
Dynamic Routing in Covert Channel Overlays
Based on Control Protocols

Peter Backs, Steffen Wendzel, Jörg Keller
Department of Mathematics and Computer Science, University of Hagen, Germany

Abstract—Covert channels aim to carry information in a way
prohibited by the security policy and can be used to bypass
censorship (e.g. by journalists). To establish secure covert channel
communications, overlay networks with internal control protocols
can be built.

We present a design method for control protocols within
covert channels. Our protocol design provides the advantage of
space-efficiency (in comparison to existing control protocols) and
the advantage of dynamic extensibility. We apply the protocol
design to realize OLSR-based dynamic routing for covert channel
overlays. Our algorithm provides different optimization means
to maximize the covertness and the connection quality of the
channel. The approach is validated by an extensible prototype.

I. INTRODUCTION

Covert channels (CCs) are hidden channels which are not
intended for information transfer at all [1]. The intention of a
CC is to hide the existence of an information flow that possibly
violates a system’s security policy [2]. CCs contribute to the
free expression of opinions since they are useful to bypass
censorship. Basically, network CC are divided into two classes:
storage and timing channels [3]: While storage channels alter
attributes of network packets (e.g. modifying unused bits),
timing channels alter timings or the order of network packets
to signal hidden information [4].

CCs have been a focus of research for decades. The topic
was introduced in [1]; later it was described in [3] and [5].
In the following years, techniques were developed to deal
with the problem of CCs, like the pump [6], covert flow
trees [7], the shared resource matrix (SRM) methodology
[8] and the extended SRM [9], timing channel elimination
through program transformation [10], and machline learning-
based timing channel detection [11].

Existing publications (e.g. [12], [13], [14]) describe how to
implement CCs in network packet data and its timings. CCs
also occur outside of TCP/IP networks, such as in business
processes [2].

Research in the area of CC-internal control protocols (so
called micro protocols, MPs) is required since such protocols
can provide ways to enhance the known CC capabilities by, for
instance, introducing dynamic protocol switches and adapting
the channel configuration to changes in the underlay network
[15]. These capabilities are of importance to provide CC users
(e.g. journalists) advanced means to keep a communication
undetected.

Small MPs for CCs already exist and can be found in
popular tunneling tools like pingtunnel [16] as well as in [17],

but these MPs have a static header design and are not as space-
efficient as our MP, as we show in Sect. II-D.

A challenge in the context of covert communication is to
keep data transfers as small as possible to decrease detectabil-
ity [15]. To achieve such space-efficient communications, we
present the design of a compact MP. This MP is based on the
concept of status updates. A status update is a small data
chunk, sent through a CC. Such a data chunk specifies a
change in at least one setting (e.g. changing the destination
address) of a CC. This concept helps to build more flexible and
more space-efficient covert communications. A status update-
based MP is used to control and dynamically adapt the covert
communication between a sender and a receiver. It allows
establishing of multi-hop CC routes. We are not aware of
a previous MP which is both, dynamic (instead of a static
header, it includes a dynamically configurable header for each
new packet) and space-efficient (packet headers are designed
to be as small as possible), as well as able to be used in
conjunction with dynamic routing.

CC networks, as being overlay networks on the regular
networks and as being similar to ad-hoc networks, comprise
changing components and a changing infrastructure. While
Szczypiorski et al. were the first authors to provide a dynamic
steganographic overlay routing based on the random-walk
algorithm in [18], we present a more-advanced approach based
on the optimized link-state routing algorithm (OLSR). The dy-
namic routing algorithm is based on our previously mentioned
concept of status updates. The presented routing algorithm is
additionally optimized to generate as little overhead as possible
to prevent raising attention.

Our routing algorithm takes into account the user require-
ments according to connection quality and covertness (called
Quality of Covertness, QoC) and provides a maximized covert-
ness, if these requirements can be met. We also propose to
split the CC overlay network in so called agents and drones,
i.e. passive and active routing components to optimize the
covertness of the network.

We have developed an implementation of our status update-
based MP to demonstrate its practicability and to validate
the presented algorithm for dynamic CC overlay routing.
Therefore, an extendible architecture called the Smart Covert
Channel Tool was developed and successfully tested.

The remainder of this paper is organized as follows. Sec-
tion II introduces the basic design principle of our MP.
Section III presents the idea of an optimized CC overlay
routing including the proof of concept implementation while



Section IV concludes.

