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ABSTRACT: We present two novel addition techniques called PAMOS (Parallel addition of multiple operands 
in a single word) and PAROS (Parallel addition of redundant operands in a single word). PAMOS increases the 
throughput of a single n-bit adder by carrying out m parallel additions of p bits each. PAROS enhances reliability 
by using m identical operands for a redundant computation. Both mechanisms are based on the fact that modern 
microprocessors distinguish different operand bit lengths p (which are typically, but not necessarily powers of 
two). For p < n the leading n – p bits of an n-bit adder are not used at all. This space can either be used to carry 
out multiple additions with different operands or multiple additions with the same operands. The difference to 
common SIMD extensions like MMX or SSE is that resources are allocated dynamically and that no extensions 
to the instruction set of the processor must be implemented. Furthermore, PAMOS and PAROS can be seen 
completely decoupled from underlying hardware resources. 
The first experimental results reveal that with an operand bit width of p = 4, at most 16 additions can be carried 
out in parallel by a 64-bit adder, and 2.7 in average. Another experiment performed by a static code analysis of 
SPECint2006_base benchmarks gave an average speedup factor of 3.19, showing the potential of PAMOS and 
PAROS. 
 
 
1 INTRODUCTION 

Modern microprocessors distinguish different ope-
rand bit sizes p as early as in the decode stage. 
Usually these have sizes in a power of two. Hence n 
– p bits of an n-bit operation unit are not used at all. 
This paper shows how to exploit this space to ex-
ecute additions in parallel or redundantly.  
Our first technique, called PAMOS (Parallel addition 
of multiple operands in a single word), is able to 
concurrently execute multiple operand streams on a 
single adder, just like in common MMX or SSE in-
struction set extensions [23]. The difference is that 
PAMOS has the potential of dynamic resource allo-
cation. Extensions to the instruction are not needed, 
thus keeping code compatibility. Typical resource 
conflicts [12] (e.g. when two or more threads want to 

access a resource simultaneously) concerning arith-
metic units in simultaneous multithreaded (SMT) 
systems [11][22] can be reduced, since the band-
width of the concerned resources is increased. Note, 
that PAMOS refers to the concurrent execution of 
multiple operand streams on a single addition unit 
and not the microarchitectural approach in [14], 
coining the term multiscalar processors. The second 
technique, called PAROS (Parallel addition of re-
dundant operands in a single word) is based on PA-
MOS. Here redundant operands are scheduled onto 
an adder. The result is a mixture between temporal 
and dynamic structural redundancy. By comparison 
of the results we are able to detect faults. In our fault 
model we consider both transient bit-flips and per-
manent stuck-at faults of a limited number of bits.       



The paper is organized as follows. Section 2 presents 
related work. Section 3 depicts our first approach by 
regarding arbitrary bit sizes. Section 4 describes the 
second approach by regarding fixed operand bit siz-
es. Section 5 presents experimental results; Section 6 
summarizes and concludes the paper. 
 
