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Universitätsstr. 1, D-58084 Hagen
Joerg.Keller@FernUni-Hagen.de

Abstract. We show how data parallel operations can be implemented on a Global Cellular Automaton
(GCA). For this purpose we implement a number of frequently used functions of the language APL.
APL has been chosen because of the ability to express matrix and vector operations in a short and
concise manner. It is shown how various operations on vectors and matrices can be executed through
the execution of appropriate GCA generation computations. Finally the architecture of the underlying
GCA machine is presented which interprets GCA instructions in a pipelined manner and using several
memories.

1 Introduction

The GCA (Global Cellular Automaton) model [1–3] is an extension of the classical CA (Cel-
lular Automaton) model [4]. In the CA model the cells are arranged in a fixed grid with fixed
connections to their local neighbors. Each cell computes its next state by the application of
a local rule depending on its own state and the states of its neighbors. The data accesses to
the neighbors states are read-only and therefore no write conflicts can occur. The rule can
be applied to all cells in parallel and therefore the model is inherently massively parallel.
The GCA model is a generalization of the CA model which is also massively parallel. It is
not restricted to the local communication because any cell can be a neighbor. Furthermore
the links to the “global” neighbors are not fixed; they can be changed by the local rule from
generation to generation. Thereby the range of parallel applications for the GCA model is
much wider than for the CA model.

The CA model is suited to all kinds of applications with local communication. Typical
applications for the GCA model are – besides all CA applications – graph algorithms, hyper-
cube algorithms, logic simulation, numerical algorithms, communication networks, neuronal
networks, games, and graphics.

The general aim of our research (project “Massively Parallel Systems for GCA” sup-
ported by Deutsche Forschungsgemeinschaft) is the hardware and software support for this
model [5].

In this paper we show how APL instructions on matrices and vectors can be imple-
mented by a hardware architecture which supports the GCA model. APL (A programming

Language) was defined 1963 by K. Iverson. His book [6] is a rich source for complex parallel
operators. APL is a data parallel language, which allows describing algorithms in a very
concise form. Data parallel languages such as Fortran 90 are wide in use for scientific codes,
requiring high performance general-purpose computers. As a GCA can be implemented very
efficiently on an FPGA, we map data parallel functions on a GCA. The GCA can be used to
provide a lower cost alternative platform providing high performance for such computations.

The Global Cellular Automaton model. A GCA consists of an array of cells. Each
cell contains a data field d and one ore more pointer fields p. A cell k dynamically establishes
a link to any other cell (the global cell) identified by a pointer p. The local information (d, p)



and the global information (d∗, p∗) is input of the functions fd and fp which compute the next
data and the next pointer respectively. All cells are updated in parallel in a synchronous way.
The assignment symbol “⇐” is used to indicate the synchronous updating. The function
fd and fp may further depend on the space index k of the cell (corresponding to the cell

identifier used in the following sections) and central control information. Typical central
control information is the generation counter t, an additional operation code, address offsets
or general parameters. The operation principle of a basic GCA can be described by the
following rules:

d ⇐ fd(d, p, d∗, p∗, k, control), p ⇐ fp(d, p, d∗, p∗, k, control).

Note that d = D[k], p = P [k], d∗ = D[P [k]] and p∗ = P [P [k]] if the arrays D and P are
used to store the cells.

A GCA can also be condensed to the form

p = fp(d, k, control), d ⇐ f(d, d∗, p, k, control).

The assignment symbol “=” indicates that a value is assigned to the temporary pointer
variable p which may be a wire or a temporary register in a hardware implementation. We
will use the condensed model in the following sections because this is sufficient to implement
data parallel functions.

2 Mapping of APL variables and APL operators

APL variables are scalars, vectors or matrices of integers, reals, booleans or characters. In
this paper we assume for simplicity that the elementary data type is integer. It is assumed
that all variables are stored as GCA cell arrays in a common cell memory. The memory cells
are identified by their identifiers (or addresses) ranging from 0 to N−1 if the capacity of the
memory is N cells. Thus a cell can be accessed through its unique cell identifier (Cell-ID).