II. MICRO PROTOCOLS BASED ON STATUS UPDATES

A covert MP is a set of compact messages to be coded as
covert data. A covert MP shares the few bits of space provided
within the CC with the CC’s payload [17]. Since a MP’s data is
placed within the hidden data of a CC, the MP depends on the
security of the CC. The network CC’s security highly depends
on the number of modified bits within a network packet (the
more bits are modified, the more anomaly can be caused).
Thus, CCs often only provide a few bits of space for covert
data within a single packet. Therefore, the tininess of a MP is
mandatory requirement [17].

MP data can include a CC’s meta information like covert
payload size or payload offset, and can provide functionality
like reliability over a set of multiple underlying protocols used
simultaneously [17].

A. Status Updates

In standard network protocols (like IPv4) not all parts of
a header are always used, which means that some parts of a
header are transmitted even if they are unused at the moment
(like sometimes the DSCP bits in IPv4). This problem is
reduced if rarely used functionality is excluded in an optional
header part. This is possible since decades in IPv4 via the
“Options” part of the header. IPv6 includes a similar approach
to build dynamic headers using the field “Next Header” that
extends the IPv6 base header dynamically with additional
functionality. However, IPv4/IPv6 headers contain unused
information nevertheless, i.e. their design is not optimized for
CCs.

A space-efficient concept for protocol headers is the com-
pression for the Serial Line Interface Protocol (CSLIP) [19].
The concept of CSLIP (only transferring changing header parts
for new packets) can be applied to network CCs. It is required
to prevent changes in the network stack’s behaviour for a
network CC because their data must be placed in unobtrusive
changes of network packets to remain undetected [17]. Thus,
we cannot apply such CSLIP-like compression to the cover
data but on the CC-internal MP. A comparison between our
concept and CSLIP can be found in Sect. II-B.

Our status update design for a covert MP is similar to the
IPv6 approach with the difference that the mandatory header
part (called the “Type of Update” (ToU)) has only the size of a
few bits which describe how to interpret the following bits (it
is as if IPv6 would only consist of the “Next Header” field by
default). The information that follows the ToU field depends
on its value.

A simple status update-based covert MP could define the
ToU values as in Tab. I while a full ToU list for a real imple-
mentation will be discussed later (cf. Tab. II). For example, if
a sender would like to re-configure a CC peer between itself
and a new destination peer D to forward all received packets
to D, it would send the bits “01” followed by the destination
address of D. Without status updates, each packet would have
to contain a source address and a destination address, which

results in bigger packets. By using status updates, these ToUs
do only consume space if they are needed. It is important
to understand that it is up to the implementer to choose a
set of ToU commands as well as to define the behaviour of
covert peers, since ToU commands depend on the required
functionality of a CC (e.g. in case there is no “CONNECT”
command, no ToU must be foreseen for the command). The
presented ToUs and the presented CC peer behaviour are only
examples. Fig. 1 illustrates a sample covert communication
using status updates.

ToU Meaning
00 SET SOURCE ADDRESS
01 SET DESTINATION ADDRESS
10 END OF UPDATES
11 PAYLOAD FOLLOWS DIRECTLY (followed

by a length value if payload size varies)

TABLE I
A SAMPLE SET OF STATUS UPDATE MESSAGES

Fig. 1. A sample status update-based CC communication: A sender
configures peer “x” to forward payload to “y”. Afterwards “x” is configured
to accept payload directly.

If a new connection is created, it must be configured.
Therefore, a sequence of status updates (e.g. specifying the
source and destination address) is needed which can also be
obtained by a single static header. This means that there is
no advantage of status updates for an initial covert connection
setup (compared to existing MPs). On the other hand, status
updates are an advantage compared to usual static headers
(like IPv4) if few changes happen within an already estab-
lished CC connection and within payload transfers since the
header size of all non-initial packets is significantly decreased
(because there is no need for an usual and comparatively large
static header).

It is important to minimize the size of the MP header if
its size is not negligible compared to the size of the covert
payload. This can be done by optimizing the number of ToUs
and compress them (e.g. using Huffman coding), see Section
II-D.

B. Building Sequences

To reduce the total number of packets needed for a trans-
mission, it is required to fill out all space provided within each



CC packet. For example, if a network packet would provide 24
bits of space and the ToU field would take only 2 bits while an
overlay address value would require 6 bits, a sequence of ToU
fields could look like in Fig. 2. The figure shows a network
packet’s covert data separated in 3 different areas. First, this
packet includes two status updates: A new source address and
a new destination address for all following packets. To signal
that nothing follows, the set of ToU commands can include
a value that specifies that no additional content follows (in
Tab. I this is called “END OF UPDATES”). This is represented
by the last two parts of Fig. 2. If no “END OF UPDATES”
ToU is foreseen, the order of ToU values should be fixed as
exemplified in Section II-D.