 
2 RELATED WORK 

The number of different summation techniques de-
veloped over the years is nearly countless. Many of 
these are based on variations of the parallel prefix 
principle. Ladner and Fischer [10] showed that the 
outputs of each finite, determined automaton can be 
computed simultaneously with techniques based on 
the solution of the parallel prefix sum problem. In 
their work, Brent and Kung [2] presented the first 
representation of a parallel prefix adder working in 
O(2log2n-1) time that could be visualized by using 
black and gray processors. The carry-skip principle 
[3][5][6] can also by applied by propagating a pre-
computed carry over a number of blocks. By intro-
ducing multiple levels as in [8], the Multilevel 
Carry-Skip scheme can be applied. The prefix 
scheme from Sklansky [7] works in minimal time 
O(log n). Han-Carlson [4] presented an almost time-
optimal prefix adder, reducing the space consump-
tion of the Sklansky adder. Tyagi [9] proposed a car-
ry-increment adder-architecture which is similar to 
the carry-select adder of Bedrij [1].  
The topic of fault-tolerant arithmetic is as old as 
fault-tolerance. A general overview over redundant 
numbering systems as well as error detection and 
correction is given in [15]. Error detection and cor-
rection can be achieved by duplicating or triplicating 
hardware [17], respectively. With reduced structural 
hardware overhead, error detection can also be 
achieved by time redundancy [18] or recomputation 
by using shifting operands (RESO)[16]. Further 
techniques based on RESO include the recomputa-
tion with swapped operands [19] or the recomputing 
with duplication and comparison trying to reduce the 
hardware complexity and delay. The recomputation 
with shifted or swapped operands covers both tran-
sient and permanent faults.  
MMX or SSE instruction set extensions [23] in x86 
compatible processors are able to execute multiple 
operand streams on a single command and thus in a 
SIMD fashion. The instruction itself specifies the 
size of the operands and the operation. 

PAMOS and PAROS can be implemented in differ-
ent variants, as presented in Sections 3 and 4. In 
some variants we have extended previous work [24] 
by introducing control bits for each register, indicat-
ing different types of notation, redundant or normal. 
The different types allow – besides the check after 
an addition – the checking of registers for equality at 
any point in time which may be adequate, e.g. at a 
latency through a memory operation. Furthermore, 
we regard things from a completely different point 
of view, mainly the compiler. 
 
 
3 FIRST APPROACH: ARBITRARY BIT 

WIDTHS 

The key idea in this work is to get the upper (tempo-
rarily unused) bits of an adder to work. In this point 
our effort fundamentally differs from techniques to 
speed up the addition itself, as we leave the addition 
principle untouched. The first thoughts in this sec-
tion handle a general case, where we do not know 
the actual length of the operands. Thus, we have to 
determine the last position a carry propagates to.  
As our experiments in Section 5 will show the actual 
number is typically far below the theoretical average 
value for equiprobable operands. Long chains of 
leading zeros are frequent!  
Remark: When we speak of leading zeroes, we also 
include leading ones for negative numbers.  
As we have the possibility to concurrently execute 
multiple operand pairs, they must be (optimally) dis-
tributed so that we can carry out as many concurrent 
additions as possible. The space-optimal dynamic 
scheduling of m operands of different widths onto an 
n-bit addition unit is a problem similar to the knap-
sack problem which is NP-complete [13]. To work 
around this, i.e. to omit the scheduling of operands, 
we suggest a simple differentiation according to the 
bit width of the operands, deducted from the fact that 
e.g. in x86 processors we already have such a dis-
tinction starting from the decode stage, since it is 
inbuilt with the type of register we use (i.e. al, ah, 
ax, eax, rax). The techniques presented in Section 4 
are directly based on this fact. As the possibilities to 
distribute the workload are limited (as are the ope-
rand bit widths), the pre-calculated scheduling of 
operands onto the adder can be e.g. stored in a ROM. 
In the static code experiments in Section 5, we only 
distinguish the bit widths induced from the register 
choices above.  
 



 
4 SECOND APPROACH: FIXED OPERAND BIT 

WIDTHS 

4.1 PAMOS 

When we restrict the first approach to a set of fixed 
bit widths of the operands, we can use simpler tech-
niques to implement PAMOS. This applies for all of 
the three major steps: 
 The decision whether operands can be concate-

nated, this means whether the sum of the bit 
widths of the operands “information part” is 
smaller than the adders bit width n. 

 The concatenation of the operands to be added 
simultaneously. 

 The separation of concatenated operands to pre-
vent undesired flow of carry information between 
them. 

 
For the description of PAMOS and PAROS we use 
the following notations (Table 1), if not stated oth-
erwise. 
 

