
PAMOS and PAROS
Parallel Addition of Multiple or Redundant Operands in a Single Word

Klaus Echtle
Institute for Computer Science and Business Information Systems
Dependability of Computing Systems, University of Duisburg-Essen
echtle@dc.uni-due.de

Bernhard Fechner, Jörg Keller
FernUniversität in Hagen, Department of Mathematics and Computer Science
Parallel Computing and VLSI Group, 58084 Hagen, Germany
{Bernhard.Fechner, Joerg.Keller}@fernuni-hagen.de

ABSTRACT: We present two novel addition techniques called PAMOS (Parallel addition of multiple operands
in a single word) and PAROS (Parallel addition of redundant operands in a single word). PAMOS increases the
throughput of a single n-bit adder by carrying out m parallel additions of p bits each. PAROS enhances reliability
by using m identical operands for a redundant computation. Both mechanisms are based on the fact that modern
microprocessors distinguish different operand bit lengths p (which are typically, but not necessarily powers of
two). For p < n the leading n – p bits of an n-bit adder are not used at all. This space can either be used to carry
out multiple additions with different operands or multiple additions with the same operands. The difference to
common SIMD extensions like MMX or SSE is that resources are allocated dynamically and that no extensions
to the instruction set of the processor must be implemented. Furthermore, PAMOS and PAROS can be seen
completely decoupled from underlying hardware resources.
The first experimental results reveal that with an operand bit width of p = 4, at most 16 additions can be carried
out in parallel by a 64-bit adder, and 2.7 in average. Another experiment performed by a static code analysis of
SPECint2006_base benchmarks gave an average speedup factor of 3.19, showing the potential of PAMOS and
PAROS.

1 INTRODUCTION

Modern microprocessors distinguish different ope-
rand bit sizes p as early as in the decode stage.
Usually these have sizes in a power of two. Hence n
– p bits of an n-bit operation unit are not used at all.
This paper shows how to exploit this space to ex-
ecute additions in parallel or redundantly.
Our first technique, called PAMOS (Parallel addition
of multiple operands in a single word), is able to
concurrently execute multiple operand streams on a
single adder, just like in common MMX or SSE in-
struction set extensions [23]. The difference is that
PAMOS has the potential of dynamic resource allo-
cation. Extensions to the instruction are not needed,
thus keeping code compatibility. Typical resource
conflicts [12] (e.g. when two or more threads want to

access a resource simultaneously) concerning arith-
metic units in simultaneous multithreaded (SMT)
systems [11][22] can be reduced, since the band-
width of the concerned resources is increased. Note,
that PAMOS refers to the concurrent execution of
multiple operand streams on a single addition unit
and not the microarchitectural approach in [14],
coining the term multiscalar processors. The second
technique, called PAROS (Parallel addition of re-
dundant operands in a single word) is based on PA-
MOS. Here redundant operands are scheduled onto
an adder. The result is a mixture between temporal
and dynamic structural redundancy. By comparison
of the results we are able to detect faults. In our fault
model we consider both transient bit-flips and per-
manent stuck-at faults of a limited number of bits.

The paper is organized as follows. Section 2 presents
related work. Section 3 depicts our first approach by
regarding arbitrary bit sizes. Section 4 describes the
second approach by regarding fixed operand bit siz-
es. Section 5 presents experimental results; Section 6
summarizes and concludes the paper.

2 RELATED WORK

The number of different summation techniques de-
veloped over the years is nearly countless. Many of
these are based on variations of the parallel prefix
principle. Ladner and Fischer [10] showed that the
outputs of each finite, determined automaton can be
computed simultaneously with techniques based on
the solution of the parallel prefix sum problem. In
their work, Brent and Kung [2] presented the first
representation of a parallel prefix adder working in
O(2log2n-1) time that could be visualized by using
black and gray processors. The carry-skip principle
[3][5][6] can also by applied by propagating a pre-
computed carry over a number of blocks. By intro-
ducing multiple levels as in [8], the Multilevel
Carry-Skip scheme can be applied. The prefix
scheme from Sklansky [7] works in minimal time
O(log n). Han-Carlson [4] presented an almost time-
optimal prefix adder, reducing the space consump-
tion of the Sklansky adder. Tyagi [9] proposed a car-
ry-increment adder-architecture which is similar to
the carry-select adder of Bedrij [1].
The topic of fault-tolerant arithmetic is as old as
fault-tolerance. A general overview over redundant
numbering systems as well as error detection and
correction is given in [15]. Error detection and cor-
rection can be achieved by duplicating or triplicating
hardware [17], respectively. With reduced structural
hardware overhead, error detection can also be
achieved by time redundancy [18] or recomputation
by using shifting operands (RESO)[16]. Further
techniques based on RESO include the recomputa-
tion with swapped operands [19] or the recomputing
with duplication and comparison trying to reduce the
hardware complexity and delay. The recomputation
with shifted or swapped operands covers both tran-
sient and permanent faults.
MMX or SSE instruction set extensions [23] in x86
compatible processors are able to execute multiple
operand streams on a single command and thus in a
SIMD fashion. The instruction itself specifies the
size of the operands and the operation.

