.406_0.594 1.188_1.5_1.5_0.25 1.273_1.5_1.516_0.578 
0.5_0.9 0.694_1_3.875_0 0.638_1_2.75_0 0.7_1_4_0 
0.9_0.1 1.095_1_2_1.5 1.093_1_2_1.25 1.095_1_2_1.5 
0.9_0.5 1.072_1_2.813_0.625 1.038_1_2.5_0.25 1.072_1_2.75_0.688 
0.9_0.9 0.939_1_3.875_0 0.928_1_2.75_0 0.94_1_4_0 

One can see that like in the previous chapters most of the processing nodes are not used. 
Like there this is caused by the small tree depth. For certain algorithm setups (eps and zeta 
values) the majority of the configuration results are better than the Intel configuration. But 
with the exception of one configuration all defined solutions are worse than the original Intel 
SCC configuration for at least one tested eps and zeta combination. 

The mentioned exception is displayed in figure 5.3.G. All memory controller nodes are 
centered in the first row. With this configuration, the model outperforms the Intel model in 
8 out of 9 algorithm setups. There is also an interesting effect visible. If the root co-task 
position is changed by one tile (see next figure 5.3.H), the results become even better. In 4 
cases they are even better than the annealing results (which is caused by the fact that the 
algorithm is searching for good solutions randomly and therefore not all local minimums can 
be found). The only drawback is that for eps=0.9 and zeta=0.1 the result is not as good as the 
Intel one. But the combined result summarizing the two possible root co-task locations is the 
overall winner. The configuration where all memory controllers are centered in the first row 
of the cluster is under all tested circumstances better than or at least equal to the Intel SCC. 

Of course, for more tree levels (and other algorithms) the optimal memory controller 
placement can and will look pretty much different. 
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5.4. Mirrored configuration  

The previous investigations of chapter 5 have one major issue. The configurations tested 
resulted in clusters that are not fully used and therefore the outcome is at least 
questionable. The poor distribution of tasks is because the minimum load of all nodes is 
defined by the root task load which is 1. As for each level of the merge sort tree the load is 1, 
the overall load is the number of levels of the tree (k) that needs to be mapped to the nodes. 
Assuming equally distributed tasks (so the load per node is pretty much equal, see also 
chapter 3) the ideal load per node is 1 as the minimum load is defined by the root node. So 
for a total load of k to be mapped to nodes, the ideal number of nodes is k, too. So by setting 
the value k to the number of nodes, the distribution problem could be solved. But as more 
tree levels lead to even more tasks (2^(k) - 1) and more tasks to more inequalities, such a 
change is practically impossible as more inequalities lead to a very high calculation time per 
configuration. If each calculation takes hours, an annealing run can take days and possibly 
requires too much memory. This is unacceptable. 

In order to cope with that the same approach as reported in chapter 3.2 of dividing the 
model into logical units and mirror them to get the final results is used here. This means to 
divide the big global merge sort tree into sub trees. So by concentrating on a smaller part of 
the cluster the same k value leads to a much better utilization. 

A side effect of this principle is that it leads to a full optimization because of two reasons. 
First there are only a few locations left where the memory controllers can be placed at. 
Adding some constraints like "only on edges" and "no duplicates" even more reduces this 
little number. Secondly, each of those configuration options is faster calculated because 
fewer inequalities (compared to a full cluster) are taken into consideration and so the Gurobi 
solver can very likely fully solve each model in an acceptable time. 

Before starting to cut the cluster into various parts and optimizing them, it makes sense to 
filter the different possible divisions in order to get fewer results to investigate. If one 
defines the full usage of all nodes as filter criteria, a lot of the possibilities can be skipped 
because if too many nodes are within a sub cluster, then the k value becomes too high and 
therefore the calculation time is not acceptable any more. 

This single filter criterion is sufficient as only one division remains! It is to cut the cluster into 
4 quadrants: each part has 2 rows and 3 columns - like in the paper [3]. This makes up 6 
nodes or tiles per cluster. In order to see the influence of k, the optimization runs are done 
with the following values of k: 5, 6 and 7. 

The memory controller count of the Intel SCC per sub cluster is one. So for the optimization, 
the same value is tested. But in order to see the impact of more memory controllers, 2 and 3 
memory controllers are investigated as well. 

The following table summarizes the results for k set to 5. It is to be read as like as in chapter 
5.2. 
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Table 5.4.A - Results for runs with k set to 5 

  Intel Best 2 MC 3 MC 

0.1_0.1 0.5_5_0_0 0.5_5_0_0 0.5_5_0_0 0.5_5_0_0 
0.1_0.5 0.5_5_0_0 0.5_5_0_0 0.5_5_0_0 0.5_5_0_0 
0.1_0.9 0.38_2_2_0 0.38_2_2_0 0.305_1.25_2_0 0.276_1.75_1.125_0 
0.5_0.1 1.375_1.5_1.25_1.25 1.375_1.25_1.5_1.5 1.331_1_1.75_0.875 1.313_1_1.75_0.5 
0.5_0.5 1.344_1.688_1.438_0.563 1.344_1.188_2.188_0.813 1.125_1.25_2_0 

1.125_1.25_1.625_375 
1.063_1_1.875_0.375 
1.063_1_1.75_0.5 
1.063_1.25_1.625_0.125 

0.5_0.9 1.069_1.688_1.688_0.313 1.069_1.188_2.188_0.813 0.65_1_3_0 0.619_1_2.375_0 
0.9_0.1 1.075_1_1.75_1.75 1.075_1_1.75_1.75 1.066_1_1.75_0.875 1.063_1_1.75_0.5 
0.9_0.5 1.075_1_1.75_1.75 1.075_1_2_1.5 1.031_1_1.75_0.875 1.013_1_1.75_0.5 

1.013_1_1.875_0.375 
0.9_0.9 1.02_1_3_1 1.015_1_2.5_1 0.93_1_3_0 0.924_1_2.375_0 

The table contains for some setups more than one value. This is because different 
configurations are found that have the same subject but differing sub cost. The following 
things can be seen: 

 Load balancing 
o For the runs with high communication cost share the load is totally 

unbalanced for all configurations. All tasks are mapped to a single node. The 
only exception are the runs with a dominating memory controller distance 
share (zeta=0.9). But even there the tasks are not equally spread over all 
nodes. 

o The runs with an equal cost share between communication and computation 
costs show in many cases with 2 and 3 memory controllers that the maximum 
computational load per node is 1. This does not mean that the tasks are 
equally distributed as the total load for k=5 is smaller than the number of 
nodes. But as it cannot get better, this pretty good. 

o For the run with a dominating computation cost share the load is balanced 
perfectly for all configurations if one considers the little k value. 

o The entries marked green are the runs where the maximum computational 
load per node is 1. 

 Improvements for the best configuration with 1 MC 
o For k=5 the improvement is mostly related to a better load balancing (less 

maximum computation costs). This is of course traded against higher costs for 
communication. 

o In all but one case the overall costs are equal to the Intel SCC result. Only in 
one case the result can be improved. 

 Improvements for the best configuration with 2 MC 
o The memory controller distance costs can be decreased. Sometimes this cost 

part becomes 0. 
o The load balancing tends to get better. Only one exception can be found. 
o The communication costs are increased in many cases. 
o In general: In 7 out of 9 runs the overall costs are better and sometimes 

dramatically better than the best configuration with 1 memory controller. 

 Improvements for the best configuration with 3 MC 
o In contrast to the runs with 2 MC here is one more case leading to a worse 

load balancing. But as before, the higher MC count tends to improve the 
balancing. 

o The same observations as like as for the runs with 2 MC applies here. But the 
overall costs are even better in those 7 runs. 
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Table 5.4.B - Results for runs with k set to 6 

 Intel Best 2 MC 3 MC 

0.1_0.1 0.6_6_0_0 0.6_6_0_0 0.6_6_0_0 0.6_6_0_0 
0.1_0.5 0.6_6_0_0 0.6_6_0_0 0.575_3.5_0.5_0 0.575_3.5_0.5_0 
0.1_0.9 0.38_2_2_0 0.38_2_2_0 0.33_1.5_2_0 0.29_2_1_0 
0.5_0.1 1.425_1.5_1.25_2.25 1.375_1.5_1.25_1.25 1.35_1.5_1.25_0.75 1.338_1.5_1.25_0.5 
0.5_0.5 1.422_1.344_1.688_1.313 1.375_1.5_1.25_1.25 1.219_1_2.25_0.625 1.125_1_2.25_0.25 

1.125_1_2.188_0.313 
0.5_0.9 1.1_1.5_2.5_0.5 1.084_1.344_2.344_0.656 0.65_1_3_0 0.631_1_2.625_0 
0.9_0.1 1.113_1_2.125_2.125 1.108_1_2.125_1.625 1.099_1_2.125_0.75 1.095_1_2.125_0.375 
0.9_0.5 1.113_1_2.125_2.125 1.088_1_2.125_1.625 1.044_1_2.438_0.438 1.025_1_2.125_0.375 

1.025_1_2.188_0.313 
0.9_0.9 1.026_1_3.625_1 1.018_1_2.75_1 0.93_1_3_0 0.926_1_2.625_0 

In contrast to the runs with k=5 before, the maximum load value of 1 here really refers to an 
equal load distribution over the nodes. The following figure shall prove that. 

 

Figure 5.4.A - Equal task distribution  

The observations for k=5 are applicable here as well with some little exceptions. One of 
those minor differences is related to the load balancing for eps=0.5 with 2 and 3 memory 
controllers. 

Table 5.4.C - Results for runs with k set to 7   

  Intel Best 2 MC 3 MC 

0.1_0.1 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 0.7_7_0_0 
0.1_0.5 0.7_7_0_0 0.7_7_0_0 0.625_4_0.5_0 0.625_4_0.5_0 
0.1_0.9 0.414_2.344_2_0 0.414_2.344_2_0 0.355_1.75_2_0 0.316_1.5_1.844_0 
0.5_0.1 1.463_1.5_1.344_2.156 1.422_1.5_1.344_1.344 1.388_1.5_1.344_0.656 1.375_1.5_1.344_0.406 
0.5_0.5 1.5_1.438_1.781_1.344 1.422_1.5_1.469_1.219 1.25_1.5_1.5_0.5 1.188_1.5_1.406_0.344 
0.5_0.9 1.117_1.547_2.797_0.453 1.092_1.172_2.672_0.828 0.734_1.188_2.813_0 0.720_1.188_2.531_0 
0.9_0.1 1.272_1.172_2.188_2 1.265_1.172_2.188_1.313 1.257_1.172_2.188_0.563 1.255_1.172_2.188_0.359 
0.9_0.5 1.258_1.172_2.25_1.813 1.230_1.172_2.391_1.109 1.192_1.172_2.375_0.375 *1.181_1.172_2.300_0.234 
0.9_0.9 1.167_1.172_3.594_0.844 1.160_1.172_2.672_0.828 *1.086_1.172_2.844_0.031 *1.082_1.172_2.563_0.016 

As before, the observations compared to k=5 are comparable. But there is one special 
exception. Due to k=7 the theoretical perfect load per node of 1.167 (7/6) is higher. But in 
contrast to the observations of the previous runs the perfect load cannot be achieved here. 
Instead, the load balancing is "close to perfect" for the best results. There the maximum 
computational load is 1.172. The following picture is a sample for the last best run with 3 
MC. Here we can see that the load per node is in four cases 1.172 and for the others 1.156. 
In another not shown result (eps=0.9, zeta=0.5, k=7) five nodes have a load value of 1.172 
each and only a single node has a load of 1.141. A better grouping seems not to be possible 
for k=7. 
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Figure 5.4.B - Close to equal task distribution. 

If one now tries to find the best configuration grouped by memory controller count of all 
runs, the results needs to be reviewed. The outcome is summarized with the following 
pictures displaying the best found sub cluster. In order to get the final cluster configuration 
the found sub cluster configuration needs to be mirrored vertically to get a 4 rows and 3 
columns sub cluster and then mirrored horizontally to get the final cluster configuration with 
4 rows and 6 columns. 
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Best configuration for 1 MC 

The Intel SCC sub cluster configuration is displayed first with the following graphic. 