Table 1. Notation. 
Variable Remark 

n Bit width of the adder 
m Number of operands to be processed in parallel 
p Number of bits of an operand 
a First operand 
b Second operand 
c The sum, result of an addition 
w Word, which consists of multiple operands  
k Operand index, typical k = 1, ... , m 

 
 
Figure 1 shows the hardware of an enhanced n-bit 
adder for the concatenation of m operands. For each 
adder block of bit width p the preceding multiplexers 
allow for the selection of operands. Note that the 
multiplexers can also select longer operands of bit 
width ip, to be added by i adder bocks. This in-
cludes the case where the n-bit adder just adds two 
n-bit operands. 
 

 
 

Figure 1. An Enhanced n-Bit Adder. 
 
 
For the other major steps we present several alterna-
tives. 
 
The decision on operand concatenation can be taken 
as follows. 
Alternative 1: (explained for m = 2)  

At first, only one pair (a, b) of operands is consi-
dered. Their upper halves are called ah and bh, the 
lower halfs al and bl. The ZERO detector (see 
Figure 1) decides whether the upper halves entire-
ly consist of zeroes. To detect the number of lead-
ing zeroes, we can start a binary search from the 
most significant bit. This work can be done prior 
to the computation, e.g. in a pipelined manner. In 
case the upper halves don’t contain even a single 
1-bit, the respective adder block can be used to 
add a further pair of operands – which must fit in-
to the remaining n/2 adder bits, of course (to be 
checked by the same method). 

Alternative 2:  
The inquiry for leading zeroes is not necessary, 
when the operand bit width is known in advance 
(from the operands’ register bit width, for exam-
ple). 
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Alternative 3:  
Control bits can be introduced for each operand, 
signaling, whether an operand is in normal or re-
dundant representation (see section 4.2). We ex-
tend each operand by a control bit sa  {normal, 
redundant}. For two operands, a, b, we have four 
cases, one of which (sa = sb = redundant) is pre-
sented in the next Section. 
1. If sa = sb = normal, an n-bit addition is per-

formed.  
2. If sa = redundant and sb = normal, the first 

operand must be normalized by setting the up-
per n/2 bits to zero (needs two gate delays). A 
normal addition will be performed then. 

3. The case sa = normal and sb = redundant is 
symmetric to the previous case (exchanged 
operands).  

The mechanism requires that all registers are 
equipped with a control bit. The control bit will 
be calculated on a load. If the result from an 
arithmetic operation is written to the register, we 
already calculate the control bit. If not, we must 
advance just like in the case of a load. 

 
The third major step is the separation of concate-
nated operands to prevent undesired flow of carry 
information. Two alternative approaches can be tak-
en. 
Alternative 1:  

A multiplexer may either forward or cut all carry 
information between the adder blocks assigned to 
different pairs of operands. In case of look-ahead 
techniques multiple lines are affected. 

Alternative 2:  
At least one separating 0-bit is inserted between 
each pair of adjacent operand pairs, to guarantee 
that carry will not propagate further. Each sepa-
rating zero means wasting an adder bit, of course. 

 
PAMOS also works with negative numbers in two’s 
complement representation. However, the proces-
sor’s negative flag is only affected by the most sig-
nificant bit. For other results either extra flags or 
shift left operations must be implemented. In case of 
separating zeroes 1-bits in the gap between adjacent 
operands must be deleted after an addition. 
 
 
 
 
 
 

4.2 PAROS 

PAMOS contributes to fault detection when identical 
replicas of the operands are added in parallel. In this 
case we speak of PAROS, the parallel addition of 
redundant operands in a single word. This approach 
requires the following steps (P1 to P6) for 
processing two integer addends a and b: 
P1. It must be checked whether a and b exhibit a suf-

ficient number of leading zeroes, such that m re-
dundant replicas a1, ... , am and b1, ... bm, 
respectively, fit into a single adder-word. For 
fault detection purposes duplication (m = 2) is 
mostly sufficient, which means n/2 leading ze-
roes at least. 