PAMOS and PAROS can be implemented in differ-
ent variants, as presented in Sections 3 and 4. In
some variants we have extended previous work [24]
by introducing control bits for each register, indicat-
ing different types of notation, redundant or normal.
The different types allow – besides the check after
an addition – the checking of registers for equality at
any point in time which may be adequate, e.g. at a
latency through a memory operation. Furthermore,
we regard things from a completely different point
of view, mainly the compiler.

3 FIRST APPROACH: ARBITRARY BIT

WIDTHS

The key idea in this work is to get the upper (tempo-
rarily unused) bits of an adder to work. In this point
our effort fundamentally differs from techniques to
speed up the addition itself, as we leave the addition
principle untouched. The first thoughts in this sec-
tion handle a general case, where we do not know
the actual length of the operands. Thus, we have to
determine the last position a carry propagates to.
As our experiments in Section 5 will show the actual
number is typically far below the theoretical average
value for equiprobable operands. Long chains of
leading zeros are frequent!
Remark: When we speak of leading zeroes, we also
include leading ones for negative numbers.
As we have the possibility to concurrently execute
multiple operand pairs, they must be (optimally) dis-
tributed so that we can carry out as many concurrent
additions as possible. The space-optimal dynamic
scheduling of m operands of different widths onto an
n-bit addition unit is a problem similar to the knap-
sack problem which is NP-complete [13]. To work
around this, i.e. to omit the scheduling of operands,
we suggest a simple differentiation according to the
bit width of the operands, deducted from the fact that
e.g. in x86 processors we already have such a dis-
tinction starting from the decode stage, since it is
inbuilt with the type of register we use (i.e. al, ah,
ax, eax, rax). The techniques presented in Section 4
are directly based on this fact. As the possibilities to
distribute the workload are limited (as are the ope-
rand bit widths), the pre-calculated scheduling of
operands onto the adder can be e.g. stored in a ROM.
In the static code experiments in Section 5, we only
distinguish the bit widths induced from the register
choices above.

4 SECOND APPROACH: FIXED OPERAND BIT

WIDTHS

4.1 PAMOS

When we restrict the first approach to a set of fixed
bit widths of the operands, we can use simpler tech-
niques to implement PAMOS. This applies for all of
the three major steps:
 The decision whether operands can be concate-

nated, this means whether the sum of the bit
widths of the operands “information part” is
smaller than the adders bit width n.

 The concatenation of the operands to be added
simultaneously.

 The separation of concatenated operands to pre-
vent undesired flow of carry information between
them.

For the description of PAMOS and PAROS we use
the following notations (Table 1), if not stated oth-
erwise.

Table 1. Notation.
Variable Remark

n Bit width of the adder
m Number of operands to be processed in parallel
p Number of bits of an operand
a First operand
b Second operand
c The sum, result of an addition
w Word, which consists of multiple operands
k Operand index, typical k = 1, ... , m

Figure 1 shows the hardware of an enhanced n-bit
adder for the concatenation of m operands. For each
adder block of bit width p the preceding multiplexers
allow for the selection of operands. Note that the
multiplexers can also select longer operands of bit
width ip, to be added by i adder bocks. This in-
cludes the case where the n-bit adder just adds two
n-bit operands.

Figure 1. An Enhanced n-Bit Adder.

For the other major steps we present several alterna-
tives.

The decision on operand concatenation can be taken
as follows.
Alternative 1: (explained for m = 2)

At first, only one pair (a, b) of operands is consi-
dered. Their upper halves are called ah and bh, the
lower halfs al and bl. The ZERO detector (see
Figure 1) decides whether the upper halves entire-
ly consist of zeroes. To detect the number of lead-
ing zeroes, we can start a binary search from the
most significant bit. This work can be done prior
to the computation, e.g. in a pipelined manner. In
case the upper halves don’t contain even a single
1-bit, the respective adder block can be used to
add a further pair of operands – which must fit in-
to the remaining n/2 adder bits, of course (to be
checked by the same method).