A central object memory table is used apart from the cell memory to store general
information for each variable which can be either a scalar, or a vector or a matrix. This
information is the same for every variable X and consists of three entries:

– start(X) the first cell identifier of the variable X (the start position),
– rows(X) the number of rows,
– cols(X) the number of columns.

The introduction of an object table is useful because it allows managing a set of cell
objects. Also the information in the object table is variable and it can be adopted to the
problem or for dynamic memory allocation during runtime. If the object information is fixed
on the other hand, in the hardware design the variables can be treated as constants in order
to minimize the resources, e. g. by the use of specialized functions.

In order to compute the identifier (linear index, address) of a cell in the memory, the id
function was defined. For a given element (y, x) of matrix B its identifier is calculated by

id(B(y, x)) = (y · cols(B) + x) + start(B).

The following operations have been chosen as examples of frequently used matrix oper-
ations in order to show their implementation on a condensed GCA:

– Transposition of a matrix
– Indexing function for rows and columns
– General indexing



– Horizontal and vertical rotation

We assume that all objects including the target have the required size and are already
allocated in the memory and object table. For all following operations it is only necessary
to calculate an update of the cells of the target structure. The other cells remain unchanged.

Transposition of a matrix. This operation exchanges the values at the position (i, j)
with the values at the position (j, i). The following APL instruction realizes this function:MC 
 � MB ææ Targetmatrix 
 � Sourematrix

Only one generation is needed to achieve the transpose of the source matrix in the GCA
field. The values of the source matrix at the position (j, i) are copied to the cells at the
position (i, j) in the target matrix.

MC: p = id(MB(j, i)), d ⇐ d∗

It is also possible to use the same matrix as source and target (MA 
 � MA). The cells
can directly be reordered in the cell array after having set the cell pointers properly. Note
that also the number of rows and the number of columns in the object table have to be
interchanged.

cols(MA) ⇐ rows(MA), rows(MA) ⇐ cols(MA)
MA: p = id(MA(i · cols(MA) + j%rows(MA), i · cols(MA) + j/rows(MA))), d ⇐ d∗

Indexing function for rows. As an example for this operation the following APL
instruction is used:MA 
 MB[IV;℄ ææ Targetmatrix 
 Sourematrix[Indexvetor;℄

The index vector IV is interpreted as a matrix with one column. It contains row indices.
The ith element of IV defines the index of the row of the source matrix which is assigned to
the ith row of the target matrix. A typical application for this operation is the permutation
of rows.

In the condensed GCA model this operation can be executed in two generations. In the
first generation the contents of IV are copied into each column of MA. In the second gen-
eration this value d is used to compute the cell identifiers of the cells in row d of the source
matrix. The values of the selected source matrix rows are then copied into the rows of the
target matrix.

1st Generation: MA: p = id(IV(i, 0)), d ⇐ d∗

2nd Generation: MA: p = id(MB(d, j)), d ⇐ d∗

Indexing function for columns. The instruction for this operation reads in APL as
follows:MA 
 MB[;IV℄ ææ Targetmatrix 
 Sourematrix[;Indexvetor℄

This operation works like the previous one, only that columns and rows are interchanged.
A typical application is the permutation of columns.

1st Generation: MA: p = id(IV(j, 0)), d ⇐ d∗



2nd Generation: MA: p = id(MB(i, d)), d ⇐ d∗

General indexing function. The indexing functions can be generalized using an index
matrix IM. Thereby the rows or columns can individually be indexed. This operation is not
directly supported by APL. It can be implemented with two generations.

1st Generation: MA: p = id(IM(i, j)), d ⇐ d∗

2nd Generation for permuting the rows: MA: p = id(MB(d, j)), d ⇐ d∗

2nd Generation for permuting the columns: MA: p = id(MB(i, d)), d ⇐ d∗

Horizontal rotation. In this operation each row of the source matrix undergoes a cyclic
left shift. In APL the instruction looks like this:MA 
 S � MB ææ Targetmatrix 
 Salar � Sourematrix

Two generations are needed to execute this operation. In the first generation the column
positions of the global cells (S positions to the right from the actual cell) are computed
using the scalar value. The result is saved in the cells d of the target matrix. In the second
generation the global cells located in MB are accessed through id(MB(i, d)) and copied to
MA.