P2. The operands a and b have to be replicated into 
m copies each. The replicas are then concate-
nated within a machine word wa = am2(m–1)k–1 + 
... + a12(1–1)k as well as in a machine word wb = 
am2(m–1)k–1 + ... + a12(1–1)k, where k = n/m. 
The words wa and wb consist of n bits each. 

P3. In the adder, the flow of carry information be-
tween the replica boundaries has to be inhibited. 

P4. The addition of all replicas is performed simulta-
neously by an ordinary n-bit adder. In the result 
is the sum wc = cm2(m–1)k–1 + ... + c12(1–1)k 

where c1, ... , cm are replicas of the sum a + b. 
P5. The replicas c1, ... , cm have to be compared to 

each other. Duplication (m = 2) allows fault de-
tection by checking if c1 = c2. Higher degrees of 
redundancy (m3) allow even fault masking by 
majority voting. 

P6. In case of fault detection appropriate exception 
handling is required. Otherwise a replica of the 
sum, say c1, has to be selected as the final result 
c. 

All of these steps can be performed by hardware or 
by software. In principle we can think of an imple-
mentation (cf. Figure 1) as follows: 
I1. Special hardware may count the number of lead-

ing zeroes. Instead, software may check 0  a  
2k and 0  b  2k, where k = n/m.  

I2. Multiplexers may perform the replication of the 
addends a and b. Instead the words wa and wb 
may be formed by software, preferably by m 
shifts to the left of k bits each, and by or-
connecting all the results of the shifts. 

I3. If extra hardware has access to the internals of 
the adder, the flow of carry information can be 
controlled. Both hardware and software can sup-
press the flow of carry information by the same 
approach: Between adjacent redundant replicas 



at least one separating bit with the value zero is 
inserted. 

I4. The addition is always done in hardware, of 
course. 

I5. Extra hardware may compare the replicas c1, ... , 
cm of the sum, and also take a majority decision 
in case m  3. Software may perform these oper-
ations as well. However, comparisons may use 
the hardware in a similar way as the addition 
does. Consequently, undetectable coincident 
faults are not necessarily excluded. 

I6. The selection of a final result is a masking opera-
tion, which can be equally done in hardware or 
software. 

 
If the comparison (see I5) is performed in hardware 
according to Figure 1 the adder itself does not differ 
between the parallel addition of different operands 
(PAMOS) and the parallel addition of redundant rep-
licas of a pair of operands (PAROS). In the presence 
of control bits it decides as follows. 
1. If sa = sb = redundant, the mux in the middle of 

the adder will be switched to carry-in (cin) and 
both additions can be carried out in parallel.  
 If cout = 0, the result is in redundant notation. 

The zero and negative flags are correct, over-
flow must be set to zero.  

 If cout =1, the bit at position n/2 must be set to 
one. The zero, negative, overflow and the 
carry flags as well as the bit positions n/2 + 1 
through n -1 and the s-bit are set to zero, 
since the result is in normal notation.  

Regarding an implementation within a pipelined 
processor, we can execute the redundant compu-
tation in the following clock cycle (in an extra 
stage within the arithmetic pipeline) or in the 
current cycle, if the adder is not in the critical 
path. The normalizing of the result can be done 
in the successing cycle. The throughput of the 
adder is 1, since in each cycle an addition can be 
started.  

2. For the remaining cases we carry out the addi-
tions in two consecutive clock cycles. The com-
parison is done the following cycle. Parallel to 
the comparison, a test to a possible conversion to 
redundant notation can be done. The throughput 
is lowered to 1/2, since the adder is blocked for 
two clock cycles.  

 
Alternatively, we can frequently check the registers 
containing redundant notations for equality, and do a 
test for a possible conversion from normal to redun-

dant notation. The definition of the timing interval is 
dependent from the performance and energy con-
straints of the final system.  
 