Fig. 2. A simple sequence of MP headers

Ray and Mishra introduced a MP that is split in two parts:
the control part and the payload part [17]. This is different
from our design. The ability of our MP to build sequences
makes it more flexible and able to contain as many parts as
needed. Of course, the set of parts contained in each packet
can be different from earlier packets.

In comparison to the already mentioned CSLIP, our MP is
more dynamic since it allows the same header component to
occur multiple times per packet. CSLIP defines the included
header components using a bit mask. Our status update se-
quences, on the other hand, define the type of update (ToU)
right before each header part. This allows us to combine
multiple packets in one packet using status updates. For
instance, one can send the following sequence to a covert
peer within only one packet: “SET DESTINATION“, new ad-
dress, “PAYLOAD FOLLOWS DIRECTLY”, length=1, pay-
load=“A”, “SET DESTINATION”, new address, “PAYLOAD
FOLLOWS DIRECTLY”, length=1, payload=“B”. CSLIP is
not designed to transfer as few packets as possible, but to
reduce the size of the transferred packets. Our status update-
based sequence allows us to place as much data within a
single packet as possible, i.e. to transfer as few packets as
possible with the goal to reduce the raised attention of the CC
as described in [15].

C. Dynamic Underlying Protocol Change

A dynamic switch of the underlying protocol (e.g. switching
from HTTP to DNS) within a CC can be based on status
updates too if a ToU value is defined to initiate such a protocol
switch. This is feasible since the presented MP does not
depend on specific properties of underlying network protocols.
Switching an underlying network protocol (e.g. transferring
hidden data over HTTP instead of ICMP) can be initiated at
any time. The determination of underlying protocols available
for covert communication was presented in [20] and can
be adapted to our approach. Using MPs, CC systems can

additionally share underlying protocol usage information with
each other and make them version-dependent, i.e. new CC
MP versions can support additional network protocols to
use for the covert communication [15]. This functionality
enables users to upgrade existing CC infrastructure [15] and to
bypass changed filter rules (e.g. a currently utilized underlying
protocol is getting blocked and the CC therefore switches to
another underlying protocol [20]).

D. Re-designing an existing MP

We re-designed the header of the MP presented in [17] as a
status update-based MP. The given MP contains a static 8 bit
header including a sequence number (2 bits), a data flag that
indicates that payload is attached, an acknowledgement flag,
an expected sequence number (2 bits) as well as two other
flags (a start flag and a stop flag) to indicate when covert
communication starts and ends (Fig. 3-a).

With status updates it was possible to reduce the average
size of the existing MP header. This is done as follows: First,
the protocol architect needs to find out which parts of the
given MP header are not always required. In our case the last
two bits (the start flag and the stop flag) are only required if
the covert communication starts or ends. These two bits are
candidates for removal from the default header.

Fig. 3. a) The header from [17], b/c) Re-designed status update headers.

The second step is to build a list of ToUs. In our case
there are two ToUs (Fig. 3-b/c): the default header (without
start/stop flags) and a header that only contains the start/stop
flag. To verify the usefulness of these new status updates, the
protocol architect has to make sure that the size of the ToU
field (in our case it has a size of 1 bit since 1 bit is enough to
identify the two ToUs) is less than the number of bits removed
from the default header. This is important because the ToU
value must be placed in front of any status update. For the
given MP, we were able to shrink the default header from 8
bits to 6 bits. By adding the additional ToU bit, the new default
header has still a size of 7 bits instead of 8 bits. The second
ToU (containing the start flag and the stop flag) requires 3 bits
(one bit for the ToU and two bits for the two flags).

The third step is to verify the usefulness of a new status
update design. This step fully depends on the MP used and
aims to determine whether the new status update-based MP
uses fewer bits in practice compared to the original MP. For



Fig. 4. Comparison of the summarized header sizes of the original MP
and the re-designed MP. The new design is advantageous if a transmission
comprises ≥7 packets (two ToUs, no Huffman) or ≥5 packets (three ToUs,
Huffman).

example, for the given MP, the first as well as the the last
packet of a transmission require a start flag respectively a stop
flag. Therefore we need to send the default ToU plus the start-
stop ToU in both the first and the last packet of a transmission.
Both packets include the combined header which requires 7
bits + 3 bits = 10 bits if we use a pre-defined ToU order (see
Section II-B where status update sequences are described). If
we send two packets, the new MP requires 20 bits instead of
16 bits used by the unmodified MP.