Alternative 2:
The inquiry for leading zeroes is not necessary,
when the operand bit width is known in advance
(from the operands’ register bit width, for exam-
ple).

1
 0

Alternative 3:
Control bits can be introduced for each operand,
signaling, whether an operand is in normal or re-
dundant representation (see section 4.2). We ex-
tend each operand by a control bit sa {normal,
redundant}. For two operands, a, b, we have four
cases, one of which (sa = sb = redundant) is pre-
sented in the next Section.
1. If sa = sb = normal, an n-bit addition is per-

formed.
2. If sa = redundant and sb = normal, the first

operand must be normalized by setting the up-
per n/2 bits to zero (needs two gate delays). A
normal addition will be performed then.

3. The case sa = normal and sb = redundant is
symmetric to the previous case (exchanged
operands).

The mechanism requires that all registers are
equipped with a control bit. The control bit will
be calculated on a load. If the result from an
arithmetic operation is written to the register, we
already calculate the control bit. If not, we must
advance just like in the case of a load.

The third major step is the separation of concate-
nated operands to prevent undesired flow of carry
information. Two alternative approaches can be tak-
en.
Alternative 1:

A multiplexer may either forward or cut all carry
information between the adder blocks assigned to
different pairs of operands. In case of look-ahead
techniques multiple lines are affected.

Alternative 2:
At least one separating 0-bit is inserted between
each pair of adjacent operand pairs, to guarantee
that carry will not propagate further. Each sepa-
rating zero means wasting an adder bit, of course.

PAMOS also works with negative numbers in two’s
complement representation. However, the proces-
sor’s negative flag is only affected by the most sig-
nificant bit. For other results either extra flags or
shift left operations must be implemented. In case of
separating zeroes 1-bits in the gap between adjacent
operands must be deleted after an addition.

4.2 PAROS

PAMOS contributes to fault detection when identical
replicas of the operands are added in parallel. In this
case we speak of PAROS, the parallel addition of
redundant operands in a single word. This approach
requires the following steps (P1 to P6) for
processing two integer addends a and b:
P1. It must be checked whether a and b exhibit a suf-

ficient number of leading zeroes, such that m re-
dundant replicas a1, ... , am and b1, ... bm,
respectively, fit into a single adder-word. For
fault detection purposes duplication (m = 2) is
mostly sufficient, which means n/2 leading ze-
roes at least.

P2. The operands a and b have to be replicated into
m copies each. The replicas are then concate-
nated within a machine word wa = am2(m–1)k–1 +
... + a12(1–1)k as well as in a machine word wb =
am2(m–1)k–1 + ... + a12(1–1)k, where k = n/m.
The words wa and wb consist of n bits each.

P3. In the adder, the flow of carry information be-
tween the replica boundaries has to be inhibited.

P4. The addition of all replicas is performed simulta-
neously by an ordinary n-bit adder. In the result
is the sum wc = cm2(m–1)k–1 + ... + c12(1–1)k

where c1, ... , cm are replicas of the sum a + b.
P5. The replicas c1, ... , cm have to be compared to

each other. Duplication (m = 2) allows fault de-
tection by checking if c1 = c2. Higher degrees of
redundancy (m3) allow even fault masking by
majority voting.

P6. In case of fault detection appropriate exception
handling is required. Otherwise a replica of the
sum, say c1, has to be selected as the final result
c.

All of these steps can be performed by hardware or
by software. In principle we can think of an imple-
mentation (cf. Figure 1) as follows:
I1. Special hardware may count the number of lead-

ing zeroes. Instead, software may check 0 a
2k and 0 b 2k, where k = n/m.

I2. Multiplexers may perform the replication of the
addends a and b. Instead the words wa and wb
may be formed by software, preferably by m
shifts to the left of k bits each, and by or-
connecting all the results of the shifts.

I3. If extra hardware has access to the internals of
the adder, the flow of carry information can be
controlled. Both hardware and software can sup-
press the flow of carry information by the same
approach: Between adjacent redundant replicas

at least one separating bit with the value zero is
inserted.

I4. The addition is always done in hardware, of
course.

I5. Extra hardware may compare the replicas c1, ... ,
cm of the sum, and also take a majority decision
in case m 3. Software may perform these oper-
ations as well. However, comparisons may use
the hardware in a similar way as the addition
does. Consequently, undetectable coincident
faults are not necessarily excluded.