 
4.3 PAROS seen from the Compiler 

In principle, PAROS can be seen from both hard-
ware and software implementations. Obviously the 
software solution costs a couple of additional in-
structions to be executed, thus causing a significant 
slow-down. On the other hand, hardware has its cost 
when implemented as an add-on to an existing de-
sign. 
In both cases the overhead (whether runtime or 
structural) can be reduced, when we are able to elim-
inate some of the steps (I1-I6) defined just before. In 
the following we present an approach suitable for 
both hardware and software implementations. It is 
based on two ideas: 
 Some of the checks can be done before runtime. 

When an integer variable is known to have a li-
mited range of values, the permanent existence of 
a number of leading zeroes can be concluded. 
Such guarantee is even helpful when the limited 
range lasts only for some short period, like the 
execution of a loop. In many cases knowledge in 
this direction is available at compile time (it is al-
so available at program design time, of course, 
but we do not want to put this burden to the pro-
grammer). Whenever, the value of an integer va-
riable is known to be sufficiently small an explicit 
check on leading zeroes (I1) can be skipped. Si-
milarly, the potential check for a gap for separat-
ing zeroes (part of I1 and I3) can be omitted. 

 The second idea is restricted to PAROS. When 
some variable is subject to repeated additions, it 
need not be replicated before each addition (I2) 
and mapped to a single variable value thereafter 
(I6). Instead, replication before the first and selec-
tion after the last addition is sufficient. Besides 
saving cost and / or runtime this approach has a 
further substantial benefit contributing to fault de-
tection as well: The values are stored in their re-
dundant representation. Moreover, on their 
transfer to and from the ALU they are redundant 
as well. Hence, any data corruption limited to a 
number of bits at any point in time during the 
complete “redundant interval” can be detected by 
the very tests already implemented for checking 
the correctness of the adder (I5). 

 



A practical question remains: How frequent are these 
“lucky cases”? In the worst case too few leading ze-
ros may diminish the performance advantage of PA-
ROS. In the second worst case, it can only be 
applied for a single addition. In the best case the “re-
dundant intervals” last for many operations. The dis-
tribution among these cases is highly program-
dependent. See Section 5 for theoretical and empiri-
cal data. 
 
 
4.4 Software Examples 

There are many cases where the limited range of 
values is visible at compile-time, as is illustrated by 
the following examples: 
 One may use a (signed) integer variable (with 32 

bits) to encode system states, where the only op-
erations are assignments (“enter some state”) and 
increments (“proceed to next state” or “proceed to 
next but one state” etc.). The number of states 
may be small (100, for example, which means 
always 24 leading zeros). 

 Cardinal numbers may be used purely for index-
ing the elements of an array. If the size of the ar-
ray is known, a guaranteed number of leading 
zeroes can be concluded thereof. 

 Numbers may represent data from sensors which 
range of values is known (could be an assertion to 
the compiler). Again, this may save many I1- and 
I6-operations. 

 
A very simple example for m = 2 should demon-
strate the benefits of PAROS, but also its limitations. 
Assume an array a, which elements should be sorted 
to ascending order by a naive approach, written in 
Java: 
 
int a[] = new int[90]; 

for (int i = 0; i < 89; i++) 

  for (int j = i + 1; j < 90; j++) 

  if (a[j] > a[i]) 

  { int h = a[i]; a[i] = a[j]; a[j] = h; 

  } 

 
When this piece of program is compiled it can be 
transformed as follows. For better readability we 
characterize the object code by using special sym-
bols: 

xp means the p bit representation of value x. 
–xp means the p bit two’s complement of value x. 
(xp:yq:zr) means the concatenation of x, y and z with 
 total length of p + q + r bits. 

The integers i and j in the given sorting program can 
be kept redundant throughout the execution of the 
two nested loops. 
 