 

Figure 5.4.Intel - The Intel SCC configuration 

This is effectively the same configuration as the one of the full Intel SCC if just a quarter is 
taken into consideration. This special sub cluster can be found in the lower left quarter of 
the real Intel SCC. 

Actually, for 1 MC there are only two possible configurations for a 2x3 sub cluster. The Intel 
SCC one and the best one found. This is because the other 4 are just duplicates of those two. 

The next figure demonstrates the best configuration found for 1 MC. Its detailed result can 
be seen in the previous tables 5.4.A to 5.4.C. 

 

Figure 5.4.MC1win - The best configuration for one memory controller. 
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Figure 5.4.MC1winScaled - The up scaled version of the best configuration 
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Best configuration for 2 MC 

For two memory controllers, the following table summarizes the wins of all runs for the 3 
best configurations. "Win" means that the subject for the corresponding MC configuration 
and algorithm setup is the best. The table ignores the root co-task mapping which reduces 
the possible configurations down to 5. 

Table 5.4.MC2win - Winning configurations for 2 MC 

  Config 1 Config 2 Config 3 

0.1_0.1 3 3 3 
0.1_0.5 1 1 3 
0.1_0.9 3 0 0 
0.5_0.1 2 0 2 
0.5_0.5 2 1 0 
0.5_0.9 1 3 0 
0.9_0.1 0 2 1 
0.9_0.5 0 2 1 
0.9_0.9 1 3 0 
Sum 13 15 10 

The next figures present the 3 configurations and after that the picture with the best one 
scaled up to 4 rows and 6 columns is shown. 

 

Figure 5.4.MC2win1 - Configuration 1 

 

Figure 5.4.MC2win2 - Configuration 2 
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Figure 5.4.MC2win3 - Configuration 3 

 

Figure 5.4.MC2win - The overall winning configuration 2 is up scaled, MC nodes are marked red. 
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Best configuration for 3 MC 

For three memory controllers, the following table summarizes the wins of all runs for all the 
4 possible configurations. The root co-task mapping is ignored here, too. 

Table 5.4.MC2win - Winning configurations for 2 MC 

  Config 1 Config 2 Config 3 Config 4 

0.1_0.1 3 3 3 3 
0.1_0.5 3 3 3 3 
0.1_0.9 0 2 1 2 
0.5_0.1 1 2 3 2 
0.5_0.5 1 2 3 1 
0.5_0.9 1 0 3 0 
0.9_0.1 2 0 3 1 
0.9_0.5 1 0 3 1 
0.9_0.9 0 0 3 0 
Sum 12 12 25 13 

The following pictures demonstrate the layout of each sub cluster. The last one finally scales 
the best solution found up to the real cluster size. 

 

Figure 5.4.MC3win1 - Configuration 1 

 

Figure 5.4.MC3win2 - Configuration 2 
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Figure 5.4.MC3win3 - Configuration 3 

 

Figure 5.4.MC3win4 - Configuration 4 

 

Figure 5.4.MC3win - The overall winning configuration 3 is up scaled, MC nodes are marked red. 

One can see that the best solution found for 3 memory controllers is the same as for 2 
memory controllers per sub cluster plus the addition of the extra MC node in the middle of 
the outer row. 
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Summary 

The results found for the mirrored configuration runs are much more useful than the ones 
retrieved using the full model optimization. Even though they require a special adaptation of 
the merge sort algorithm (a separate merge step must be added), the results can be found 
much faster, are complete and lead for the most interesting runs where the computational 
cost share is higher than the communication one to a better and especially even load 
distribution. 
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5.5. Lookout into further optimizations 

What is not done within this thesis is the placement of the memory controller nodes inside 
the cluster. This has been skipped for two reasons. First, this idea seems to be at least 
questionable if one wants to realize it with real hardware means. Secondly, it takes too 
much time as it makes only sense to optimize this for the full cluster version (4 rows, 6 
columns) which requires higher k values to better reflect the reality. 

Another way one could go is to change the overall structure of the cluster. One could define 
a single large row comparable to a BUS system, a ring of nodes, a square and so on. Also 
separate clusters being connected are imaginable. But as this requires too much time, it 
could not be realized here. 

 

5.6. Critical view into annealing 

To use annealing here was an initial idea and has not been challenged even though the 
execution of some runs reveal some deficits. As the neighborhood of a configuration is huge, 
especially with more memory controllers, it looks like the algorithm only covers a little and 
bounded "area" of it. This impression can be emphasized when taking a look at the spread of 
the results. Using a genetic approach instead or at least extending the annealing 
implementation by doing a far jump under certain circumstances, the area covered could be 
widened. 

Aborting Gurobi after a given time is always risky with respect to defining the result as 
"best". Of course, it is not always the best. But as the results found shall just be "better" and 
because experiments with 4 MC and eps=0.5 and zeta=0.5 showed that after 700 seconds for 
most configurations the final result is given and after about 100 seconds the result is very 
close to it, this problem is ignorable. Chapter 6.2 introduces a different way to optimize the 
optimization result. 
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6. Investigation of further algorithms 

In chapter 4 and 5 the pipelined merge sort algorithm has been used to investigate better 
memory controller positions. But there are a number of further communication graphs that 
can be mapped onto the Intel SCC that might have totally different requirements leading to 
completely different optimal memory controller configurations. 

The following chapters take two further examples of the huge variety of parallel algorithms 
and investigate their perfect mapping. This is then compared against the one found for the 
pipelined merge sort. 

6.1. Tiled-MapReduce 

The Tiled-MapReduce algorithm is an extension developed by researchers of the Fudan 
University (China) that aims on improving the MapReduce implementation of Phoenix. 
Phoenix is a programming interface offering developers a framework for MapReduce 
applications on single hosts. The more cores the host has, the higher the performance can 
become. But there are limitations with respect to the scaling with higher core counts as then 
the memory accesses take over a high share of the processing time. To further increase the 
performance for such hardware, the implementation is required to be changed.  

Roughly speaking the idea of the Chinese team is to minimize the data a core has to work on. 
This leads to better data locality and therefore more cache accesses and less external 
memory accesses. In details this means to subdivide the input into smaller chunks called tiles 
(not to mistake with the Intel SCC tiles). If one executes the process with a clever chosen tile 
size, the cache of the CPU is perfectly used and the speedup becomes close to optimal. The 
project name for a prototype implementation is Ostrich. There are more optimizations 
applied in Ostrich, the interested reader can find them in [6]. This is comparable to the 
pipelining approach where one tries to reduce the number of memory accesses to a 
minimum and replace them by faster means like the SCC on-chip network and the local 
caches. 

The next figure shall summarize the high level design of the algorithm. 
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Figure 6.1 - Tiled map reduce overview - based on [6] 

The mappers are processing a chunk of data (iteration window in the figure) split by a hash 
function in parallel. The output is placed in the intermediate buffer which is separated 
horizontally by the Reducer partitions and vertically by the Mapper index. Once they're done 
with the current iteration window, they switch their role and become Combiners. The 
Combiners job is it to apply the reduce function on an intermediate result partition and put 
the result in the iteration buffer. Having finished, the Combiners mutate back and become 
again mappers. Working on the same buffer with much less data decreases the likelihood of 
accesses to the external memory drastically. While the Map and Reduce phases are running, 
there are compress jobs waiting for a full iteration buffer (all slots for each horizontal 
partition are used up). If it is full, some threads become Compressors and compress the 
iteration buffer to not let the working set become too big. When the whole file has been 
processed successfully, the Reducers and Mergers start working and finish the MapReduce 
job. 
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6.1.1. The ILP model 

The approach of avoiding the memory access as good as possible is the crucial point when 
trying to map an algorithm to the memory bounded Intel SCC. Like the merge sort algorithm 
the Tiled-MapReduce algorithm can be transformed into an ILP model describing a good 
mapping onto the Intel SCC. The different workers are mapped onto a core or tile of the 
cluster. The data is transferred by sending it over the mesh on-chip network and caching it in 
the local core caches instead of using a buffer in the shared main memory. This results in a 
communication graph. The following picture demonstrates that from a high level point of 
view. 

 

Figure 6.1.1.a - Overview of Intel SCC mapping model 

The mappers are reading their data from the RAM chunk-wise. They apply a map function 
and send the generated data block to the next node in the graph, the combiner. The 
combiner stores as much data as possible locally in its caches and buffers and applies the 
combine method on them. Once the local buffer of the node is full, the combined data is 
send to the Reducer nodes partition-wise. The total data load coming into the Combiners is 
higher than the load send to the Reducers because the combine function has already been 
applied when arriving at the Reducers. The Reducer is running the reduce function again. 
Once the cache of the Reducer is full, it transfers the data into the RAM. When finished it 
pulls all data back from the external memory and forwards it to the Merger that copies the 
results of all Reducers together into one big data block. Of course, this requires a final 
reduction phase before the Merger starts working as the Reducers have processed their data 
block-wise. But this shall not be part of the model to keep it as simple as possible. More than 
that can the Merger node be skipped, too, as this node needs to wait for all data until it 
starts. There is no need to model this in an AMPL model. All the other nodes and their 
communication paths are transformable into inequalities. 

The model is based on the pipelining merge sort model of the previous chapters. E.g. it uses 
the artifice of co-tasks for the memory controller distance calculation. Before going too 
much into the details of the new AMPL model, some new parameters introduced for this 
model shall be mentioned first: 

 The Mapper produces an output data load that is higher than its incoming data load 
as additional information is added to each data set. This can be configured with the 
parameter "mapperOverhead". 
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 The Combiner produces less output data than it consumes because it reduces it. This 
is expressed with the parameter "combinerEfficiencyFactor". 

 The Combiner sends an equal share (assumption) of its outgoing data to all Reducers 
due to a hash-based partitioning. 

 The Reducers behave like the Combiner with respect to the data transformation. The 
factor describing the data load reduction is configured with the parameter 
"reducerEfficiencyFactor". 

The following figures present the AMPL model which is used for the Tiled-MapReduce graph 
mapping onto the on-chip cluster. 

#include "map-reduce.define" 

 

option show_stats 1; 

option omit_zero_rows 0; 

option omit_zero_cols 0; 

option eexit 1; // bail out on exit 

option solver gurobi_ampl; 

option gurobi_options GUROBI_OPTIONS; 

 

param eps in [0, 1.0]; 

param zeta in [0, 1.0]; 

 

param NRows integer; 

set Rows = 1..NRows; 

 

param NCols integer; 

set Cols = 1..NCols; 

 

param memoryControllerCount integer >= 1; 

set memoryControllers = 1..memoryControllerCount; 

param memoryControllerMapping {group in memoryControllers, r in Rows, c in Cols}; 

Figure 6.1.1.b.1 - The AMPL Tiled-MapReduce model - part 1 

The first figure is equal to the initialization steps of the chapters before and requires no 
further explanations. 

param mapperCount integer; 

set Mappers = 1..mapperCount; 

var mapperMapping{mapper in Mappers, row in Rows, col in Cols} binary; 

var mapperCoTaskMapping{mapper in Mappers, row in Rows, col in Cols} binary; 

     

var combinerMapping{combiner in Mappers, row in Rows, col in Cols} binary; 

Figure 6.1.1.b.2 - The AMPL Tiled-MapReduce model - part 2 

As in chapter 3 and 4, the tasks must be modeled and each task must be mapped onto a tile. 
This is prepared here for the Mapper, its co-tasks and the Combiner tasks by defining the 
mapping variable sets. Like before, the tasks are numbered from 1 to n. For the Mapper 
tasks, n is the "mapperCount" parameter. The Mapper tasks are stored in the variable set 
"mapperMapping". The co-tasks are maintained here in a separate variable set called 
"mapperCoTaskMapping". 