Each packet of a transmission is shortened by 1 bit from 8
to 7 bits, and two packets of 3 bits each are added. Hence,
if there are n > 6 packets, the amount of data is reduced by
n − 6 bits. For large packet count n, the ratio of the total
packet sizes approaches 7/8 when comparing both designs.

Fig. 4 illustrates the summarized size of all headers for
transmissions for different numbers of packets. If 7 or more
packets are sent, the status update-based MP provides a better
space-efficiency. If we split the start and end flag ToU in
two ToUs and use a Huffman coding to gain a 1 bit ToU
for the default header, we can improve the efficiency again,
i.e., only 5 packets per transaction are required for a better
space-efficiency.

However, the discussed MP of Ray and Mishra is designed
for a direct communication between two CC peers and thus,
does not require information about a connection’s source and
destination address. A MP used for a CC overlay in the con-
text of dynamic routing must include source and destination
information. Such address information increases a MP’s size
while being not always needed in each packet. Therefore,
status updates will provide a better space-efficiency for MPs in
dynamic routing overlays as in the discussed case of a direct
communication.

III. DYNAMIC ROUTING IN CC-OVERLAY NETWORKS

CCs which are set up between two peers in a static fashion
are not sufficient for complex covert communication scenarios.
Drawing static CCs is far from the possibilities that can be
realized in large and dynamic networks like the Internet.

A. Motivation of Dynamic Routing

Firstly, it seems obvious that forwarding a concealed mes-
sage across multiple systems and multiple underlying network
protocols of different kind can offer a much higher degree of
covertness in comparison to a direct covert connection. By
redirecting a message via multiple hops, the chance for an
attacker to expose a complete hidden network communication
is decreased. Multi-hop CC can even introduce completely new
security goals: If the original sender and the destination of a
covert message are veiled by communicating through several
covert peers, the actual sender and receiver of the message are
not revealed to an eavesdropper.

Furthermore, participants can join the network, go offline
unexpectedly, crash or change their communication prefer-
ences resulting in overlay networks that may change their
topology. Another reason for a change of topology may be
to explicitly prohibit communication between two peers for
reasons of covertness, i.e. to hide a relation between these
two peers.

To enable multi-hop routing for dynamic covert overlay net-
works, a concept of route maintenance has to be introduced. In
addition, the network routes should be chosen with reference
to specific criteria for covertness and Quality of Service (QoS).
Therefore, dedicated mechanisms for route plotting have to be
introduced as well. Mechanisms for route maintenance and
plotting are widely used in Internet technologies and play a
central role. But there has been no attempt so far to effectively
adapt these technologies for CCs.

In [21] a method is described that targets the dynamic
routing in CC networks: TrustMAS (Trusted Multi-Agent Sys-
tems). The procedure describes a method for peer discovery
and route plotting and a protocol for updating the routing
information. Essentially, the process is based on random walk.
For route plotting a sender of a covert message will decide by
coin-flip if the message is either sent to its destination or to
another peer that forwards the message. Then, the forwarding
peer in turn decides by coin-flip if the message is to be
forwarded to another peer or delivered to its destination. This
procedure is repeated until the message reaches its destination.
The concept also describes a process which determinates the
neighbours of a peer in the overlay based on a random walk.
Therefore the overlay topology is also random.

TrustMAS provides an easy way to manage dynamic CC
networks. In addition, the algorithms scale well with large
numbers of peers. However, routes plotted according to this
concept are not optimal in terms of covertness and QoS.
Besides, there is no possibility to ensure a certain degree
of covertness or QoS. Furthermore the security objective of
concealing the communication between certain peers (and
communication via intermediate peers instead) cannot be met.



This is because the random walk algorithms and the random
overlay topology are not capable of explicitly prohibiting
direct communication between peers. Also, the covert mes-
sages are sent in an uncontrolled fashion from peer to peer
resulting in high delay and jitter. Finally, since packets may
also overhaul, measures must be taken to rearrange packets at
the receiving site to their order of sending.

B. Quality of Service and Quality of Covertness

In many cases, the communication via CCs is very limited
– an example would be a CC that wraps only a few bits of a
covert message into the packets of an underlying communica-
tion which are sent only once every couple of hours, rendering
small bandwidth and high delay or jitter.

For this reason, the quality of the connection must be taken
into account at the time of route plotting. For example, there
are different demands on the connection for the transmission of
a video stream as for the transmission of one single password
[15]. Thus, route plotting in CC networks must respect a
certain set of parameters regarding end-to-end link quality that
are commonly known as Quality of Service (QoS).