1st Generation: MA: p = id(S(0, 0)), d ⇐ (j + d∗)%cols(MA)
2nd Generation: MA: p = id(MB(i, d)), d ⇐ d∗

Vertical rotation. In the vertical rotation each column of the source matrix undergoes
a cyclic shift upwards.MA 
 S � MB ææ Targetmatrix 
 Salar � Sourematrix

As for the horizontal rotation two generations are needed to execute this operation. In
the first generation the row positions of the cells to be accessed are computed. The shifted
values of the source matrix are then copied to MA in the second generation.

1st Generation: MA: p = id(S(0, 0)), d ⇐ (i + rows(MA) − d∗)%rows(MA)
2nd Generation: MA: p = id(MB(d, j)), d ⇐ d∗

3 Architecture of a GCA machine

In this section we present an architecture of a GCA machine. The GCA machine interprets
GCA instructions for the condensed GCA model. The described APL instructions can easily
be executed on this machine which was verified with a simulator written in Java. The format
of the GCA instructions is (opc a, opc b, target object, source object).

The semantic of the instructions corresponds mainly to different kinds of generation
computations used in the previous sections.

The first design is a sequential system (Fig. 1) with a pipeline structure to show the basic
functionality and to describe the necessary components of the system. A central issue will
be how to avoid congestion to the object table. If the data layout can be computed during
compilation of the APL program, then all references to the object table can be compiled
into the instructions and the object table need not be referenced at all. If on the other hand,
the object table changes during the runtime, as for a transposition, then replication may be
a possible choice.

The machine consists of
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Fig. 1. Controller state machine

– an instruction memory IM,
– an object table memory OM,
– the execution pipeline with the cell memories R, S and the result memories R′, S ′.

In order to read in parallel the cell data and the neighbor cell data within two different
pipeline stages the data memory is mirrored. Thus the memory R is used to read the cell
data and the memory S is used to read the cell data of the global cell. In order to implement
the synchronous updating scheme, the results are first saved in the buffer memories R′ and
S ′. Thereby the old values of the cells are always available during the calculation of one
generation and are not overwritten in between. The cell memories (R,S) and (R′, S ′) are
interchanged after each generation.

Before the calculation of a new generation begins, the next instruction is fetched from
the instruction memory. Then the object information of the two objects (start position, rows
and columns) is fetched from the object memory. This access can be performed sequentially
in two cycles as shown in (Fig. 2) or in one cycle using a dual port memory. Additionally
the internal operation codes for the calculation of the new data d (OPC d) and new pointer
p (OPC p) are set.
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Fig. 2. Instruction and operand fetch

The calculation of the new cell data is performed within five pipeline stages (Fig. 3). First
the cell data is read out of the cell memory R. With the value of d, the current Cell-ID (ID),
the operation code (OPC p) and the values of the object memory it is possible to calculate
the pointer p to the global cell. In the next pipeline stage the cell data d∗ of the neighbor cell
is read from the cell memory S using the pointer p. After this step the calculation of d can
be performed. In the last pipeline stage the new cell’s content is saved in the memories R′

and S ′. After the latency the pipeline operates on five cells in parallel. Thereby a new result
can be computed in each cycle. In order to increase the level of parallelism it is possible to
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use several pipelines in parallel as shown previously [7, 8]. Furthermore it is even possible
to implement a GCA fully in parallel as shown in [3].

4 Conclusion

Data parallel operations which are a characteristic of languages like APL or Fortress can
easily be implemented on a GCA. Typical APL operations were implemented on the con-
densed GCA model using one or more generations per operator. A GCA machine was defined
which executes GCA instructions in a pipeline manner using several memories. Each GCA
instruction controls the execution of a specific generation computation taking into account
the start addresses and number of rows/columns of the objects. The degree of parallelism
can be increased by using several pipelines in parallel due to the properties of the model
(massively parallel, no write conflicts). In addition the pipeline can be modified in a way
that the number of generations to execute a data parallel operation is minimized.
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