There are as many Combiner tasks as Mapper tasks. There is a 1 to 1 relation between those. 
But as the mapping is different, another variable set has been introduced to store the 
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Combiner mapping: "combinerMapping". As the Combiners are sending their data via the 
on-chip mesh network to the Reducers, there is no need for a Combiner co-task data 
structure. 

param reducerCount integer; 

set Reducers = 1..reducerCount; 

var reducerMapping{reducer in Reducers, row in Rows, col in Cols} binary; 

var reducerCoTaskMapping{reducer in Reducers, row in Rows, col in Cols} binary; 

Figure 6.1.1.b.3 - The AMPL Tiled-MapReduce model - part 3 

The Reducer tasks and their mapping is modeled here. This is as like as for the Mappers 
before. Like there, each Reducer has a co-task attached that models the sending of data to 
the external memory. 

var mapperToCombinerCommunicationV{mapper in Mappers, r1 in Rows, r2 in Rows} 

binary; 

var mapperToCombinerCommunicationH{mapper in Mappers, c1 in Cols, c2 in Cols} 

binary; 

 

var combinerToReducerCommunicationV{combiner in Mappers, reducer in Reducers, r1 in 

Rows, r2 in Rows} binary; 

var combinerToReducerCommunicationH{combiner in Mappers, reducer in Reducers, c1 in 

Cols, c2 in Cols} binary; 

 

var memoryToMapperCommunicationV{mapper in Mappers, r1 in Rows, r2 in Rows} binary; 

var memoryToMapperCommunicationH{mapper in Mappers, c1 in Cols, c2 in Cols} binary; 

 

var reducerToMemoryCommunicationV{reducer in Reducers, r1 in Rows, r2 in Rows} 

binary; 

var reducerToMemoryCommunicationH{reducer in Reducers, c1 in Cols, c2 in Cols} 

binary;  

Figure 6.1.1.b.4 - The AMPL Tiled-MapReduce model - part 4 

What was "yh" and "yv" before in chapter 3 and 4 becomes now 
"mapperToCombinerCommunicationV" and "mapperToCombinerCommunicationH" and so 
on. To easily map the data communication via the on-chip network and to and from the 
memory controllers, in total 8 variable sets have been defined that store for each sender the 
row and column data. The different types of senders and receivers are included in the name 
of those sets to make the code more readable. "V" stands as before for vertical and "H" for 
horizontal mesh communication. 
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param mapperLoadPerSet integer; 

param combinerLoadPerSet integer; 

param reducerLoadPerSet integer; 

 

param mapperOverhead in [1, 99.0]; 

param combinerEfficiencyFactor in [1, 99.0];  

param reducerEfficiencyFactor in [1, 99.0];  

param mapperIncomingDataSize in [1, 99.0]; 

param combinerIncomingDataSize = mapperIncomingDataSize * mapperOverhead; 

param reducerIncomingDataSize = combinerIncomingDataSize / combinerEfficiencyFactor 

* mapperCount / reducerCount; 

param reducerOutgoingDataSize = reducerIncomingDataSize / reducerEfficiencyFactor; 

Figure 6.1.1.b.5 - The AMPL Tiled-MapReduce model - part 5 

The already explained parameters "mapperOverhead", "combinerEfficiencyFactor" and 
"reducerEfficiencyFactor" are defined here. What has not been introduced yet are the 
following parameters: 

 "mapperLoadPerSet": This defines the load per data set of the Mapper. This is used 
for the computational load calculations. 

 "combinerLoadPerSet": This defines the load per data set of the Combiner. Same 
usage. 

 "reducerLoadPerSet": This defines the load per data set of the Reducer. Same usage. 

 "mapperIncomingDataSize": This is the relative data size the Mapper has to process. 
This is set to 1. 

Derived from those parameters are the parameters: 

 "combinerIncomingDataSize": Like the parameter "mapperIncomingDataSize" for the 
Mapper this describes the incoming relative data load for the Combiner. It is 
multiplied with "mapperOverhead" factor which expresses to what extend the data 
sent from the Mapper to the Combiner is enriched. 

 "reducerIncomingDataSize": This parameter defines how much data is sent to each 
Reducer instance. The efficiency factor of the "Reducer" is taken into account. This is 
then multiplied by the relative share of the Mapper count (=Combiner count) to 
Reducer count. If there are 2 times more Reducers than Combiners, then the load 
sent to each Reducer from the Combiners is only half of the outgoing load of each 
Combiner. 

 "reducerOutgoingDataSize": This expresses the outgoing relative data amount which 
is sent to the memory. It is based on the incoming load and divided by the Reducers 
efficiency. 

var sumDistComm in interval[0.0,100000.0]; 

var sumDistMem  in interval[0.0,100000.0]; 

var maxCompLoad in interval[0.0,100000.0]; 

 

minimize obj: 

    eps*maxCompLoad 

    + (1-eps)*(1-zeta)*sumDistComm 

    + (1-eps)*(zeta)*sumDistMem; 

Figure 6.1.1.b.6 - The AMPL Tiled-MapReduce model - part 6 

The objective function and its cost variables are the same as in the previous models. 
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subject to MapperMappingOnce {mapper in Mappers}: 

    sum {row in Rows, col in Cols} mapperMapping[mapper, row, col] = 1; 

 

subject to CombinerMappingOnce {combiner in Mappers}: 

    sum {row in Rows, col in Cols} combinerMapping[combiner, row, col] = 1; 

 

subject to ReducerMappingOnce {reducer in Reducers}: 

    sum {row in Rows, col in Cols} reducerMapping[reducer, row, col] = 1; 

Figure 6.1.1.b.7 - The AMPL Tiled-MapReduce model - part 7 

The mapping of the Mapper, Combiner and Reducer tasks is also restricted. Each task must 
be mapped to exactly one tile. 

subject to DefineMaxCompLoad { row in Rows, col in Cols }: 

    maxCompLoad >= sum{mapper in Mappers} 

                    mapperLoadPerSet    * mapperIncomingDataSize 

                    * mapperMapping[mapper, row, col] 

                 + sum{combiner in Mappers} 

                    combinerLoadPerSet  * combinerIncomingDataSize 

                    * combinerMapping[combiner, row, col] 

                 + sum{reducer in Reducers} 

                    reducerLoadPerSet   * reducerIncomingDataSize 

                    * reducerMapping[reducer, row, col]; 

Figure 6.1.1.b.8 - The AMPL Tiled-MapReduce model - part 8 

The computational load is calculated by this subject. By scaling the incoming data size of 
each task type with its load factor and summing this up for all task types mapped to a certain 
tile, the load per tile can be computed easily. 

subject to MapperCoTaskMappingOnce {mapper in Mappers}: 

    sum {row in Rows, col in Cols} mapperCoTaskMapping[mapper, row, col] = 1; 

subject to ReducerCoTaskMappingOnce {reducer in Reducers}: 

    sum {row in Rows, col in Cols} reducerCoTaskMapping[reducer, row, col] = 1; 

 

subject to MapperCoTasksAreMappedToMemoryControllerNode {mapper in Mappers, row in 

Rows, col in Cols}: 

    mapperCoTaskMapping[mapper, row, col] <= 

        sum {memGroup in memoryControllers} memoryControllerMapping[memGroup, row, 

col]; 

subject to ReducerCoTasksAreMappedToMemoryControllerNode {reducer in Reducers, row 

in Rows, col in Cols}: 

    reducerCoTaskMapping[reducer, row, col] <= 

        sum {memGroup in memoryControllers} memoryControllerMapping[memGroup, row, 

col];  

Figure 6.1.1.b.9 - The AMPL Tiled-MapReduce model - part 9 

The co-tasks must be mapped exactly once, too. Also, a co-task is not allowed to be placed 
freely on the cluster. It can only be mapped to the memory controller tiles. 
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subject to VerticalCommunicationForMapperToCombiner {mapper in Mappers, r1 in Rows, 

r2 in Rows}: 

mapperToCombinerCommunicationV[mapper, r1, r2] >= 

      sum{c1 in Cols} mapperMapping[mapper, r1, c1] 

    + sum{c2 in Cols} combinerMapping[mapper, r2, c2] 

    - 1; 

subject to HorizontalCommunicationForMapperToCombiner {mapper in Mappers, c1 in 

Cols, c2 in Cols}: 

    mapperToCombinerCommunicationH[mapper, c1, c2] >= 

          sum{r1 in Rows} mapperMapping[mapper, r1, c1] 

        + sum{r2 in Rows} combinerMapping[mapper, r2, c2] 

        - 1; 

 

subject to VerticalCommunicationForCombinerToReducer {combiner in Mappers, reducer 

in Reducers, r1 in Rows, r2 in Rows}: 

    combinerToReducerCommunicationV[combiner, reducer, r1, r2] >= 

        + sum{c1 in Cols} combinerMapping[combiner, r1, c1] 

        + sum{c2 in Cols} reducerMapping[reducer, r2, c2] 

        - 1; 

subject to HorizontalCommunicationForCombinerToReducer {combiner in Mappers, 

reducer in Reducers, c1 in Cols, c2 in Cols}: 

    combinerToReducerCommunicationH[combiner, reducer, c1, c2] >= 

        + sum{r1 in Rows} combinerMapping[combiner, r1, c1] 

        + sum{r2 in Rows} reducerMapping[reducer, r2, c2] 

        - 1; 

Figure 6.1.1.b.10 - The AMPL Tiled-MapReduce model - part 10 

The communication calculations are as before separated into two parts. Storing the task 
path data (row or column indexes) for each task as first part is done here. This is similar to 
the way it has been done in the chapters 3 and 4. Above one can see the node to node 
communication path calculations (Mapper to Combiner and Combiner to Reducer) and 
below one can see the same for the memory path calculations (memory to Mapper and 
Reducer to memory). For the latter ones it needs to be remarked that the backward 
direction for the memory to the Reducer node (at the end of processing all data is read and 
send to the Merger) has been taken into account at the end of the model. 

Apart from what has already been said, another point is interesting here. For the 
communication between Combiner and Reducer, the communication variable set is 4 
dimensional. The last 2 dimensions are as usual (contain source and destination 
row/column). But the first dimension is extended by the Receiver index as here we have 1 to 
n communication path. Each Combiner sends the data of partition A to Receiver 1, partition 
B to the second Receiver and so on. 
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subject to VerticalCommunicationForMemoryToMapper {mapper in Mappers, r1 in Rows, 

r2 in Rows}: 

    memoryToMapperCommunicationV[mapper, r1, r2] >= 

          sum{c1 in Cols} mapperCoTaskMapping[mapper, r1, c1] 

        + sum{c2 in Cols} mapperMapping[mapper, r2, c2] 

        - 1; 

subject to HorizontalCommunicationForMemoryToMapper {mapper in Mappers, c1 in Cols, 

c2 in Cols}: 

    memoryToMapperCommunicationH[mapper, c1, c2] >= 

          sum{r1 in Rows} mapperCoTaskMapping[mapper, r1, c1] 

        + sum{r2 in Rows} mapperMapping[mapper, r2, c2] 

        - 1; 

 

subject to VerticalCommunicationForReducerToMemory {reducer in Reducers, r1 in 

Rows, r2 in Rows}: 

    reducerToMemoryCommunicationV[reducer, r1, r2] >= 

          sum{c1 in Cols} reducerCoTaskMapping[reducer, r1, c1] 

        + sum{c2 in Cols} reducerMapping[reducer, r2, c2] 

        - 1; 

subject to HorizontalCommunicationForReducerToMemory {reducer in Reducers, c1 in 

Cols, c2 in Cols}: 

    reducerToMemoryCommunicationH[reducer, c1, c2] >= 

          sum{r1 in Rows} reducerCoTaskMapping[reducer, r1, c1] 

        + sum{r2 in Rows} reducerMapping[reducer, r2, c2] 

        - 1;  

Figure 6.1.1.b.11 - The AMPL Tiled-MapReduce model - part 11 

subject to DefineSumDistComm: 

    sumDistComm = 

        sum {mapper in Mappers, r1 in Rows, r2 in Rows} 

            mapperToCombinerCommunicationV[mapper, r1, r2] * abs(r2 - r1) 

            * combinerIncomingDataSize 

    + 

        sum {mapper in Mappers, c1 in Cols, c2 in Cols} 

            mapperToCombinerCommunicationH[mapper, c1, c2] * abs(c2 - c1) 