Another important aspect of CC communication is that CCs
are based on the concept of security through obscurity, so no
strict separation between “safe” and “unsafe” communication
can be made. Instead, the degree of safety of the CC network is
proportional to its covertness. CC technologies which cause a
slight anomaly are less likely to be detected by an unauthorized
party. On the other hand, CC technologies that cause a high
anomaly increase the likelihood that an attacker discovers the
CC network. Since there is a continuous spectrum of security,
it must be left to the user which level of covertness in the
CC network will be respected. The requirements for QoS are
generally conflicting to those on the safety. To separate the
requirements for QoS and security in the context of covert
communication, the term Quality of Covertness (QoC) is
introduced, summarizing the requirements for the covertness.
QoC does not consider the overhead caused by the routing
protocol. This overhead is based on the design of the routing
protocol itself and the fluctuations of peers in the network. It
cannot be regulated, unless the functionality of the CC network
would be limited. QoC therefore concludes the covertness of a
MP connection in terms of the security of the CC technologies
used and the number of CC hops on the route.

C. Extending the MP with CC routing capabilities

If covert routes should be plotted respecting QoS and QoC,
the peers must be aware of the other peers’ CC capabilities and
the CC network topology. CC capabilities of a peer describe
which CC technologies a peer can handle. The CC network
topology is the network graph that describes which peers may
communicate directly with each other. Such routing informa-
tion is propagated from one peer to another. Based on the
demanded QoC, QoS, network topology and peer capabilities,
a CC route can be plotted and established using status updates
of the MP. We also use status updates for propagation of
routing information. Thus, the list of ToUs of our MP has to

Type of Update Meaning
REQUEST PT TT Used by a peer to request the full peer table and

topology table while bootstrapping.
RESPONSE PT TT Response to REQUEST PT TT.
TT LIST A sequence of edges of the topology graph.

Send on topology changes. Propagated according
to MPRsel.

PT ENTRY A new or updated entry to the peer table. Send
when a peer crashes, goes off, or joins the
network, or changes CC capabilities. Propagated
according to MPRsel.

TABLE II
TYPE OF UPDATE (TOU) VALUES FOR PROPAGATING ROUTING

INFORMATION

be extended by message types that do not update the sending
or receiving state of a peer, but the state of the CC network
topology and the peer’s CC capabilities. Besides the ToU used
for establishing routes and sending messages, four additional
ToUs for propagating routing information are required (Tab. II
shows a complete ToU list for our implementation).

D. Agents and Drones

If a CC network is only known by trusted users, it is unlikely
that a participant will compromise it. So the approach is that
a CC network consists of trusted users only. This requirement
is linked to a considerable disadvantage: The CC networks
are smaller because the number of users trusting each other is
naturally small. But small CC networks pose the risk that not
enough peers are available to the network to provide enough
concealment. Yet worse, a CC network of only two participants
would not be able to hide that these two systems actually
communicate with each other. The number of possible routes
in the CC network is also small, so that bottlenecks may occur,
causing a severe anomaly in the underlying network.

In order to counteract the problems which result from small
CC networks, it seems straight forward to increase the number
of peers in the network. That could be realized if users run
multiple peers in a CC network. However, this is difficult as the
operation of several systems can often result in a considerable
administrative and financial burden.

A better way to artificially increase the peer count is to use
external systems as CC peers, which provide public available
Internet services. Examples for such external CC peers are the
servers of Google translator and the DNS servers:

Google translator servers may be used as a hop on a
route in CC networks as described in [22]. A server of
Google’s translation service is sent a request to translate a
specified website. The Google server loads the web page to
be translated, translates it and sends the translation to the
sender of the request. However, the original URL requested
for translation may has a parameter string according to CGI
(Common Gateway Interface) appended. This parameter string
is handed over to the web server with the website to be
translated. Now if the website is run by a peer in a CC network,
then the CGI parameters may contain a CC message. This way
a covert message can be transferred with Google translator



server as an external CC hop. This approach may work well
with other services on the web, too.

Another way of including external systems in the overlay
network is a special use of DNS. On request for resolving a
DNS RR (Resource Record) that has expired, the DNS server
has to update this RR at another DNS server. This RR update
communication may also be used as a CC with the DNS server
that receives the originating request as an external hop. An
advanced implementation of CCs in DNS amongst others is
described in [23].