Outer loop: 
 initial assignment: i = (015 : 02 : 015) 
 comparison to zero: i + (–8915 : 02 : –8915) 
 increment: i = i + (115 : 02 : 115) 
 
Inner loop: 
 initial assignment: j = i + (115 : 02 : 115) 
 comparison to zero: j + (–9015 : 02 : –9015) 
 increment: j = j + (115 : 02 : 115) 
 
For the indexing of array elements by i and j, ad-
dresses have to be calculated which are likely to ex-
ceed 215. Therefore, additional variables x and y 
have to be created which take the values of i and j in 
a non-redundant way on each iteration of the inner 
loop. 
 
 assignment: x = i and (017 : –115) 
 assignment: y = j and (017 : –115) 
 check: x == i shiftright 17 
 check: y == j shiftright 17 
 
Note that the operations in outer and the inner loop 
cost identical runtime whether implemented in 
hardware or in software. The assignments to x and y 
as well as the two subsequent checks are faster when 
implemented in hardware. The temporary variables x 
and y are used in the address calculation to access 
a[x] and a[y] for comparing them, and exchange 
them if necessary. 
A variety of strategies can be implemented in a 
compiler (or pre-compiler) to apply PAROS. At 
present, we have studied the usage of array-indexing 
variables, as was depicted in the example above. Be-
fore proceeding to further strategies we will evaluate 
the statistics on the usage of integer variables (see 
Section 5.3). 
 
 
4.5 Combination of short and long operands 

In many cases a “short operand” a (with zeroes only 
in its upper half ah) is added to a “long operand” b 
(with few leading zeroes). Typical examples are the 
additions of offsets to base addresses (as was the 
case for the access to array a in subsection 4.4. In 
this case standard PAROS cannot be applied due to 
the lack a free adder block. 
By a dynamic check for zeroes in the leftmost bit of 
al and the leftmost bit in bl we can see whether or not 



carry information is flowing to the upper half of the 
long operand. If this is the case, the addition a + b 
must be executed non-redundantly. 
Otherwise, however, we can replace the higher half 
bh by the lower half bl. Accordingly the lower half of 
operand a is doubled. Thus, the adder forms the sum 
(bl, bl) + (al, al) = (cl, cl). Since the absence of a carry 
between the halves of cl is guaranteed, we can simp-
ly replace the higher half of the result by bh to obtain 
the correct result (bh, cl). 
The disadvantage of this approach is its limitation to 
the cases where specific bits are zero. This is the 
case for approximately half of the operands. 
 
 
4.6 Recovery 

What about recovery after error detection? Again, 
we distinguish some alternatives: 
 For operands in normal representation, the addi-

tion can be carried out a third time, followed by 
majority voting over all three sums. In this case, 
all additions succeeding the fault must be can-
celled. 

 In case of two redundant operands, either the op-
eration can be immediately repeated after the 
comparison or, if comparisons are directly done 
on registers, a successful check will form a 
checkpoint. In case of a fault-revealing test, a 
rollback to the last known sane checkpoint must 
be done. This is far more complex, but offers 
support for other fault-tolerance mechanisms. 

 
 
5 EXPERIMENTAL RESULTS 

5.1 Monte-Carlo experiments 

We evaluated the throughput of PAMOS by a 
Monte-Carlo experiment. 2·106 equally distributed 
random binary numbers of lengths {4, 8, 12, 16, 20, 
24, 28, 32} were generated, serving as operands for 
the addition. We computed the number of leading 
zeroes and determined how many operands can be 
scheduled onto a 32 bit addition unit. Figure 2 shows 
the results for a window size of four 32 bit operand 
pairs. The window size determines the number of 
waiting arithmetic operations for each arithmetic 
unit and thus the maximal number of concurrent 
summations. Figure 2 shows the average number of 
additions per clock (APC, left y-axis) and the peak 
APC (right y-axis), supposing an addition in a single 
clock cycle.  

 

 
Figure 2. Speedup for binary numbers of length {4, 8, 12,  16, 
20, 24, 28, and 32}, window size 4. 
 