            * combinerIncomingDataSize 

    + 

        sum {combiner in Mappers, reducer in Reducers, r1 in Rows, r2 in Rows} 

            combinerToReducerCommunicationV[combiner, reducer, r1, r2] 

            * abs(r2 - r1) * reducerIncomingDataSize / mapperCount 

    + 

        sum {combiner in Mappers, reducer in Reducers, c1 in Cols, c2 in Cols} 

            combinerToReducerCommunicationH[combiner, reducer, c1, c2] 

            * abs(c2 - c1) * reducerIncomingDataSize / mapperCount; 

Figure 6.1.1.b.12 - The AMPL Tiled-MapReduce model - part 12 

And as last part for the node to node distance sum calculation the contents of the 
communication path variable sets are used. For each link, the data size is scaled with the 
relative outgoing data size. This means for the Combiner to Reducer link to use the 
"reducerIncomingDataSize" and divide this by the "mapperCount" to get the single link 
weight (1 to n communication). Then this is summed over all Combiners and Reducers (for 
each link) to get the final weighted distance for the Combiner to Reducer part of the node to 
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node communication. For the Mapper to Combiner data path, the derivation is not that 
complex as there only a simple 1 to 1 communication takes place. 

subject to defineSumDistMem: 

 sumDistMem = 

  sum {mapper in Mappers, r1 in Rows, r2 in Rows} 

   memoryToMapperCommunicationV[mapper, r1, r2] * abs(r2 - r1) * 

mapperIncomingDataSize 

 + 

  sum {mapper in Mappers, c1 in Cols, c2 in Cols} 

   memoryToMapperCommunicationH[mapper, c1, c2] * abs(c2 - c1) * 

mapperIncomingDataSize 

 + 

  2 * ( 

   sum {reducer in Reducers, r1 in Rows, r2 in Rows} 

    reducerToMemoryCommunicationV[reducer, r1, r2] * abs(r2 - r1) * 

reducerOutgoingDataSize 

   + 

   sum {reducer in Reducers, c1 in Cols, c2 in Cols} 

    reducerToMemoryCommunicationH[reducer, c1, c2] * abs(c2 - c1) * 

reducerOutgoingDataSize 

  ); 

Figure 6.1.1.b.13 - The AMPL Tiled-MapReduce model - part 13 

This is also comparable to the chapters 3 and 4. The already stored path configuration for 
each path is evaluated here. For each link, the weight is taken into account 
("mappingIncomingDataSize" and "reducerOutgoingDataSize"). The memory distance for the 
Reducers is doubled as already mentioned to express that at the end the data needs to be 
collected and forwarded to the Merger. 
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6.1.2. Results and analysis 

The following pictures and tables summarize the outcome of the mirrored approach already 
used in the 5th chapter. Like there, one can divide the MapReduce problem into 4 sub 
problems and process afterwards the 4 results into one final result. To be optimized is only 
the sub problem. Also, the tasks of the model are mapped to tiles and not individual cores. 
The reason for this way of solving the optimization problem is the high complexity of a 
model with enough reducers, mappers and combiners to satisfy the whole cluster. This is as 
like as before where the high task number which is required for a sufficient cluster usage 
prevented realistic optimization runs. 

The Tiled-MapReduce optimization runs have been done with the following algorithm setup: 

 6 mappers and combiners 

 12 reducers 

 mapperOverheadFactor 1.5 

 combinerEfficiencyFactor 3 

 reducerEfficiencyFactor 2 

 mapperLoad 1 (per data set) 

 combinerLoad 3 (per data set) 

 reducerLoad 4 (per data set) 

This setup shall represent the fact that the Combiner and Reducer can reduce the load of the 
Mapper. But as reduction requires some logic the load per data set of those nodes is higher. 
For the Reducer it is the highest because of the additional memory operations that are 
required there. The actual load per node type as well as the communication load per link can 
be found in the following graph. 

 

Figure 6.1.2.Task graph - The task graph that is going to be optimally mapped to the cluster 

The arrows represent the data communication path, the label attached to it (or at least to 
one representative) gives the load being sent over that link in the given direction. If the link 
is bidirectional, the load of both directions in sum is given. The number in the center of each 
node is the load per node. How to derive those numbers can be found in the model 
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described earlier. There are in total 24 tasks to be mapped to the tiles of the sub cluster. This 
makes up 4 tasks per tile of such a quadrant. 

The following table summarizes the runs with different models for each eps and zeta 
combination. The values and row headers are to be read like introduced in chapter 5.2. 

Table 6.1.2 - Results for different eps/zeta combinations for the Tiled-MapReduce model 

  Intel Best Best with 2 MC Best with 3 MC 

0.1_0.1 3.87_22.5_1.5_4.5 3.87_22.5_1.5_4.5 3.465_22.5_1.5_0 3.465_22.5_1.5_0 
  The move of the memory controller to another position has no performance 

advantage. Even though, the load is pretty unbalanced. 
Adding a second memory controller can improve the result by putting all Mappers 
and Reducers to the memory controller nodes hence the memory distance is 0. 

0.1_0.5 4.5_45_0_0 4.5_45_0_0 2.925_22.5_1.5_0 2.7_15_2.667_0 
  Here, the load is totally unbalanced. All tasks are mapped to a single node for the 1 

MC configuration as the memory distance costs share is more important. Adding 
memory controllers helps in reducing the unbalance. There the additional memory 
controllers improve the unbalanced distribution. 

0.1_0.9 2.88_18_12_0 2.88_18_12_0 2.055_9_12.833_0 1.74_15_2.667_0 
  Here the load is better balanced than before with 1 MC. Due to the lower share of 

the node to node communication costs, the tasks are now spread to 3 respectively 4 
nodes. 
Another interesting result is the worse balance when using 3 MC instead of 2. 

See also mapping figures 6.1.2.A to 6.1.2.C. 

0.5_0.1 6.3_7.5_4.167_13.5 6.15_7.5_4.167_10.5 5.925_7.5_4.167_6 5.85_7.5_4.167_4.5 
  This is the first time for this model that moving the single MC to another position 

leads to more performance. The memory distance has been decreased. Like before, 
adding more MC leads to lower costs. In this case, all costs but the memory 
distances are equal. So here the MC position has only influence on the memory 
distance costs. 
Another interesting point being related to that: The model is perfectly balanced. 

See also mapping figures 6.1.2.D to 6.1.2.F. 

0.5_0.5 8.167_7.5_4.167_13.5 7.417_7.5_4.167_10.5 6.292_7.5_4.167_6 5.917_7.5_4.167_4.5 
  Ignoring the total subject one can see that the results are equal to before. The 

subjects only differ as zeta differs. 

0.5_0.9 6.475_9_19.25_2.25 6.35_9_16.75_2.25 5.142_9_12.833_0 5.0625_9_11.25_0 
  The tasks are not as balanced as before. There is one tile unused. Moving the MC to 

a better position results here in less node to node communication costs. Adding 
more MC results in a zero memory distance and in lower node to node 
communication costs. 

See also mapping figure 6.1.2.G. 
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  Intel Best Best with 2 MC Best with 3 MC 

0.9_0.1 7.26_7.5_4.167_13.5 7.23_7.5_4.167_10.5 7.185_7.5_4.167_6 7.17_7.5_4.167_4.5 
  This is as like as in the eps=0.5 and zeta in {0.1, 0.5} runs. 

0.9_0.5 7.633_7.5_4.167_13.5 7.483_7.5_4.167_10.5 7.258_7.5_4.167_6 7.183_7.5_4.167_4.5 
  This is as like as before. 

0.9_0.9 7.69_7.5_13_9 7.528_7.5_10.25_7.5 7.12_7.5_10_3 7.038_7.5_8.5_2.25 
  In contrast to the previous runs with eps=0.5 and zeta=0.9 this run is perfectly 

balanced. 

Compared to the other two runs with eps=0.5, the node to node distance factor is 
higher but the memory distance is smaller. 
Compared to the run with eps=0.5 and zeta=0.9, the relation is the opposite. 

Adding more memory controllers reduces the subject like in nearly all runs before. 
Here, both distance cost factors can be decreased. 

See also mapping figures 6.1.2.H to 6.1.2.J. 

All results are optimal as the model is small enough to be processed in less than 1000 secs. 
The following pictures are a well-chosen selection out of the 36 runs and its best results 
found. 

 

Figure 6.1.2.A - Task mapping for eps=0.1, zeta=0.9 and best configuration found 

This figure presents the optimal mapping found for a given MC configuration. The number in 
the middle of a tile (filled circle) stands for the load of the tasks being mapped to this tile. 
The little text below this number summarizes the number of tasks of a certain type that are 
mapped to this tile. C stands for Combiners, M for Mappers and R for Reducers. The green 
markers between the nodes illustrate the communication between Mappers and Combiners 
(1 to 1). The blue markers between the nodes illustrate the communication between 
Combiners and Reducers (1 to n). Both colored markers do not including the memory 
communication costs. This is not shown. One can try to imagine the communication paths 
for that by following the path from the red marked MC nodes to the mappers and to/from 
the Reducers. The communication markers can be read as like as described in chapter 5.1. 
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Figure 6.1.2.B - Task mapping for eps=0.1, zeta=0.9 and 2 MC 

 

Figure 6.1.2.C - Task mapping for eps=0.1, zeta=0.9 and 3 MC 

 

Figure 6.1.2.D - Task mapping for eps=0.5, zeta=0.1 and Intel SCC configuration 
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Figure 6.1.2.E - Task mapping for eps=0.5, zeta=0.1 and best configuration found 

 

Figure 6.1.2.F - Task mapping for eps=0.5, zeta=0.1 and 3 MC 

 

Figure 6.1.2.G - Task mapping for eps=0.5, zeta=0.9 and best configuration found 
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Figure 6.1.2.H - Task mapping for eps=0.9, zeta=0.9 and best configuration found 

 

Figure 6.1.2.I - Task mapping for eps=0.9, zeta=0.9 and 2 MC 

 

Figure 6.1.2.J - Task mapping for eps=0.9, zeta=0.9 and 3 MC 
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Best configuration for 1 MC 

For 1 MC the superior configuration found in chapter 5.4 is also the best one here. Even 
though it is not always better (see runs with eps=0.1), it is at least never worse than the 
findings for the Intel SCC configuration. 

Best configuration for 2 MC 

Using the same approach of counting the "wins" as in chapter 5.4 to figure out the best MC 
configuration, the same configuration is found to be the winner with 5 wins over three 
configurations with 2 wins and one configuration without any win. 

Best configuration for 3 MC 

In contrast to the best configuration found for 1 and 2 MC the best configuration for 3 MC is 
another one than found in chapter 5.4. 

 

Figure 6.1.2.3MC.configuration1 - This configuration had 6 wins 

 

Figure 6.1.2.3MC.configuration2 - This configuration had 3 wins 
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Figure 6.1.2.3MC.configuration3 - This configuration had 6 wins 

 

Figure 6.1.2.3MC.configuration4 - This configuration had 7 wins 

As one can see in the figure titles, configuration 4 had 7 wins and therefore is the best 
cluster configuration found for the given algorithm configuration. The configuration 3 was 
the winner of the pipelined merge sort algorithm and is the second best for Tiled-
MapReduce (but this placement is shared together with configuration 1). 

The following picture demonstrates the up scaled version of configuration 4. 



Page 99 

 

Figure 6.1.2.3MC.configuration4.upscaled - This configuration is the best for Tiled-MapReduce. 

6.1.3. Non-mirrored annealing results 

Unfortunately, the Tiled-MapReduce model seems to be too complex to get fully optimized 
for the 4x6 setup. Tests with 16 Mappers and 32 Reducers as well as 8 Mappers and 24 
Reducers showed that the result becomes stable after about 4 hours. The pipelined merge 
sort model is stable after about 700 seconds. Even though k has been set too small to fully 
saturate the whole cluster, optimization runs have been done to show that an odd result is 
generated (see chapter 5.1 and 5.2). As this is very likely to be the same here when reducing 
number of Mappers and Reducers, there is no need to demonstrate it because this is less 
important than finding the best configuration for a realistic (meaning equally balanced) 
mapping. 
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6.2. Mesh communication 

As the last graph to be mapped onto the Intel SCC die and its optimized configurations, a 
mesh network shall be used where all outer nodes communicate with the external memory 
and its neighbors and all inner nodes just with its neighbors. The load of each node within 
the network and also the data sent over each link including the memory link shall be equal. 