I6. The selection of a final result is a masking opera-
tion, which can be equally done in hardware or
software.

If the comparison (see I5) is performed in hardware
according to Figure 1 the adder itself does not differ
between the parallel addition of different operands
(PAMOS) and the parallel addition of redundant rep-
licas of a pair of operands (PAROS). In the presence
of control bits it decides as follows.
1. If sa = sb = redundant, the mux in the middle of

the adder will be switched to carry-in (cin) and
both additions can be carried out in parallel.
 If cout = 0, the result is in redundant notation.

The zero and negative flags are correct, over-
flow must be set to zero.

 If cout =1, the bit at position n/2 must be set to
one. The zero, negative, overflow and the
carry flags as well as the bit positions n/2 + 1
through n -1 and the s-bit are set to zero,
since the result is in normal notation.

Regarding an implementation within a pipelined
processor, we can execute the redundant compu-
tation in the following clock cycle (in an extra
stage within the arithmetic pipeline) or in the
current cycle, if the adder is not in the critical
path. The normalizing of the result can be done
in the successing cycle. The throughput of the
adder is 1, since in each cycle an addition can be
started.

2. For the remaining cases we carry out the addi-
tions in two consecutive clock cycles. The com-
parison is done the following cycle. Parallel to
the comparison, a test to a possible conversion to
redundant notation can be done. The throughput
is lowered to 1/2, since the adder is blocked for
two clock cycles.

Alternatively, we can frequently check the registers
containing redundant notations for equality, and do a
test for a possible conversion from normal to redun-

dant notation. The definition of the timing interval is
dependent from the performance and energy con-
straints of the final system.

4.3 PAROS seen from the Compiler

In principle, PAROS can be seen from both hard-
ware and software implementations. Obviously the
software solution costs a couple of additional in-
structions to be executed, thus causing a significant
slow-down. On the other hand, hardware has its cost
when implemented as an add-on to an existing de-
sign.
In both cases the overhead (whether runtime or
structural) can be reduced, when we are able to elim-
inate some of the steps (I1-I6) defined just before. In
the following we present an approach suitable for
both hardware and software implementations. It is
based on two ideas:
 Some of the checks can be done before runtime.

When an integer variable is known to have a li-
mited range of values, the permanent existence of
a number of leading zeroes can be concluded.
Such guarantee is even helpful when the limited
range lasts only for some short period, like the
execution of a loop. In many cases knowledge in
this direction is available at compile time (it is al-
so available at program design time, of course,
but we do not want to put this burden to the pro-
grammer). Whenever, the value of an integer va-
riable is known to be sufficiently small an explicit
check on leading zeroes (I1) can be skipped. Si-
milarly, the potential check for a gap for separat-
ing zeroes (part of I1 and I3) can be omitted.

 The second idea is restricted to PAROS. When
some variable is subject to repeated additions, it
need not be replicated before each addition (I2)
and mapped to a single variable value thereafter
(I6). Instead, replication before the first and selec-
tion after the last addition is sufficient. Besides
saving cost and / or runtime this approach has a
further substantial benefit contributing to fault de-
tection as well: The values are stored in their re-
dundant representation. Moreover, on their
transfer to and from the ALU they are redundant
as well. Hence, any data corruption limited to a
number of bits at any point in time during the
complete “redundant interval” can be detected by
the very tests already implemented for checking
the correctness of the adder (I5).

A practical question remains: How frequent are these
“lucky cases”? In the worst case too few leading ze-
ros may diminish the performance advantage of PA-
ROS. In the second worst case, it can only be
applied for a single addition. In the best case the “re-
dundant intervals” last for many operations. The dis-
tribution among these cases is highly program-
dependent. See Section 5 for theoretical and empiri-
cal data.

4.4 Software Examples

There are many cases where the limited range of
values is visible at compile-time, as is illustrated by
the following examples:
 One may use a (signed) integer variable (with 32

bits) to encode system states, where the only op-
erations are assignments (“enter some state”) and
increments (“proceed to next state” or “proceed to
next but one state” etc.). The number of states
may be small (100, for example, which means
always 24 leading zeros).

 Cardinal numbers may be used purely for index-
ing the elements of an array. If the size of the ar-
ray is known, a guaranteed number of leading
zeroes can be concluded thereof.

 Numbers may represent data from sensors which
range of values is known (could be an assertion to
the compiler). Again, this may save many I1- and
I6-operations.