With an operand bit width of 4, maximal 16 addi-
tions can be carried out in parallel and 2.7 in aver-
age. 
 
5.2 Livermore Loop 1 

To get a first impression on how the PAMOS and 
PAROS perform under a certain workload, we ana-
lyzed a kernel (no. 1) from the Livermore loops, 
shown in Figure 3. 
 
for (k = 1; k <= 990; ++k) { 
/* L1: */ 
 space1_1.x[k - 1] = spaces_1.q + 
 space1_1.y[k - 1]*(spaces_1.r * 
 space1_1.z[k + 9] + spaces_1.t*
 space1_1.z[k + 10]); 
} 

Figure 3: Kernel #1 (Livermore loops) 
 

Table 2 shows the results of an operand analysis, 
including operation, frequency and bit width. We 
only regarded the topmost zeroes within the ope-
rands. 
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Figure 6. ALU Operand Bit Frequencies. 

 
We counted one-bit operations, since single bit tests 
(BT) are also part of the instruction stream. We addi-
tionally calculated the average percentage of ope-
rands in the Load/Store streams (for completeness) 
and the ALU. The results are shown in Table 3. For 
the speedup in the last column, we regarded ALU 
operations only. The speedup is not given as percen-
tage but as factor. 
 

Table 3. Average Percentage of Operands. 
Width Load Store ALU Speedup 

1 N/A N/A 17.2133919 11.0165708
8 10.360407 3.25459459 1.56715165 0.12537213

16 1.36096887 0.35923114 0.1837302 0.00734921
32 88.2777974 96.3823611 81.018251 1.62036502
64 0.00082676 0.00381321 0.01747524 N/A 

  
An average speedup factor of 3.19 is reached. 
Through reorganization of code, the compiler can 
take additional care that more cases of additions with 
two redundant operands occur, e.g. (big + small1) + 
small2 could be reorganized to (small1 + small2) + 
big.  
  
 
6 SUMMARY, CONCLUSION AND OUTLOOK 

In this work, a novel design methodology for addi-
tion has been presented. The technique enables the 
execution of multiple or redundant summations 
(PAMOS or PAROS, respectively) on a single addi-
tion unit by leaving the addition principle untouched. 
PAMOS can be implemented in different variants 
with higher or lower amounts of extra hardware, or, 
in an extreme case, by software only. The decisions 
for the major steps of PAMOS can be taken either 
during runtime (by inspection of the operands) or 

statically (by referring to the bit width of the ope-
rand’s registers. 
PAROS performs additions on replicated operands 
to allow for fault detection. The redundant represen-
tation of an operand can be either generated just for 
a single addition or for a longer path within the pro-
gram to be executed, thus covering more fault loca-
tions. Moreover, when the redundant representation 
is kept throughout a longer program path, even pure 
software implementations (or implementation with 
only a small amount of additional hardware) are ef-
ficient. 
Monte-Carlo experiments have shown that with an 
operand bit width of 4, maximal 16 additions can be 
carried out in parallel and 2.7 in average. By using 
equally distributed binary numbers, we need 24 ad-
ditional bits for the adder to carry out two redundant 
additions in average. 
We regarded the results from the analysis once more 
from a different angle by applying probabilities of 
bit widths gained from a Livermore benchmark ker-
nel. According to the results, we weighted the distri-
bution and carried out the experiments again. The 
results show, that in this case we will need only 12 
or 8 bit (including trailing zeroes) to carry out two 
redundant additions in average. Thus, we are able to 
reduce the additional hardware complexity to only 
37.5% (12 additional bits) in comparison to a 100% 
overhead of structural redundant systems. By a static 
code analysis of SPECint2006_base benchmarks, we 
received an average speedup factor of 3.19. PAROS 
and PAMOS seem to be a promising research area in 
the future, regarding performance, power consump-
tion, scheduling and reliability aspects. We will con-
tinue our work in this direction by doing an 
implementation in hardware. 
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