 

Figure 6.2.1 - Task graph for the mesh network, assuming a load of 3 per node 

The Intel SCC cores are connected by a mesh network. So the natural mapping of each node 
of a mesh network to its corresponding counterpart of the Intel mesh network is possible if 
the number of rows and columns is equal. But even for this trivial case the mapping might 
not be optimal as the memory controller might be too far away for the majority of the 
nodes. E.g. putting two neighboring outer nodes of the graph onto a single core (or tile) that 
is close to a memory controller might be more efficient because of the lower distance to the 
memory controller and the omitted communication costs for data traffic between those two 
nodes. 

In order to find the best mapping for a given setup, the following chapters describe as before 
the model derived from the optimization goal and the test results for it. But in contrast to 
before, there is no opportunity to divide the cluster into sub clusters which leads to a new 
optimizer optimization that is explained in the chapter 6.2.2. 
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6.2.1. The ILP model 

The AMPL model for the mesh network is explained now in detail by separating it into 
several code blocks that are explained bit by bit. 

#include "mesh.define" 

 

option show_stats 1; 

option omit_zero_rows 0; 

option omit_zero_cols 0; 

option eexit 1; // bail out on exit 

option solver gurobi_ampl; 

option gurobi_options GUROBI_OPTIONS; 

 

param eps in [0, 1.0]; 

param zeta in [0, 1.0]; 

 

param NRows integer; 

set Rows = 1..NRows; 

 

param NCols integer; 

set Cols = 1..NCols; 

 

param memoryControllerCount integer >= 1; 

set memoryControllers = 1..memoryControllerCount; 

param memoryControllerMapping {group in memoryControllers, r in Rows, c in Cols}; 

Figure 6.2.1.1 - Code block 1 of the mesh model 

This code block can also be found in the model for merge sort and Tiled-MapReduce. It 
initializes the cluster parameters like number of rows and columns and defines the 
optimization factors epsilon and zeta. Those and all following parameters are to be filled by a 
data file when running the model. 

param taskRowCount integer; 

param taskColCount integer; 

 

set TaskRows = 1..taskRowCount; 

set TaskCols = 1..taskColCount; 

set Tasks = 0..( taskRowCount * taskColCount  -  1 ); 

set InnerTaskRowsPlusTop = 1..( taskRowCount - 1 ); 

set InnerTaskRowsPlusBottom = 2..taskRowCount; 

set InnerTaskColsPlusLeft = 1..( taskColCount - 1 ); 

set InnerTaskColsPlusRight = 2..taskColCount; 

set CoTasks = {i in Tasks: 

        i mod taskColCount = 0                      // left edge 

    ||  i mod taskColCount = taskColCount - 1       // right edge 

    ||  int(i / taskColCount) = 0                   // upper edge 

    ||  int(i / taskColCount) = taskRowCount - 1    // lower edge 

}; 

Figure 6.2.1.2 - Code block 2 of the mesh model 

This is the first model specific part. The mesh network to be mapped has rows and columns 
like the Intel SCC mesh. How many of them is hold in the parameters "taskRowCount" and 
"taskColCount". 
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Then some sets are defined to be used for later iterations. The "CoTasks" set is special as it is 
filled with a logic that has not been used yet. As the name implies the set contains co-tasks. 
The concept behind co-tasks here is equal to the merge sort co-tasks. It shall model the 
location of the memory controller for a certain task and is used for the memory distance 
calculation. As only the outer nodes of the mesh network communicate with the main 
memory, the conditions within the braces select only those meaning their index within in the 
mesh. Example: For 2 rows and 3 columns the "Tasks" set contains all the tasks from 0 to 5. 
The "CoTasks" set contains the same indexes as all tasks are placed at the boundary of the 
mesh. There is no so called inner task. If one assumes 4 rows and 3 columns then the "Tasks" 
array contains the numbers 0 to 11. The tasks 0 to 2 are in row 1 (left to right), the tasks 3 to 
5 are in row 2 and so on. So the inner tasks are 4 and 7 as those are the only one to have a 
neighbor in all 4 communication directions. This means that the "CoTasks" set contains all 
tasks of the set "Tasks" but 4 and 7. 

The sets "InnerTask*" are required for the communication distances later. E.g. 
"InnerTaskRowsPlusTop" contains all inner task rows plus the top one. For 4 rows this would 
be row 1, 2 and 3. It is later used for the communication from row 1 to 2, row 2 to 3 and row 
3 to 4. Row 4 is not included as there is no fifth row where data could be sent to. 

var taskMapping{task in Tasks, row in Rows, col in Cols} binary; 

var coTaskMapping{coTask in CoTasks, row in Rows, col in Cols} binary; 

 

subject to TaskMappingOnce {task in Tasks}: 

    sum {row in Rows, col in Cols} taskMapping[task, row, col] = 1; 

 

subject to CoTaskMappingOnce {coTask in CoTasks}: 

    sum {row in Rows, col in Cols} coTaskMapping[coTask, row, col] = 1; 

 

subject to CoTasksAreMappedToMemoryControllerNode {coTask in CoTasks, row in Rows, 

col in Cols}: 

    coTaskMapping[coTask, row, col] <= 

        sum {memGroup in memoryControllers} memoryControllerMapping[memGroup, row, 

col]; 

Figure 6.2.1.3 - Code block 3 of the mesh model 

The "taskMapping" variable set contains for all tasks the mapping information. Example: If 
task 1 is mapped to tile 3,4 (row 3 and column 4 of the on-chip cluster) then the entry 
"taskMapping[1, 3, 4]" would be 1. All other entries for the task 1 are 0 (see also set 
definition "binary" - only 1 or 0 are allowed values). This and the mapping itself is enforced 
with the subject "TaskMappingOnce". The sum of all mappings for a task must be exactly 1. 

The same constraint exists for the "coTaskMapping" variable set which contains the 
positions of the co-tasks. Because of the additional constraint "co-tasks must be mapped to 
a memory controller tile" the subject "CoTasksAreMappedToMemoryControllerNode" must 
be added to make sure that this is taken into account, too. 
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var sumDistComm in interval[0.0,100000.0]; 

var sumDistMem  in interval[0.0,100000.0]; 

var maxCompLoad in interval[0.0,100000.0]; 

 

minimize obj: 

    eps*maxCompLoad 

    + (1-eps)*(1-zeta)*sumDistComm 

    + (1-eps)*(zeta)*sumDistMem; 

Figure 6.2.1.4 - Code block 4 of AMPL model for mesh network 

This is the same object function as in the previous chapters. Based on this the optimization is 
controlled. The goal is to find the minimum value of "obj". 

param loadFactor in [0, 99.0]; 

 

subject to DefineMaxCompLoad { row in Rows, col in Cols }: 

    maxCompLoad >= 

        loadFactor * ( 

            sum{task in Tasks} 

                taskMapping[task, row, col]  // Load is 1 per task 

    ); 

Figure 6.2.1.5 - Code block 5 of the mesh model 

This code block is close to equal to the previous definitions of the maximum computational 
load. The difference is the additional parameter "loadFactor". This parameter controls the 
weight of the computational load over the distance costs, too. It complements the eps 
parameter. This has been introduced to be able to use the same eps and zeta values as 
before. The load factor is set to the value resulting in a comparable load balancing of the 
mesh tasks on the cluster tiles for a given epsilon value. The factor 10 has been found to 
realize this requirement pretty well (see chapter 6.2.3). 

  



Page 105 

var taskToTaskCommunicationVCUM{task in Tasks, r1 in Rows, r2 in Rows} binary; 

var taskToTaskCommunicationVCDM{task in Tasks, r1 in Rows, r2 in Rows} binary; 

var taskToTaskCommunicationVCLM{task in Tasks, r1 in Rows, r2 in Rows} binary; 

var taskToTaskCommunicationVCRM{task in Tasks, r1 in Rows, r2 in Rows} binary; 

 

subject to VerticalClusterUpCommunication {taskRow in InnerTaskRowsPlusBottom, 

taskCol in TaskCols, r1 in Rows, r2 in Rows}: 

    taskToTaskCommunicationVCUM[  (taskRow-1) * taskColCount  +  taskCol - 1  , r1, 

r2] >= 

          sum{c1 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1                 

, r1, c1] 

        + sum{c2 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

- taskColCount  , r2, c2] 

        - 1; 

subject to VerticalClusterDownCommunication {taskRow in InnerTaskRowsPlusTop, 

taskCol in TaskCols, r1 in Rows, r2 in Rows}: 

    taskToTaskCommunicationVCDM[  (taskRow-1) * taskColCount  +  taskCol - 1  , r1, 

r2] >= 

          sum{c1 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1                 

, r1, c1] 

        + sum{c2 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

+ taskColCount  , r2, c2] 

        - 1; 

subject to VerticalClusterLeftCommunication {taskRow in TaskRows, taskCol in 

InnerTaskColsPlusRight, r1 in Rows, r2 in Rows}: 

    taskToTaskCommunicationVCLM[  (taskRow-1) * taskColCount  +  taskCol - 1  , r1, 

r2] >= 

          sum{c1 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1      

, r1, c1] 

        + sum{c2 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

- 1  , r2, c2] 

        - 1; 

subject to VerticalClusterRightCommunication {taskRow in TaskRows, taskCol in 

InnerTaskColsPlusLeft, r1 in Rows, r2 in Rows}: 

    taskToTaskCommunicationVCRM[  (taskRow-1) * taskColCount  +  taskCol - 1  , r1, 

r2] >= 

          sum{c1 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1      

, r1, c1] 

        + sum{c2 in Cols} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

+ 1  , r2, c2] 

        - 1; 

Figure 6.2.1.6 - Code block 6 of the mesh model 

The derivation of the node to node communication distance is done in two parts. First, for 
each task the information whether it communicates from a cluster row to another or from a 
cluster column to another is stored in the variable sets "taskToTaskCommunication*". 
Second, this data is used and aggregated. The latter one is described later in figure 6.2.1.9. 
The former one can be seen in the figures above and below. They are split by cluster 
communication directions: vertical (above code block) and horizontal (below code block). 
This means that up and down as well as right and left are handled together. For each mesh 
direction, 4 variable sets are defined, one set for each possible mesh network 
communication direction (up, down, left and right). Combined with the horizontal and 
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vertical cluster directions, this makes up exactly 8 variable sets 
("taskToTaskCommunication*"). 

Example: If there are 3 rows and 3 columns given, then row 1 contains the tasks 0 to 2, row 2 
contains the tasks 3 to 5 and row 3 contains the tasks 6 to 8. Task 0 is sending data to task 3. 
Task 3 is sending some data back to task 0. Task 0 is also sending data to task 1 (and vice 
versa). For task 0 there are only those 2 out of the possible 4 mesh communication 
directions as it has only 2 neighbors. The used directions shall be named "Downward" and 
"Rightward" (from the perspective of the sender). The subjects 
"VerticalClusterDownCommunication" and "HorizontalClusterDownCommunication" are 
about saving all the required communication data (not the costs, but the flag) for the mesh 
direction "Downward". Depending on where the tasks 0 and 1 are mapped to, the first or 
second or both mentioned subjects are taken. If task 0 is mapped to tile 1,1 (top left) and 
task 3 is mapped to tile 2,2 then the "Downward" mesh direction is mapped to the 
communication variable sets by both subjects "VerticalClusterDownCommunication" and 
"HorizontalClusterDownCommunication". If the tasks are mapped the opposite way the 
subjects are still the same as the cluster communication directions upward and downward 
are summarized as vertical (first name part of the subjects) and leftward and rightward are 
expressed with horizontal. 