A very simple example for m = 2 should demon-
strate the benefits of PAROS, but also its limitations.
Assume an array a, which elements should be sorted
to ascending order by a naive approach, written in
Java:

int a[] = new int[90];

for (int i = 0; i < 89; i++)

 for (int j = i + 1; j < 90; j++)

 if (a[j] > a[i])

 { int h = a[i]; a[i] = a[j]; a[j] = h;

 }

When this piece of program is compiled it can be
transformed as follows. For better readability we
characterize the object code by using special sym-
bols:

xp means the p bit representation of value x.
–xp means the p bit two’s complement of value x.
(xp:yq:zr) means the concatenation of x, y and z with
 total length of p + q + r bits.

The integers i and j in the given sorting program can
be kept redundant throughout the execution of the
two nested loops.

Outer loop:
 initial assignment: i = (015 : 02 : 015)
 comparison to zero: i + (–8915 : 02 : –8915)
 increment: i = i + (115 : 02 : 115)

Inner loop:
 initial assignment: j = i + (115 : 02 : 115)
 comparison to zero: j + (–9015 : 02 : –9015)
 increment: j = j + (115 : 02 : 115)

For the indexing of array elements by i and j, ad-
dresses have to be calculated which are likely to ex-
ceed 215. Therefore, additional variables x and y
have to be created which take the values of i and j in
a non-redundant way on each iteration of the inner
loop.

 assignment: x = i and (017 : –115)
 assignment: y = j and (017 : –115)
 check: x == i shiftright 17
 check: y == j shiftright 17

Note that the operations in outer and the inner loop
cost identical runtime whether implemented in
hardware or in software. The assignments to x and y
as well as the two subsequent checks are faster when
implemented in hardware. The temporary variables x
and y are used in the address calculation to access
a[x] and a[y] for comparing them, and exchange
them if necessary.
A variety of strategies can be implemented in a
compiler (or pre-compiler) to apply PAROS. At
present, we have studied the usage of array-indexing
variables, as was depicted in the example above. Be-
fore proceeding to further strategies we will evaluate
the statistics on the usage of integer variables (see
Section 5.3).

4.5 Combination of short and long operands

In many cases a “short operand” a (with zeroes only
in its upper half ah) is added to a “long operand” b
(with few leading zeroes). Typical examples are the
additions of offsets to base addresses (as was the
case for the access to array a in subsection 4.4. In
this case standard PAROS cannot be applied due to
the lack a free adder block.
By a dynamic check for zeroes in the leftmost bit of
al and the leftmost bit in bl we can see whether or not

carry information is flowing to the upper half of the
long operand. If this is the case, the addition a + b
must be executed non-redundantly.
Otherwise, however, we can replace the higher half
bh by the lower half bl. Accordingly the lower half of
operand a is doubled. Thus, the adder forms the sum
(bl, bl) + (al, al) = (cl, cl). Since the absence of a carry
between the halves of cl is guaranteed, we can simp-
ly replace the higher half of the result by bh to obtain
the correct result (bh, cl).
The disadvantage of this approach is its limitation to
the cases where specific bits are zero. This is the
case for approximately half of the operands.

4.6 Recovery

What about recovery after error detection? Again,
we distinguish some alternatives:
 For operands in normal representation, the addi-

tion can be carried out a third time, followed by
majority voting over all three sums. In this case,
all additions succeeding the fault must be can-
celled.

 In case of two redundant operands, either the op-
eration can be immediately repeated after the
comparison or, if comparisons are directly done
on registers, a successful check will form a
checkpoint. In case of a fault-revealing test, a
rollback to the last known sane checkpoint must
be done. This is far more complex, but offers
support for other fault-tolerance mechanisms.

5 EXPERIMENTAL RESULTS

5.1 Monte-Carlo experiments

We evaluated the throughput of PAMOS by a
Monte-Carlo experiment. 2·106 equally distributed
random binary numbers of lengths {4, 8, 12, 16, 20,
24, 28, 32} were generated, serving as operands for
the addition. We computed the number of leading
zeroes and determined how many operands can be
scheduled onto a 32 bit addition unit. Figure 2 shows
the results for a window size of four 32 bit operand
pairs. The window size determines the number of
waiting arithmetic operations for each arithmetic
unit and thus the maximal number of concurrent
summations. Figure 2 shows the average number of
additions per clock (APC, left y-axis) and the peak
APC (right y-axis), supposing an addition in a single
clock cycle.

Figure 2. Speedup for binary numbers of length {4, 8, 12, 16,
20, 24, 28, and 32}, window size 4.