These servers are not under the control of a CC user,
and in particular, they do not execute any dedicated CC
software. They can therefore not be regarded as peers with full
functionality as those which implement a MP, but as passive
participants. So they are referred to as drones. In contrast,
peers running the CC software are called agents. Drones are
limited in their functionality as a CC peer. They typically
support only a few or even only one CC technology – namely
the ones that can be embedded into the traffic of the web
service provided. The difference between drones and agents is
visualized in Fig. 5. Notwithstanding these limitations, drones
are a comfortable way to expand a CC network with external
systems as peers in a way that CCs can be established over a
large number of CC-hops even on overlay networks with just
a few users. Since drones can be external systems (i.e. public
web services), they do not necessarily require to be aware of
the covert communication.

Fig. 5. Procedure of CC communication with and without a drone.

It is also conceivable to connect more than one drone in
a row to form a CC. Since the sender has to encapsulate
the covert messages into the underlay communication of each
drone in the row, such connections will be considered as only
one CC hop.

E. Routing

Routing in CC networks differs substantially from other
routing techniques, such as on the Internet. The most important
aspects amongst others are:

1) The routing overhead should be reduced as much as
possible. In context of a CC this is necessary to keep a
low profile.

2) The CC network topology may change faster than in
less dynamic networks like the Internet. Links between
peers can be dissolved or set by intention. Therefore a
CC routing protocol must be capable of adapting quickly

to topology changes. The raised attention by propagating
topology change information must also be kept as low
as possible.

These special requirements for dynamic routing in CC net-
works seem similar to those set for mobile ad hoc networks. It
is therefore obvious that routing methods have been developed
that could serve as a basis for a routing protocol in CC
networks.

In addition to the above points, it is considered that the
MP is used. That means the source node plots the route to
the destination node and sets each peer along the path to
status “Forward” or “Receive”. By these properties, the MP is
to be classified as a source-routing protocol. Another aspect
that implies a source-routing protocol is that the fulfillment of
QoS and QoC requirements is controlled at a central point,
and thus ensured more easily and without any additional
communication overhead.

Since source-routing protocols are link-state routing proto-
cols, mechanisms must be implemented to render the complete
graph of the CC network in each peer – more precisely in
all agents, since drones do not execute the CC software. The
routing protocol should introduce as little routing overhead
as possible. Optimized Link State Routing (OLSR) meets the
above requirements. Furthermore, in a comparison of link-state
protocols, OLSR is superior in terms of small overhead [24].

F. Smart CC networks

The presented method for routing in dynamic CC networks
is called Smart CC (SCC). SCC is based on OLSR and addi-
tionally takes the specifics of CC into account, i.e. to support
QoS and QoC and to respect the distinction between agents
(full CC capabilities) and drones (reduced CC capabilities).
Drones do not plot routes and therefore do not need any
topology information, i.e. they do not need to participate in
the link-state process of OLSR.

The fact that the CC network has drones which do not
actively propagate link-state information could render the
network graph in a state at which OLSR cannot operate
properly. This happens when the graph of the CC network is
discontinuous without drones. If that is so, the subgraphs are
called agent clusters. Agent clusters are a special case when
the propagation of routing information cannot be sent directly
from one agent to another, but via a drone.

Nevertheless, the normal case is that routing information
is resent to all neighbouring agents at the time of reception.
Since the simple concept of flooding results in a great anomaly
in the underlay network, routing information is propagated
in a method similar to that of OLSR. OLSR introduces
Multi-Point-Relay selection (MPRsel), a set of peers that is
determined independently for each agent. Upon reception of
routing information message, the message is resent if and only
if the sender of the message is in MPRsel of the receiving
peer. MPRsel is determined in such a way, that the number of
resends is optimal in most cases.

In comparison to the propagation of routing information in
OLSR therefore, two extensions are necessary:



Fig. 6. A Smart CC network with agents, agent clusters and drones.

• The determination of MPRsel must mind that routing
information is only sent to drones if it is necessary to
connect two agent clusters.

• Routing information is broadcasted only to neighbouring
agents, not drones.

The algorithm for plotting routes in CC networks based
on the distributed link state information mainly consists of
a function that is derived from Dijkstra’s Shortest Path First
algorithm in a way that it respects the users parameters in
terms of QoS and QoC.

G. Proof of Concept Implementation

Based on the work in the previous sections, the Smart
Covert Channel Tool (SCCT) was developed that enables
dynamic routing in networks based on a MP.

The software was designed as a modular architecture. The
modules either form a layer or an auxiliary module of a
layer. Similar to the OSI reference model, these layers provide
functionality abstracted from higher layers. This ensures that
layers can be easily replaced without changing the entire
program architecture. In addition, each component is a closed
software module with a structured interface that makes the
software easier to test and maintain in comparison to a
monolithic architecture. According to the architecture, several
test routines for unit testing of modules have been developed
to help increasing the software quality. First of all these unit
tests cover the complex calculation of MPRsel and broadcast
neighbours. The plotting of covert routes using given QoS and
QoC parameters is heavily tested, too.