For task 0 (source task) sending data to task 3 (destination task) the variable set filling can be 
explained as following: 

 subject "VerticalClusterDownCommunication" 
o It iterates over all tasks. Those are the source tasks. For each such task, it 

checks for any combination of a source and destination row of the cluster, 
where the source mesh task is mapped to the source cluster row and the 
below (second keyword "Down") neighbor of the source mesh task is mapped 
to the destination cluster row. If so, the value stored in the variable set 
"taskToTaskCommunicationVCDM" (VCDM stands for 
"VerticalClusterDownMesh") must be greater or equal to 1. If the destination 
mesh task is not mapped to the destination cluster row or the source mesh 
task is not mapped to the source cluster row, the value must be greater or 
equal to 0. If both are not mapped to the rows, then the value must be 
greater or equal to -1. 

o The value 1 at "taskToTaskCommunicationVCDM[0, 1, 2]" means: Task 0 is 
sending data from cluster row 1 to cluster row 2. This also means that task 0 
must be mapped to cluster row 1. As the "D" (meaning down) key character 
directly addresses the receiver (task 3) this can be extended to also show that 
task 3 must be mapped to cluster row 2. 

o As the data stored in the set "taskToTaskCommunicationVCDM" is of type 
binary and the overall model objective is to minimize the result, the case 
"greater or equal to 1" leads to "equal to 1", "greater or equal to 0" leads to 
"equal to 0" and the case "greater or equal to -1" leads to "equal to 
0".  Because of that an appropriate constraint/subject with an upper bound 
has not been added. 

o The source tasks iterated over are all calculated from the mesh row set 
"InnerTaskRowsPlusTop". This includes all mesh rows which can have a task 
directly below it. The calculation itself is trivial. As parameters to the subject, 
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a mesh row and column number are given from which the task number can 
be calculated. 

o The destination task is derived from the source task based on the mesh 
communication direction. In this case (down), one needs to add the column 
count (here 3). 

o For task 0 the outcome of taking this subject into account is: 
"taskToTaskCommunicationVCDM[0, 1, 2] = 1", all other row combinations 
are zero or ignorable. Ignorable means that in case the rows are equal, the 
result is 1 but this is ignored by later subjects (which is the reason why it is 1 
and not the lowest binary possible value 0). 

 subject "HorizontalClusterDownCommunication" 
o It iterates over all tasks. Those are the source tasks. For each such task, it 

checks for any combination of a source and destination column of the cluster, 
where the source mesh task is mapped to the source cluster column and the 
below (keyword "Down") neighbor of the source mesh task is mapped to the 
destination cluster column. If so, the value stored in the variable set 
"taskToTaskCommunicationHCDM" (HCDM stands for 
"HorizontalClusterDownMesh") must be greater or equal to 1. The rest is as 
for subject "VerticalClusterDownCommunication". 

o The value 1 at "taskToTaskCommunicationHCDM[0, 1, 2]" means: Task 0 is 
sending data from cluster column 1 to cluster column 2. This also means that 
task 0 must be mapped to cluster column 1. As the "D" key character directly 
addresses the receiver (task 3) this can be extended to also show that task 3 
must be mapped to cluster column 2. 

o The other things are as above. 
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var taskToTaskCommunicationHCUM{task in Tasks, c1 in Cols, c2 in Cols} binary; 

var taskToTaskCommunicationHCDM{task in Tasks, c1 in Cols, c2 in Cols} binary; 

var taskToTaskCommunicationHCLM{task in Tasks, c1 in Cols, c2 in Cols} binary; 

var taskToTaskCommunicationHCRM{task in Tasks, c1 in Cols, c2 in Cols} binary; 

 

subject to HorizontalClusterUpCommunication {taskRow in InnerTaskRowsPlusBottom, 

taskCol in TaskCols, c1 in Cols, c2 in Cols}: 

    taskToTaskCommunicationHCUM[  (taskRow-1) * taskColCount  +  taskCol - 1  , c1, 

c2] >= 

          sum{r1 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1                 

, r1, c1] 

        + sum{r2 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

- taskColCount  , r2, c2] 

        - 1; 

subject to HorizontalClusterDownCommunication {taskRow in InnerTaskRowsPlusTop, 

taskCol in TaskCols, c1 in Cols, c2 in Cols}: 

    taskToTaskCommunicationHCDM[  (taskRow-1) * taskColCount  +  taskCol - 1  , c1, 

c2] >= 

          sum{r1 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1                 

, r1, c1] 

        + sum{r2 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

+ taskColCount  , r2, c2] 

        - 1; 

subject to HorizontalClusterLeftCommunication {taskRow in TaskRows, taskCol in 

InnerTaskColsPlusRight, c1 in Cols, c2 in Cols}: 

    taskToTaskCommunicationHCLM[  (taskRow-1) * taskColCount  +  taskCol - 1  , c1, 

c2] >= 

          sum{r1 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1      

, r1, c1] 

        + sum{r2 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

- 1  , r2, c2] 

        - 1; 

subject to HorizontalClusterRightCommunication {taskRow in TaskRows, taskCol in 

InnerTaskColsPlusLeft, c1 in Cols, c2 in Cols}: 

    taskToTaskCommunicationHCRM[  (taskRow-1) * taskColCount  +  taskCol - 1  , c1, 

c2] >= 

          sum{r1 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1      

, r1, c1] 

        + sum{r2 in Rows} taskMapping[  (taskRow-1) * taskColCount  +  taskCol - 1 

+ 1  , r2, c2] 

        - 1; 

Figure 6.2.1.7 - Code block 7 of the mesh model 
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var edgeTaskToMemoryCommunicationV{coTask in CoTasks, r1 in Rows, r2 in Rows} 

binary; 

var edgeTaskToMemoryCommunicationH{coTask in CoTasks, c1 in Cols, c2 in Cols} 

binary; 

 

subject to VerticalCommunicationForEdgeTaskToMemory {coTask in CoTasks, r1 in Rows, 

r2 in Rows}: 

    edgeTaskToMemoryCommunicationV[coTask, r1, r2] >= 

          sum{c1 in Cols} coTaskMapping[coTask, r1, c1] 

        + sum{c2 in Cols} taskMapping[coTask, r2, c2] 

        - 1; 

subject to HorizontalCommunicationForEdgeTaskToMemory {coTask in CoTasks, c1 in 

Cols, c2 in Cols}: 

    edgeTaskToMemoryCommunicationH[coTask, c1, c2] >= 

          sum{r1 in Rows} coTaskMapping[coTask, r1, c1] 

        + sum{r2 in Rows} taskMapping[coTask, r2, c2] 

        - 1; 

Figure 6.2.1.8 - Code block 8 of the mesh model 

The above figure is comparable to figures 6.2.1.6 and 6.2.1.7. This time it is about the 
memory distance calculation. This eases the readability as there is only one neighbor per 
task. A co-task can communicate only with exactly one outer task and vice versa. The latter 
one is not modeled here but in the last figure 6.2.1.10 by simply doubling the distance. As 
the "CoTask" array contains a sub set of the "Tasks" array, the entries can be used to access 
the "taskMapping" variable set as well. 

subject to DefineSumDistComm: 

    sumDistComm = 

        sum {task in Tasks, r1 in Rows, r2 in Rows} ( 

              taskToTaskCommunicationVCUM[task, r1, r2] * abs(r2 - r1) 

            + taskToTaskCommunicationVCDM[task, r1, r2] * abs(r2 - r1) 

            + taskToTaskCommunicationVCLM[task, r1, r2] * abs(r2 - r1) 

            + taskToTaskCommunicationVCRM[task, r1, r2] * abs(r2 - r1) 

        ) 

    + 

        sum {task in Tasks, c1 in Cols, c2 in Cols} ( 

              taskToTaskCommunicationHCUM[task, c1, c2] * abs(c2 - c1) 

            + taskToTaskCommunicationHCDM[task, c1, c2] * abs(c2 - c1) 

            + taskToTaskCommunicationHCLM[task, c1, c2] * abs(c2 - c1) 

            + taskToTaskCommunicationHCRM[task, c1, c2] * abs(c2 - c1) 

        ); 

Figure 6.2.1.9 - Code block 9 of the mesh model 

This subject finally defines how to calculate the distance for the node to node 
communication. This is the second step after having found and encoded to what cluster row 
or column each mesh task is sending data to. The variable sets already explained earlier 
expressing this mapping are now read and interpreted. The distance calculation is based on 
the X-Y-routing of the cluster. This means that one can add the difference between two 
cluster rows and columns where a neighboring task pair is mapped to in order to get the 
distance between the nodes. For the above example (3x3 mesh, task 0 is sending data to 
task 3, task 0 is mapped to cluster tile 1,1 and task 3 to 2,2) the relevant parts of the arrays 
are: 
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 0 to 3 (mesh downward): 
o taskToTaskCommunicationVCDM[0, 1, 2] 
o taskToTaskCommunicationHCDM[0, 1, 2] 

 3 to 1 (mesh upward): 
o taskToTaskCommunicationVCUM[3, 2, 1] 
o taskToTaskCommunicationHCUM[3, 2, 1] 

Each part is multiplied with 1 (row and column distance is always 1 here) and summed up to 
the value 4. This means that for the communication between tasks 0 and 3 the share of the 
complete node to node communication load is 4. 

subject to defineSumDistMem: 

 sumDistMem = 2 * ( 

  sum {coTask in CoTasks, r1 in Rows, r2 in Rows} 

   edgeTaskToMemoryCommunicationV[coTask, r1, r2] * abs(r2 - r1) 

  + sum {coTask in CoTasks, c1 in Cols, c2 in Cols} 

   edgeTaskToMemoryCommunicationH[coTask, c1, c2] * abs(c2 - c1) 

 ); 

Figure 6.2.10 - Code block 10 of the mesh model 

This is basically the same as for the node to node distance calculation. Here, the cluster row 
and column number differences for the link pair "co-task to task" are added if there is an 
existing link. The sum is multiplied with 2 as the communication is bidirectional. Without this 
the communication direction "task to co-task" would not be taken into account (see also 
figure 6.2.1.8). 
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6.2.2. Parameter tuning 

Initial execution tests with the model revealed very high execution times without reaching 
optimality. As like as for the Tiled-MapReduce model, the result was not stable meaning it 
changed continuously, even after hundreds of seconds. This chapter demonstrates one 
possible way to faster and more stable solutions that are as close as possible to the real 
objective. 

The following tables show the so called "incumbent" over the time. The incumbent is the 
currently best known objective while running the optimization with Gurobi. The "gap" 
reflects the uncertainty - the lower the better. It is calculated from the difference of the 
incumbent and the currently known best lower bound of the objective. Roughly speaking 
once the bound hits the incumbent, the gap becomes zero and the result optimal. The 
content is taken from model executions for the Intel SCC configuration with the load factors 
1 and 3, eps=0.9 and zeta=0.5. 

Table 6.2.2.F=1.a - Run details: factor 1, Intel SCC, 4 task rows, 6 task columns, time limit 2 hours 

Time Incumbent Gap 

17s 7.8 67.9% 
18s 7.7 67.4% 
19s 7.5 64.0% 
22s 7.4 63.5% 
40s 7.2 61.9% 
588s 7.1 54.1% 
3988s 7.0 44.2% 

Table 6.2.2.F=3.a - Run details: factor 3, 4 task rows, 6 task columns, time limit 10 hours 

Time Incumbent Gap 

3s 15.6 72.4% 
75s 12.1 58.6% 
139s 12.0 57.3% 
164s 11.6 55.9% 
812s 10.9 51.8% 
4179s 10.8 46.1% 
20594s 10.7 42.6% 
25501s 10.3 39.9% 
25726s 9.9 37.5% 
26511s 8.9 30.4% 
27434s 8.5 27.0% 

What one can see especially in the second table is the large time to get to a good result 
(meaning with a low gap value). Whether the results 7.0 (factor 1) or 8.5 (factor 3) are really 
optimal is actually unknown. Having a look into the task graph for the factor 3 run which 
maps the mesh naturally to the cluster strengthens the impression of an optimal result as 
the intermediate subjects map several nodes onto one tile which is at least not the expected 
result for eps=0.9 runs with a higher load factor. 