With an operand bit width of 4, maximal 16 addi-
tions can be carried out in parallel and 2.7 in aver-
age.

5.2 Livermore Loop 1

To get a first impression on how the PAMOS and
PAROS perform under a certain workload, we ana-
lyzed a kernel (no. 1) from the Livermore loops,
shown in Figure 3.

for (k = 1; k <= 990; ++k) {
/* L1: */
 space1_1.x[k - 1] = spaces_1.q +
 space1_1.y[k - 1]*(spaces_1.r *
 space1_1.z[k + 9] + spaces_1.t*
 space1_1.z[k + 10]);
}

Figure 3: Kernel #1 (Livermore loops)

Table 2 shows the results of an operand analysis,
including operation, frequency and bit width. We
only regarded the topmost zeroes within the ope-
rands.

0

2

4

6

8

10

12

14

16

18

0,0

0,5

1,0

1,5

2,0

2,5

3,0

32 28 24 20 16 12 8 4

P
ar

al
le

l A
d

d
it

io
n

s

Bit width

PEAK APC

AVG APC

Table
kerne
Times
991

990

990

990

990
Weigh

With
weig
of di
rime
num
widt
show
tivat
roes,
data
(PAR

Figur
(Live

e 2. Operation
el no. 1.
s Operat

Compari
through
subtracti
Incremen

Struct-re
addition
tween ad
and valu

Array ac

2 additio
unknown

ht 4 bit: 50
8 bit: 53
12 bit: 8
16 bit: 3
32 bit: 1

h the freque
ghted the pr
ifferent bit w
ents from Fi

mber of paral
ths between
ws the resul
ted, “T” the
, “E” the ex
and “R” t

ROS).

re 4. Average
ermore loops, k

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

2,8

Mo

Parallel
Additions

(avg)

ns and bit wid

tion Oper
ison

ion

First:
Secon
15*4

nt First:
Secon
15* 4

ef.,
be-

ddress
ue

Space
256>s
space
fields
to 6th

ccess Addit
index
1st an
16*4
3rd ar
6*4 b
4th ar
5*4 b

ons,
n size.

32 bit

83/336610.15.
69/336610.16.
359/336610.25.
960/336610.12.
0890/336610.32

encies gain
robability to
widths occu
igure 2 agai
llel addition

n 32 and 64
ts. “-“ deno
e additiona
xecution of
the redunda

speedup for a
kernel #1).

odes

dths within th

rand width
12 bit

nd:
bit, 240*8 bit, 73
4 bit

nd:
4 bit, 240*8 bit, 7
es1_1: 32 bit and
struct>16 byte.

e1_1: 32 bit and 1
s have less than 1
entry in struct.

tion between add
x size:
nd 2nd array:

bit, 240*8 bit, 73
rray:
bit, 240* 8-bit, 74
rray:
bit, 239*8bit, 745
t.

.

.
2.

ned from th
o which diff
ur and condu
in to calcula
ns - this tim
in steps of

otes that the
l inclusion
f experimen
ant executio

a numeric-int

3

he Livermore

36*12 bit

35*12 bit.
8 bit, since

16 bit, since 3
2000 byte and 4th

ress (32 bit) and

34*12 bit.

44*12 bit.

*12 bit.

he analysis,
ferent opera
ucted the ex
ate the poss

me for adder
4 bits. Figu

e mode is de
of trailing

ntally weigh
on of opera

ensive applica

4

5

Bit width

loop

h

 we
ands
xpe-
sible
rs of
ure 4
eac-
ze-

hted
ands

ation

From Figur
boundary o
to the unde
guarantee a
erage? The
ing the res
Figure 5 sh
the redunda

Figure 5. Av
numeric-inten

From Figur
(“R”, traili
experiment
with experi
roes) and 4
two paralle

5.3 Static C

Cint2006_b

As the resu
promising,
we ran the
simulator v
each opera
fixed opera
all benchm
Figure 6
Benchmark

1,8

1,9

2,0

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

32

P
ar

al
le

l A
d

d
it

io
n

s
(a

vg
.)

re 4 we see
of factor 2.
erlying adde
as many as
e question c
ults from F

hows the res
ant executio

verage parallel
nsive applicat

re 5 we see
ing (“T”) a
tal data “-“
imental dat

40 bit includ
el additions

Code Analys

base Experi

ults from th
we continu
SPECint20

valgrind [21
and within
and bit wid

marks until th
shows the

k, y-axis ope

37 42

R--

R-T

RE-

RET

e that it is p
How many
er expecting
two redund
an be is ans

Figure 4 in
sults. Here,
on are inclu

l additions in
ion (Livermor

e that when
and leading
“), we need
a 44 bit (ex
ding trailing
in average.