Fig. 7 shows the modules of SCCT. The lowest layer is
formed by the implementations of different CC technologies.
Each of these technologies can be used to communicate via a
CC of a certain kind. A CC technology is not capable of setting
up multi-hop CC routes in the network, but builds a connection
between two agents. The functionality of establishing multiple
CC-hop routes is featured in the higher layers.

The central component of the application is the implemen-
tation of the MP as described. ToU for configuring peers

Fig. 7. SCCT software component model.

to forward an receive covert messages are provided. Route
calculation and storing the network structure information are
implemented in the auxiliary components topology table (TT)
and peer table (PT). TT renders the adjacency matrix of the CC
network graph and offers functionality to determinate MPRsel.
The auxiliary component PT basically consists of a table
describing the peers of the CC network and their properties.

The module Smart CC (SCC) provides an abstraction layer
for the functionalities of the lower layers. At SCC layer it is
possible to plot and establish a multi-hop connection via MP
that meets a user-defined set of requirements for QoC and
QoS with a single function call. In the layer SCCT a user
interface is implemented that translates the user’s commands
into function calls to the other layers.

SCCT has been tested in serveral virtual network scenarios
which simulate real CC networks. These scenarios include
overlays with up to three agent clusters connected via two
drones. The test networks had either been pre-configured
in each peer to avoid initial routing overhead or built up
automatically by learning the overlay topology from other
peers.

H. Benefits of a CC API

The CC Technology API (CCT-API) provides a way for
easy integration of different CC technologies into SCCT. As
CCs and thus SCCT are based on security through obscurity,



introducing such an option is advantageous. CC technologies
may be replaced, added or changed as needed for each
CC network or user group and these own CC technologies
remain secret within this group. Furthermore, users of the
SCCT networks only need to implement new CC technologies
according to the CCT-API and not the full functionality of a
CC network program.

The CCT-API allows integration of CC technologies regard-
less of their classification. Thus, covert storage channels as
well as covert timing channels may be used in SCCT. For
indirect communication via drones, specific CC technologies
can be developed and marked as such.

SCCT was developed as a proof of concept, which means
the software’s intention for production use is limited. However,
the software meets the most important functions for dynamic
routing networks in CC networks:

• Establishing and disconnecting CC-routes using the MP,
• support of drones,
• consideration of requirements for QoS and QoC,
• dynamically adding peers to the CC network,
• automatic propagation of routing information.

IV. CONCLUSION

We presented a design technique for covert channel-internal
control protocols to optimize their space-efficiency as well
as to enable a dynamic header design to reduce the raised
attention of a covert channel. Our evaluation indicates that this
space-efficient approach can perform better than an already
space-efficient research protocol if at least five packets are sent
per transaction. We expect larger space-efficiency improve-
ments in comparison to non-optimized control protocols and
control protocols for the dynamic routing in CC overlays since
larger header components (such as addresses) can be removed
from most packets if our status update approach is applied.

Based on this optimization technique, we realized the first
OLSR-based dynamic routing for covert channel overlays. Our
dynamic routing comprises the idea of Quality of Covertness
(QoC) to optimize the covertness of a routing path as well
as the usage of active and passive components (agents and
drones) that either participate in the dynamic routing process
or simply forward data without a necessary covert channel
awareness.

We developed an extensible proof of concept implemen-
tation called the smart covert channel tool (SCCT) that is
capable of utilizing different modular covert channel tech-
niques simultaneously and of adapting to changes in the
underlying network (e.g. administratively blocked protocols)
using protocol switching. The supported techniques are linked
to QoC and QoS values which are taken into account for
the dynamic routing computation. The implementation has
been verified by unit tests and simulated real-world scenarios
consisting of several agents and drones.

In future work, we will compare the space-efficiency of our
MP to non-research MPs as well (such as the pingtunnel pro-
tocol). We also plan to provide inter-operability for networks
using different MPs via protocol translating gateway systems

for CC overlays. Additionally, we plan the further development
of SCCT to enable the handling of dead peers and the support
of peers behind NAT.

REFERENCES

[1] B. W. Lampson, “A note on the confinement problem,” Commun. ACM,
vol. 16, no. 10, pp. 613–615, 1973.

[2] C. Wonnemann, R. Accorsi, and G. Müller, “On information flow
forensics in business application scenarios,” IEEE COMPSAC Workshop
on Security, Trust, and Privacy for Software Applications, IEEE, pp.
324–328, 2009.