The execution times and intermediate results have been watched for the previous models 
before, too. There, the circumvention is to split the graph into smaller sub graphs to 
generate pretty small gaps after an acceptable time (or in most cases optimality). Here, a 
graph split cannot be done because the graph is given without a problem behind it. So 
without knowing whether the problem can be split, the graph cannot be split. 

To be able to get a result in acceptable time which is the precondition for annealing runs, the 
way forward is to use the latest Gurobi version 5.5.0. This new version introduces automatic 
parameter tuning to get the objective of a model even faster once the tune result is known. 
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The parameters have a strong influence on the linear programming algorithms used by 
Gurobi. So selecting them carefully might have a very positive effect on the execution time. 

The automatic tuning mode works as following: 

 A set of parameters is chosen and tried 2 times (default) with different seeds (start 
values for the randomness). 

 The average gap of the trials (1 - lowest found border / incumbent) is stored. 

 This is repeated for various parameter combinations until the tuning time limit is 
reached. 

 The best parameter set is returned ["best" means the set with the lowest average 
gap]. 

 The parameters and combinations selected for testing seems to depend on: 
o intermediate results 
o time limit (time for each seed run) 
o tuning time limit (time for the complete tuning run) 

For the factors 1 and 3 the tuning mode is used. As the chosen and tested parameter 
combinations vary especially when using different seed run times, several seed run times 
must be used. The best parameter configurations are summarized in the following figures 
and notes. 

 

Figure 6.2.2.F=1.b - Compare optimized (16 hours run) vs. default settings, factor 1 

The data shows a significant improvement for the tuned parameter set "GomoryPasses=0, 
Prepasses=3" over the default Gurobi setup "GomoryPasses=-1 (unlimited), Prepasses=-1 
(automatic choice)". Even after 16 hours the subject is still 6.3 (found already after 18200 
secs) with a gap of 26.6%. It sounds likely that this result is the optimal one as a gap of 30% 
or smaller seems be a good indicator for the mesh model because several executions up to 
now showed that. But unfortunately, the best known value is 6.2 (see later). Also with 
respect to the gap the improvement is remarkable. But the more interesting thing one can 
see for the gap value is that by logarithmically scaling the x-axis the gap "function" seems to 
fall linearly after about 300 secs. This means that it can take very long to bring the gap down 
to 0 if no further improvements of the subject are found. 
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Figure 6.2.2.F=3.b - Compare optimized (11.1 hours run) vs. default settings, factor 3 

The observation for the "factor=3" tuning is equal. But the performance improvement is not 
as good as for factor 1. The best automatically found parameter set is different: 
"Heuristics=0.5, GomoryPasses=1". The default value for Heuristics is 0.05 and means that 
MIP heuristics (see Gurobi documentation) shall be used in 5% of the processing time. The 
best known result 8.5 (using several optimization and normal runs) is found after about 
22700 secs. This is faster than with default settings but still much too slow. 

One possible next step forward is to combine the best parameters from both tuning runs 
and investigate the results for factor 1 and 3. 
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Figure 6.2.2.F=1.c - Compare optimized "1+3" (3 hours run) vs. optimized settings, factor 1 

 

Figure 6.2.2.F=3.c - Compare optimized "1+3" (10.5 hours run) vs. optimized settings, factor 3 

The "1+3" optimization parameters are: "GomoryPasses=0, PrePasses=3, Heuristics=0.5". 
The two figures above show that the best result known (6.2 after 1010 secs for factor 1 and 
8.5 after 800 secs for factor 3) can be reached within 1100 secs. The negative side effect is 
that the "indicator for optimality", the gap value, cannot be used when reaching the lowest 
incumbent as at that time the gap is too high. 
The descent of the gap value for the "1+3" optimization seems to be higher. But this is only 
because it is relative to the current subject. To better demonstrate this, figure 6.2.2.F=3.c 
also contains the lower border of the subject. One can see that after the best subject has 
been reached by the "factor=3" optimization, the lower border slope becomes slightly higher 
and therefore seems to get closer to the border value of "1+3". In the end of the run this 
results in a higher descent of the gap than for the "1+3" optimization. 
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Having a look at the gap of the run with load factor 1, the gap of the "1+3" optimization is 
most of the time and even at the end higher than the gap of the "factor=1" optimization. 
This is in contrast to the run with load factor 3 where the gap was most of the time better 
for the optimization "1+3". So with respect to gap improvement the "1+3" strategy seems 
not be to optimal for all factors. 

Within the factor 3 tuning run another set has been spotted but not selected as good as the 
gap was too high. But the subject found by one trial (a run with a certain seed) for this 
parameter set was very promising. The parameter set is "MIPFocus=1". This means that the 
MIP solution strategy is to focus on finding feasible solutions instead of realizing a standard 
mix of increasing the boundary, proving optimality and finding feasible solutions. The best 
trial run compared to the "1+3" run with factor 3 delivered the following result: 

 

Figure 6.2.2.F=3.d - Compare optimized "MIPFocus" (2 hours run) vs. optimized "1+3" settings, factor=3 

This figure shows that even though the best known result is found again faster than in the 
"1+3" run for load factor 3 (310 secs vs. 800 secs), the gap is worse. Of course, finding the 
best known subject that fast is pretty lucky which one can see from the fact that the other 
not shown trial only found 9.3 after 900 secs. But this parameter set can be used with 
several seeds to get a good impression of how good it can become at least. With a relatively 
high likelihood a very good result is found. 
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What has been stated but not justified yet is the usage of several seeds to get a good result 
for a certain tuned parameter set. While running the tuning mode, the importance of a good 
starting point for optimization algorithms that depend on random number generators 
became obvious. The following tables shall summarize some of the observations for 100 secs 
(factor 1) and 300 secs (factor 3). 

Table 6.2.2.SeedExample1 - 100 secs, factor=1 

Parameter set Seed Subject Gap 

default default 7.2 59,7% 
  1 7.6 60.5% 
BranchDir=-1 default 7.2 63.9% 
  1 6.6 60.6% 
MIPFocus=1 default 7.3 64.4% 
  1 6.9 62.3% 

Table 6.2.2.SeedExample2 - 300 secs, factor=3 

Parameter set Seed Subject Gap 

default default 11.6 55.2% 
  1 11.5 53.9% 
Heuristics=0.5 default 10.6 50.9% 
  1 10.6 50.9% 
MIPFocus=1 default 10.7 58.9% 
  1 8.5 48.2% 

One can see that not for all trials a difference can be found. But for the majority of the 
parameter sets a more or less high difference can be spotted. Assuming that the idea of an 
existence of good and bad seeds also holds for longer execution times, a test with one 
parameter set has been done and proved its "correctness". Even though the statistic behind 
this test is very poor, the explicit test together with implicit tests indicates the correctness of 
the assumption. 
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One last idea of further improving the performance was not beneficial. However it is 
explained in the following. 

The "MIPFocus=1" tuned parameter set has already been introduced. It has also been said 
that the good results for that are leading to higher gaps at the end. So by first improving the 
gap with a more stable and with respect to gap reduction better algorithm and later focusing 
on trying to find feasibly solutions, the result time of "1+3" could be further improved. 
Gurobi offers for such ideas the parameter "improvetime". This one defines the time after 
which the MIPFocus switches to mode 1 (finding feasibly solutions). This effectively means to 
set the parameter set "Heuristics=0.5 and RINS=10" (RINS defines how often to apply the 
equally named heuristic). Tests using a load factor value of 3 with an "improvetime" value of 
30 minutes and a total duration of 1 hour reveal only for the "factor=1" parameter set a 
faster result (2200 secs instead of 9000 secs). For the "factor=3" parameter set this result is 
even worse as the total optimization time of 1 hour is not long enough. 

For the "1+3" optimization the result was equally fast found which is caused by the improve 
time being higher than 760 secs. As in the first phase the run is not influenced by the 
"improvetime" parameter, the result is found as fast as before. Changing the improve time 
down to 500 secs leads after 800 secs again to the best known value 8.5. Setting the improve 
time to 300 seconds results in the best value to be found after 1030 secs. So it takes more 
time for "1+3" optimization to find the best value. So the "improvetime" optimization is 
unable to further optimize the already best tuned parameter set "1+3". 

 

Summary 

If not stated otherwise, the runs of the next chapters are all independently of the load factor 
and the number of mesh nodes executed in the following 2 ways: 

 "MIPFocus": 4 trials of 900 secs each with "MIPFocus=1" (total time 1 hour) 

 "1+3": "1+3" optimization for 3600 secs: "GomoryPasses=0, PrePasses=3, 
Heuristics=0.5", before that: 3 trials of 900 secs each (total time 1.75 hours) 

As the time to result with 2 hours and 45 minutes for each model configuration is too high, 
an annealing run cannot be done. But one can try to confirm the results for the perfect 
memory controller configurations of the previous models. 

What one also has to keep in mind: The found result is not guaranteed to be optimal and so 
needs to be used and interpreted with care. Both optimizations "MIPFocus" and "1+3" are 
developed to deliver a low subject as fast as possible and will therefore lead to poor gap 
values as their execution time is too short. Especially for "MIPFocus" even a longer execution 
time would not lead to a much better gap as it focuses on finding feasible solutions and not 
on improving the gaps. 
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6.2.3. Factor selection 

A good load factor for the computational load is required for the mesh model in order to use 
the same eps and zeta combinations as before. Therefore, a selection run with the original 
cluster configuration together with the eps values 0.1, 0.5 and 0.9 is used. Zeta is set to 0.5. 
The mesh to be mapped is of size 4x6. The goal of the selection runs is to find a factor that 
fully utilizes the model for eps=0.9 and only uses a couple of tiles for eps=0.1. 

Table 6.2.3 - Tiles used for different configurations (24 corresponds to 100% usage) 

Tiles used 3 10 30 

eps=0.1 1* 3* 3 
eps=0.5 3 12 24 
eps=0.9 24 24 24 

The marker * refers to an optimal result. All other values are as good as possible when 
running tuning mode "1+3". 

The run for factor 10 uses 50% of the tiles for eps=0.5. This and the fact that 3 tiles are used 
for eps=0.1 makes this superior over the factor 3 run. The run with factor 30 is never optimal 
and other than that leads to 100% usage already for eps=0.5. 
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6.2.4. Results and analysis 

The mesh network tested now has the same dimensions like the Intel SCC cluster mesh 
network. Therefore a natural mapping can be reached. But the tasks are mapped to tiles 
instead of cores. This little drawback is due to the higher complexity of a model with 48 
cores. If one assumes that each task can be parallelized (which it should as the mesh 
network is already parallelized) and processed by the 2 cores of a single tile so that no huge 
communication overhead exists, then this little limitation becomes acceptable. 

The assumption of the outcome of the following tests is that the best configuration found 
before for 4 memory controllers is also better for the mesh network model. In case of a 
perfect mapping, this can be derived by summing up the distances of the nodes to the 
memory controller tiles. For the Intel SCC configuration, the distance is 20. For the best 
configuration (MC placed at tile 1, 4, 19 and 22) it should be only 16. And like before the 
addition of more memory controllers should result in even better performance. 

As already said, for the mesh network an annealing optimization run is not reasonable. 
Instead of that the following memory controller configurations are tested: 

 Best 4MC: 1 4 19 22 (referred to as "best configuration") 
o The winning configuration of all previous chapters. 

 Best 8MC: 2 3 6 11 12 17 20 21 
o The winning configuration for 8 MC of all previous chapters. 

 Best 12MCA: 1 2 3 4 6 11 12 17 19 20 21 22 
o The winning configuration for 12 MC of chapter 5 (Pipelined merge sort). 

 Best 12MCB: 0 1 2 3 4 5 18 19 20 21 22 23 
o The winning configuration for 12 MC of chapter 6.1 (Tiled-MapReduce). 