sis with valg

iments

he Livermo
ued experim
006_base be
1], determin
the ALU.

dths {1, 8, 1
hey finished
e simulatio
erand bit fre

2 47

Bit width

possible to b
y bits must b
g 32 bit ope
dant addition
swered by r
a different
 only the re
ded.

redundant m
re loops, kern

applying re
g zeroes (“-
d 56 bit in
xcluding tra
g zeroes to c

grind and S

re loops we
menting. Th
enchmarks

ning the bit
We disting
16, 32, 64}
d.
on results
equency.

52 57

break the
be added
erands to
ns in av-
rearrang-
context.

esults for

modes for a
nel #1).

edundant
-“), non-
average,

ailing ze-
carry out

SPE-

ere quite
his time,
with the
width of

guish the
 and ran

(x-axis:

62

Figure 6. ALU Operand Bit Frequencies.

We counted one-bit operations, since single bit tests
(BT) are also part of the instruction stream. We addi-
tionally calculated the average percentage of ope-
rands in the Load/Store streams (for completeness)
and the ALU. The results are shown in Table 3. For
the speedup in the last column, we regarded ALU
operations only. The speedup is not given as percen-
tage but as factor.

Table 3. Average Percentage of Operands.
Width Load Store ALU Speedup

1 N/A N/A 17.2133919 11.0165708
8 10.360407 3.25459459 1.56715165 0.12537213

16 1.36096887 0.35923114 0.1837302 0.00734921
32 88.2777974 96.3823611 81.018251 1.62036502
64 0.00082676 0.00381321 0.01747524 N/A

An average speedup factor of 3.19 is reached.
Through reorganization of code, the compiler can
take additional care that more cases of additions with
two redundant operands occur, e.g. (big + small1) +
small2 could be reorganized to (small1 + small2) +
big.

6 SUMMARY, CONCLUSION AND OUTLOOK

In this work, a novel design methodology for addi-
tion has been presented. The technique enables the
execution of multiple or redundant summations
(PAMOS or PAROS, respectively) on a single addi-
tion unit by leaving the addition principle untouched.
PAMOS can be implemented in different variants
with higher or lower amounts of extra hardware, or,
in an extreme case, by software only. The decisions
for the major steps of PAMOS can be taken either
during runtime (by inspection of the operands) or

statically (by referring to the bit width of the ope-
rand’s registers.
PAROS performs additions on replicated operands
to allow for fault detection. The redundant represen-
tation of an operand can be either generated just for
a single addition or for a longer path within the pro-
gram to be executed, thus covering more fault loca-
tions. Moreover, when the redundant representation
is kept throughout a longer program path, even pure
software implementations (or implementation with
only a small amount of additional hardware) are ef-
ficient.
Monte-Carlo experiments have shown that with an
operand bit width of 4, maximal 16 additions can be
carried out in parallel and 2.7 in average. By using
equally distributed binary numbers, we need 24 ad-
ditional bits for the adder to carry out two redundant
additions in average.
We regarded the results from the analysis once more
from a different angle by applying probabilities of
bit widths gained from a Livermore benchmark ker-
nel. According to the results, we weighted the distri-
bution and carried out the experiments again. The
results show, that in this case we will need only 12
or 8 bit (including trailing zeroes) to carry out two
redundant additions in average. Thus, we are able to
reduce the additional hardware complexity to only
37.5% (12 additional bits) in comparison to a 100%
overhead of structural redundant systems. By a static
code analysis of SPECint2006_base benchmarks, we
received an average speedup factor of 3.19. PAROS
and PAMOS seem to be a promising research area in
the future, regarding performance, power consump-
tion, scheduling and reliability aspects. We will con-
tinue our work in this direction by doing an
implementation in hardware.

REFERENCES

[1] Bedrij, O.J.: Carry-Select Adder, IRE Transactions on

Electronic Computers, EC-11(3): 340-346, June 1962.
[2] Brent, R. P.; Kung H. T.: A regular layout for parallel

adders, IEEE Transactions on Computers, C-31(3): 260–
264, March 1982.

[3] Chan P. K. et al: Delay optimization of carry-skip adders
and block carry-lookahead adders, In Proc. 10th Comput-
er Arithmetic Symp., Grenoble, S. 154– 164, June 1991.