[3] Department of Defense, “Trusted computer system evaluation criteria
(TCSEC),” Aug 1985.

[4] S. Zander, G. Armitage, and P. Branch, “Covert channels and coun-
termeasures in computer network protocols,” IEEE Comm. Magazine,
vol. 45, no. 12, pp. 136–142, Dec 2007.

[5] J. P. R. Gallagher, Ed., A Guide to Understanding Covert Channel
Analysis of Trusted Systems (NCSC-TG-030). National Computer
Security Center, Nov 1993.

[6] M. H. Kang, I. S. Moskowitz, and S. Chincheck, “The pump: A decade
of covert fun,” in ACSAC. IEEE Computer Society, 2005, pp. 352–360.

[7] P. A. Porras and R. A. Kemmerer, “Covert flow trees: A technique for
identifying and analyzing covert storage channels,” in IEEE Symp. on
Security and Privacy, 1991, pp. 36–51.

[8] R. A. Kemmerer, “Shared resource matrix methodology: an approach
to identifying storage and timing channels,” ACM Transactions on
Computer Systems, vol. 1, no. 3, pp. 256–277, 1983.

[9] J. McHugh, “An information flow tool for Gypsy - an extended abstract
revisited,” in 17th Annual Computer Security Applications Conference,
2001, pp. 191–201.

[10] J. Agat, “Transforming out timing leaks,” in Proc. 27th ACM Symp. on
Principles of Programming Languages. ACM Press, 2000, pp. 40–53.

[11] S. Zander, “Performance of selected noisy covert channels and their
countermeasures in ip networks,” Ph.D. dissertation, Centre for Ad-
vanced Internet Architectures, Swinburne University of Technology,
2010.

[12] C. H. Rowland, “Covert channels in the TCP/IP protocol suite,” First
Monday, vol. 2, no. 5, p. http://firstmonday.org/htbin/cgiwrap/bin/ojs/ind
ex.php/fm/article/view/528/449, May 1997.

[13] T. G. Handel and M. T. Sandford, II, “Hiding data in the OSI network
model,” in Proceedings of the First International Workshop on Informa-
tion Hiding. London, UK: Springer-Verlag, 1996, pp. 23–38.

[14] S. Cabuk, C. E. Brodley, and C. Shields, “IP covert timing channels:
design and detection,” in ACM Conference on Computer and Commu-
nications Security, V. Atluri, B. Pfitzmann, and P. D. McDaniel, Eds.
ACM, 2004, pp. 178–187.

[15] S. Wendzel and J. Keller, “Low-attention forwarding for mobile network
covert channels,” in Proc. of the 12th Conference on Communications
and Multimedia Security, ser. LNCS, vol. 7025. Springer Verlag, 2011,
pp. 122–133.

[16] D. Stødle, “Ping tunnel – for those times when everything else is
blocked,” 2009, http://www.cs.uit.no/˜daniels/PingTunnel/.

[17] B. Ray and S. Mishra, “A protocol for building secure and reliable covert
channel,” in PST, L. Korba, S. Marsh, and R. Safavi-Naini, Eds. IEEE,
2008, pp. 246–253.

[18] K. Szczypiorski, I. Margasinski, and W. Mazurczyk, “Steganographic
routing in multi agent system environment,” CoRR, vol. abs/0806.0576,
p. http://arxiv.org/abs/0806.0576, 2008.

[19] V. Jacobson, “Compressing TCP/IP headers for low-speed serial links
(RFC 1144),” Feb 1990, http://www.rfc-editor.org/rfc/rfc1144.txt.

[20] F. V. Yarochkin, S.-Y. Dai et al., “Towards adaptive covert communica-
tion system,” in PRDC. IEEE Computer Society, 2008, pp. 153–159.

[21] K. Szczypiorski, I. Margasinski et al., “TrustMAS: Trusted communi-
cation platform for multi-agent systems,” in Proceedings of the OTM
2008, ser. LNCS, vol. 5332. Springer, 2008, pp. 1019–1035.

[22] M. Memelli, “g00gle crewbots,” 2007, http://gray-
world.net/projects/papers/gbots-1.0.txt.

[23] L. Nussbaum and O. Richard, “On robust covert channels inside DNS,”
in 24th IFIP International Security Conference, ser. IFIP Advances in
Information and Communication Technology, vol. 297, 2009, pp. 51–62.

[24] I. Glaropoulos, A. Makris, and B. Tighnavard, “Performance analysis
of OLSR and comparison with OSPF and AODV,” School of Electrical
Engineering, KTH, Sweden, Tech. Rep., 2010.