The following table summarizes the results of the model runs for each combination of eps 
and zeta. The result values and the row headers are encoded as already described in chapter 
5.2. 
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Table 6.2.4.1 - Results for 4x6 mesh model 

eps_zeta Intel Best 4MC Best 8MC Best 12MCA Best 12MCB 

0.1_0.1 19.92_120_8_16 19.92_120_8_16 18.48_120_8_0 18.48_120_8_0 18.48_120_8_0 
  All runs are optimal when using the "1+3" optimization. 

The Intel configuration is as good as the best one found for 4 MC. 

In case of 4 MC, only 2 tiles are used. This means 12 nodes per tile. One of the tiles 
is a memory controller tile and the other not. This results in memory controller 
distance costs. Once more memory controllers are added, the result should not 
become better but it does. This is because there the at least 2 memory controller 
tiles are next to each other. So the memory distance becomes 0. This can be seen 
in the figure 6.2.4.1. 

0.1_0.5 18.8_80_16_8 22.4_80_24_8 15.6_120_8_0 15.2_80_16_0 15.2_80_16_0 

  
  All runs but the one with 12 memory controllers are optimal when using the "1+3" 

optimization. 

The computational load is improved for 4 MC and 12 MC. There 3 to 4 nodes are 
used instead of 2 for zeta=0.1. 

This time, the best configuration is worse than the original Intel configuration. This 
is caused by the placement of the MC which are closer to each other in the Intel 
case. This can be seen in the mapping in figures 6.2.4.2 and 6.2.4.3. 

Adding more memory controllers results in higher performance due to decreasing 
communication costs. In the case of 8 MC the node mapping does not change to 
before (see figure 6.2.4.1) which means the maximum computational load is 
higher than for all other cases. As before, there is no 
difference visible in the optimal mapping for the 2 configurations with 12 MC. The 
figure 6.2.4.4 shows this mapping. 

0.1_0.9 10.48_40_72_0 10.12_40_68_0 8.68_40_52_0 7.76_20_64_0 7.6_40_40_0 
  All runs with 4 MC are optimal when using the "1+3" optimization. For 8 MC and 

for "Best 12MCA" there is a discrepancy between the "MIPFocus" and the "1+3" 
optimization result. The former one is better and listed here. 

By putting more importance into the memory controller distance and therefore 
less into the node to node communication costs, the load distribution is increased 
further compared to zeta=0.5. 

This time the best configuration is better than the Intel one. The difference can be 
seen in the figures 6.2.4.5 (Intel) and 6.2.4.6 and 6.2.4.7 (two possible optimal 
mappings can be found). 

The only difference in the results found for the two configuration versions with 12 
MC can be seen here. The configuration which is best for Tiled-MapReduce is 
slightly better than the best one found for Pipelined merge sort. 

The figures 6.2.4.8 to 6.2.4.10 demonstrate the mapping for 8 and 12 MC. There 
one can see that the subjects compared against the results for 4 MC are better as 
the distance between the memory controller tiles is smaller which leads to higher 
node to node communication costs for 4 MC. 
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eps_zeta Intel Best 4MC Best 8MC Best 12MCA Best 12MCB 

0.5_0.1 33.8_40_28_24 34.4_40_28_36 33.6_40_28_20 33.4_40_28_16 33.4_40_28_16 
  From now on, no result is optimal any more. 

For the Intel configuration there is a discrepancy between the "MIPFocus" and the 
"1+3" optimization result. The former one is better and listed here. 

Here, like for eps=0.1 and zeta=0.5, the best configuration is worse than the Intel 
configuration which has the same reason like there. 

For all configurations the differences to eps=0.1 and zeta=0.9 are the higher 
memory distance and lower node to node communication costs. The mapping for 
Intel, Best 8MC and Best 12MCA is shown below in the figures 6.2.4.11 to 6.2.4.13. 
There one can see an equal mapping that only differs in the distance to memory 
property which is caused by the different memory controller locations. 

0.5_0.5 32_20_64_24 29_20_60_16 27.5_20_56_14 25_20_52_8 25_20_52_8 
  For the Intel and the "Best 8MC" configuration there is a discrepancy between the 

"MIPFocus" and the "1+3" optimization result. The latter one is better and listed 
here. For the "Best 12MCA" this difference also exists but is the other way around. 

The change to zeta=0.1 is the better spread of the nodes over the cluster. Even 
though the node to node communication costs are higher, the memory controller 
distance can be decreased in all cases but Intel. The more MC are added, the 
better the result becomes. 

From now on, the Intel result is always worse than the best configuration. 

Figures 6.2.4.14 to 6.2.4.18 illustrate the changed mappings. 

0.5_0.9 21_20_76_16 20.2_20_60_16 13.8_20_76_0 12.4_10_76_8 12.4_10_76_8 
  For the Intel and "Best 12MCA" configuration there is a discrepancy between the 

"MIPFocus" and the "1+3" optimization result. The former one is better and listed 
here. 

The mapping of the Intel and "Best 8MC" configuration is changed to before. The 
nodes are more spread around the cluster. Therefore, the memory distance is 
smaller and the node to node distance higher. This can be seen in the figures 
6.2.4.19 and 6.2.4.20. 

If 12 MC are used, the natural mapping is the optimal one from now on. This can 
be seen in the figure 6.2.4.21 for the "Best 12MCB" configuration. 

0.9_0.1 16.24_10_76_40 16.16_10_76_32 16_10_76_16 15.92_10_76_8 15.92_10_76_8 
  This is the first eps and zeta configuration for which each memory controller 

configuration has a natural mapping as the optimal result. 

One can see that the expectation for the natural mapping and 4 MC is met. The 
Intel configuration is not as good as the best one. Also adding more memory 
controllers results in better subjects. 

0.9_0.5 14.8_10_76_40 14.4_10_76_32 13.6_10_76_16 13.2_10_76_8 13.2_10_76_8 
  There is no difference to before. 
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eps_zeta Intel Best 4MC Best 8MC Best 12MCA Best 12MCB 

0.9_0.9 12.76_10_88_32 12.08_10_92_24 11.2_10_76_16 10.48_10_76_8 10.48_10_76_8 
  The discrepancy between "MIPFocus" and "1+3" can be healed for the Intel 

configuration by running the "1+3" optimization for 2 hours instead of only 1 hour. 

The optimization results for the configurations Intel, "Best 4MC" and "Best 
12MCB" are as good as optimal (<5% gap). 

For the configurations with 8 and 12 MC there is no difference to before. But 
looking into the mapping with 4 MC one can see something surprising. The natural 
mapping is not the perfect one anymore. The cluster is still perfectly used, but 
some consecutive mesh rows (Intel) or columns (Best 4MC) are switched. This can 
be seen in the figures 6.2.4.22 and 6.2.4.23. 

In general for 4 memory controllers the best configuration for Tiled-MapReduce and 
Pipelined merge sort is still the best one that can be used. Even though it cannot play out its 
advantages for cases where not all cluster tiles are used, it is better in 6 out of 9 cases. 

The configuration with 8 memory controllers is still better than all 4 memory controller 
configurations. 

Taking a look into the results with 12 memory controllers, one can see nearly no difference. 
But with a very small gap the Tiled-MapReduce configuration is winning the comparison. 

The following figures are a selected set of the results mentioned above. They visualize the 
mapping as already introduced in the previous chapters. But this time the mapping is more 
detailed. One can see the node indexes in the tile it is mapped to. The mapping of mesh 
index to the mesh node is working as for the Intel SCC tiles (see chapter 4.3). Also the gap 
value is displayed now. With respect to communication one can see the node to node 
communication load (between the tiles) but the memory communication load is excluded. 

 

Figure 6.2.4.1 - Best 8MC, eps=0.1, zeta=0.1 
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Figure 6.2.4.2 - Intel, eps=0.1, zeta=0.5 

 

Figure 6.2.4.3 - Best 4MC, eps=0.1, zeta=0.5 
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Figure 6.2.4.4 - Best 12MCA, eps=0.1, zeta=0.5 

 

Figure 6.2.4.5 - Intel, eps=0.1, zeta=0.9 
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Figure 6.2.4.6 - Best 4MC, eps=0.1, zeta=0.9, mapping 1 

 

Figure 6.2.4.7 - Best 4MC, eps=0.1, zeta=0.9, mapping 2 
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Figure 6.2.4.8 - Best 8MC, eps=0.1, zeta=0.9 

 

Figure 6.2.4.9 - Best 12MCA, eps=0.1, zeta=0.9 



Page 127 

 

Figure 6.2.4.10 - Best 12MCB, eps=0.1, zeta=0.9 

 

Figure 6.2.4.11 - Intel, eps=0.5, zeta=0.1 
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Figure 6.2.4.12 - Best 8MC, eps=0.5, zeta=0.1 

 

Figure 6.2.4.13 - Best 12MCA, eps=0.5, zeta=0.1 
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Figure 6.2.4.14 - Intel, eps=0.5, zeta=0.5 

 

Figure 6.2.4.15 - Best 4MC, eps=0.5, zeta=0.5, mapping 1 
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Figure 6.2.4.16 - Best 4MC, eps=0.5, zeta=0.5, mapping 2 

 

Figure 6.2.4.17 - Best 8MC, eps=0.5, zeta=0.5 
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Figure 6.2.4.18 - Best 12MCA, eps=0.5, zeta=0.5 

 

Figure 6.2.4.19 - Intel, eps=0.5, zeta=0.9 
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Figure 6.2.4.20 - Best 8MC, eps=0.5, zeta=0.9 

 

Figure 6.2.4.21 - Best 12MCB, eps=0.5, zeta=0.9, natural mapping 
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Figure 6.2.4.22 - Intel, eps=0.9, zeta=0.9, no natural mapping any more  

 

Figure 6.2.4.23 - Best 4MC, eps=0.9, zeta=0.9, no natural mapping any more 
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7. Conclusion 

As first part of this work the steadily growing importance of the many-core research has 
been outlined. Based on the significance of this topic, the idea of this work is to improve the 
processing performance of a modern many-core CPU by finding a perfect memory controller 
placement. Therefore, the Intel SCC was chosen as a famous example for such processors. It 
has been introduced in more detail and explained why the position of a memory controller 
can lead to performance bottlenecks. This CPU is the base for all modeling decisions and 
optimizations found in this thesis. 

The main part was about the pipelined merge sort algorithm. The application of this 
algorithm on the Intel SCC and its optimization were explained in detail. In addition to that 
two other commonly used algorithms - a special form of a MapReduce algorithm and a mesh 
communication based algorithm - were used to demonstrate the applicability of the 
introduced optimization means to different examples. 

This thesis has proven that for the Intel SCC a placement of memory controllers can be found 
that is better than the original one. The positive outcome of adding more memory 
controllers was shown as well. 

The methods described here are still improvable with respect to the annealing 
implementation and the Gurobi parameter tuning. However, these improvements were not 
part of this thesis and could be done in future work. Once this is done other more 
sophisticated parallel algorithms can be further investigated to strengthen the findings of 
this work. However, there is still a chance for other important algorithms to benefit from the 
Intel memory controller design or even different ones than found here. 

But until this is done, the improved memory controller configuration is the best known 
design optimization of the Intel SCC. As already stated in the introduction, the decision of 
Intel to place the memory controllers there where they are now is questionable. This work 
revealed that for certain algorithms the decision is not perfect. This work has also shown 
that more memory controllers are helping in further improving the performance. But more 
memory controllers lead to higher costs of the die and possibly higher temperatures. So it is 
up to the market and engineers to let this be realized or not. 

An interesting aspect that was not part of this work either is the impact of different tile 
structures. This is also regarding the chapter 6.2 where only a 4x6 mesh that can be mapped 
perfectly to the Intel SCC was tested. One such structure that is likely to be seen in future is a 
local network of several many-core units in a single consumer system. They might be 
connected by a slower (compared against the on-chip network) but still fast bus or 
hierarchical routed network. The impact of such computing structures on typical applications 
of the real world would be interesting to see in advance. 
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Abbreviations 

ILP - Integer linear programming, chapter 3.3 

Intel SCC - Intel Single-chip cloud computer, chapter 2 

MC - memory controller, chapter 2 

MIP - Mixed integer programming, chapter 6.2.2 

NUMA - Non-uniform memory access, chapter 1 
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