[4] Han, T.; Carlson, D. A.: Fast area-efficient VLSI adders,
In Proc. 8th Computer Arithmetic Symp., Como, S. 49–56,
May 1987.

[5] Hobson, R. F.: Optimal skip-block considerations for re-
generative carry- skip adders, IEEE Journal of Solid-
State Circuits, 30(9): 1020–1024, September 1995.

1

10

100

1000

10000

100000

1000000

10000000

10000000

1E+09

1E+10

as
ta

r

gc
c

go
bm

k

gz
ip

h2
64

re
f

hm
m

er

lb
qu

an
tu

m

m
cf

om
ne

tp
p

pe
rlb

en
ch

sj
en

g

xa
la

nc
bm

k

O
p

er
an

d
 F

re
q

u
en

ci
es

I1

I8

I16

I32

I64

[6] Kantabutra, V.: Designing optimum one-level carry-skip
adders, IEEE Trans. on Computers, 42(6): 759– 764, June
1993.

[7] Sklansky, J.: Conditional sum addition logic, IRE Trans.
on Electronic Computers, EC-9(6): 226–231, June 1960.

[8] Turrini, S.: Optimal Group Distribution in Carry-Skip
Adders, Western Research Laboratory (WRL) Research
Report 89/2, 1989.

[9] Tyagi, A.: A Reduced-Area Scheme for Carry-Select Ad-
ders, IEEE Trans. on Computers, 42(10):1162-1170, Oc-
tober 1993.

[10] Ladner, R. E.; Fischer, M. J.: Parallel Prefix computation,
Journal of the ACM, 27(4): 831– 838, October 1980.

[11] Joel S. Emer, “Simultaneous Multithreading: Multiplying
Alpha Performance,” Microprocessor Forum, Oct. 1999.

[12] Nathan Tuck and Dean M. Tullsen. Initial Observations of
the Simultaneous Multithreading Pentium 4 Processor.
Proceedings of 12th Intl Conference on Parallel Architec-
tures and Compilation Techniques, September 2003.

[13] Chapman, W. L., Rozenblit, J., and Bahill, A. T. 2001.
System design is an NP-complete problem: Correspon-
dence. Syst. Eng. 4, 3 (Sep. 2001), 222-229.

[14] Sohi, G. S., Breach, S. E., and Vijaykumar, T. N. 1995.
Multiscalar processors. In Proceedings of the 22nd Annual
international Symposium on Computer Architecture.
ACM Press, New York, NY, 414-425.

[15] B. Parhami. Computer arithmetic and hardware designs,
Oxford University Press, 2000.

[16] Whitney J. Townsend, Jacob A. Abraham, and Earl E.
Swartzlander, Jr. Quadruple Time Redundancy Adders,
18th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 250-256, Cambridge,
MA, November 3-5, 2003

[17] D.P. Siewiorek, R.S. Swarz, Reliable Computer Systems
Design and Evaluation, 3rd ed., A.K. Peters, 1998.

[18] J.H. Patel, L.Y. Fung, Concurrent error detection in ALUs
by recomputing with shifted operands, IEEE trans. on
Comp., vol. 27, pp. 1093-1098, Dec. 1978.

[19] B.W. Johnson, Fault-tolerant microprocessor-based sys-
tems, IEEE Micro, vol. 4, pp. 6-21, Dec. 1984.

[20] B.W. Johnson, J.H. Aylor, H.H. Hana, Efficient use of
time and hardware redundancy for concurrent error de-
tection in a 32-bit VLSI adder, IEEE Journal of Solid-
State Circuits, vol. 23, pp. 208-215, Feb. 1988.

[21] Nethercote, N., Seward, J. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proc. of
the ACM SIGPLAN 2007 Conf. on Programming Lan-
guage Design and Implementation (PLDI 2007), S. 89-
100, 2007.

[22] Dean Tullsen, Susan Eggers, and Henry Levy. Simultane-
ous Multithreading: Maximizing On-Chip Parallelism,
Proceedings of the 22nd Annual International Symposium
on Computer Architecture, June 1995.

[23] T. Podschun. Das Assembler-Buch . Grundlagen, Einfüh-
rung und Hochsprachenoptimierung, ISBN: 978-
3827319296, Addison-Wesley, 2002.

[24] B. Fechner, J. Keller. Efficient Fault-Tolerant Addition by
Operand Width Consideration. In Proc. 6th ARCS Work-
shop on Dependability and Fault-Tolerance, Delft, NL,
March 2009.

